
A Stream Processing Framework for On-line Optimization of
Performance and Energy Efficiency on Heterogeneous Systems

Benjamin Ranft, Oliver Denninger
FZI Research Center for Information Technology

76131 Karlsruhe, Germany
Email: {ranft,denninger}@fzi.de

Philip Pfaffe
Karlsruhe Institute of Technology

76131 Karlsruhe, Germany
Email: philip.pfaffe@kit.edu

Abstract—Modern processors have the potential of executing
compute-intensive programs quickly and efficiently, but require
applications to be adapted to their ever increasing parallelism.
Here, heterogeneous systems add complexity by combining pro-
cessing units with different characteristics. Scheduling should
thus consider the performance of each processor as well as
competing workloads and varying inputs.

To assist programmers in facing this challenge we present
libHawaii, an open source library for utilizing heterogeneous
systems easily and efficiently. It supports exploiting data flow,
data element and task parallelism via pipelining, partition-
ing and demand-based allocation of consecutive work items.
Scheduling is automatically adapted on-line to continuously
optimize performance and energy efficiency. Our C++ library
does not depend on specific hardware architectures or parallel
computing frameworks. However, it facilitates maximizing the
throughput of compatible GPUs by overlapping computations
and memory transfers while maintaining low latencies.

This paper describes the algorithms and implementation of
libHawaii and demonstrates its usage on existing applications.
We experimentally evaluate our library using two examples:
General matrix multiplication (GEMM) is a simple yet im-
portant building block of many high-performance computing
applications. Complementarily, the detection, extraction and
matching of sparse features within images exhibits inter alia
nondeterministic memory access and synchronization.

Keywords-heterogeneous computing; stream processing; load
balancing; energy efficiency; real-time; parallel programming;

I. INTRODUCTION

Throughout the last years, standard processors have been
enhanced particularly by incorporating an increasing number
of parallel processing units. At the same time, the previously
common growth of serial performance is inhibited by power
consumption, memory latencies and limited instruction-level
parallelism. Thus, not only developers of high-performance
or real-time software need to create and optimize parallel
algorithms and implementations which scale well with the
number of processing units available.

Additionally there is a trend of systems becoming more
and more heterogeneous by including multiple processors
with different characteristics: The best-known example are
general purpose graphics processing units (GPUs), which
perform well at problems with sufficient data parallelism.
Their advantage over CPUs regarding throughput and energy
efficiency has been found to be significant in several domains

[1][2][3]. This holds even when utilizing all CPU cores along
with their SIMD capabilities and when also considering data
transfers to and from discrete GPU memory. Nevertheless,
reports of hundredfold speed-ups often neglect these aspects.
Data locality is less crucial if CPU and GPU are integrated
and share a unified memory [4][5], but it remains important
to the discrete accelerators prevalent in high-performance
computing. Aside from this typical combination, heterogene-
ity also appears in compatible cores of a single processor
which are designed for either performance or efficiency [6].

The aforementioned trend towards heterogeneous systems
poses requirements to software development, based on which
we defined the goals below for libHawaii1. The methods and
approaches used to achieve them constitute the contributions
of this paper. We specifically target streaming applications,
which apply a set of filters to successive work items – a
common characteristic of scientific or real-time applications.

• Generality: To enable the use of all available processors
by as many applications as possible, all their contained
task, data and data flow parallelisms [7] are exploitable.

• Performance portability: While automatically adapting
parallelism throughout runtime, libHawaii incorporates
a system’s hardware, the application itself as well as
competing processes. At this, we evaluated the feasibil-
ity and potential of different approaches tightly coupled
within a single program [8] before creating libHawaii.

• Energy efficiency: Real-time applications depend on a
sufficient rather than the highest possible throughput. In
this case, we optimize power instead of performance by
preferring more efficient processors while still meeting
the throughput requirement. The power consumption
of each pair of processor and filter is estimated from a
model due to the lack of appropriate sensors in ordinary
systems.

• Productivity: Our library relieves programmers from
manually tuning applications for various combinations
of processors, parameters and inputs. Since it is ag-
nostic on the internals of a user’s code and does not

1This acronym stands for “heterogeneous adaptive work allocation imple-
mentation items”. It has first been applied to our internally-used computer
vision library libToast2, the “tools for the analysis of stereo images”.

employ any custom compiler or runtime environment,
interfacing usually does not require any modifications
but only few additional lines of code. Being an open
source2 C++ library, libHawaii uses the same language
as many performance-critical applications and may be
extended towards any special requirement if necessary.

This paper’s remainder is organized as follows: Section II
presents related work with a focus on existing parallel com-
puting frameworks and differentiates between these and our
contribution. Section III describes libHawaii’s interface and
implementation, especially its strategies for continuously
optimizing performance and energy efficiency. Section IV
employs sample applications to evaluate our library w. r. t.
the goals above and illustrates the procedure of interfacing
it with existing applications via code examples. Section V
concludes the paper and presents an outlook on future works.

II. RELATED WORK AND CONTRIBUTION

The next paragraphs present increasingly versatile paral-
lel computing approaches: Mainly processor vendors offer
frameworks for offloading computations to either multi-core
CPUs or accelerators. Improvements include code portability
and cooperation of heterogeneous processors. Still, generic
scheduling optimization remains an active research topic.

The introduction of GPUs to general purpose computing
was accompanied by architecture-specific libraries contain-
ing commonly used functions. They simplify switching from
CPUs by implementing interfaces familiar from e. g. the
C++ Standard Library [9] or Intel IPP [10]. Libraries like
OpenCV [11] allow choosing between similar functionality
for CPUs and GPUs. Data parallelism within own code can
be conveniently exploited by multi-core CPUs and GPU-
like accelerators through the compiler directives of OpenMP,
OpenACC [12] or OmpSs [13]. [14] facilitates handling
multiple CUDA-capable GPUs and irregular workloads.

Today’s best-known framework for heterogeneous com-
puting is OpenCL: A kernel implemented in its extensions
of the C language is portable to each compatible processor.
[15] extends the scope to clusters by mapping remote nodes
to virtual local devices. In spite of the above portability,
achieving best performance still requires processor-specific
tuning. [16] and [17] automatically generate optimized GPU
code from StreamIt and Lime language sources respectively.
[18] also supports CPUs, but is limited to stencil computa-
tions. In conclusion, the above and other frameworks can be
used to achieve per-processor parallelism before utilizing all
processors of heterogeneous systems via libHawaii.

Several publications have complemented the above porta-
bility with concurrent execution on heterogeneous proces-
sors: [19] and [20] find performance models for two different
processors from an initial training run in order to optimally

2to become available under the terms of the GNU General Public License
at our partner institute’s website www.mrt.kit.edu/software. A non-public
preview is provided at www.mrt.kit.edu/ranftweb/libHawaiiPreview.tar.gz.

split data and computations, which results in latencies close
to a manually-optimized mapping. Independence from train-
ing runs and hence the possibility of on-line adaptation is
demonstrated by [21] for OpenMP loops. Our partitioning
strategy is similar, but employs a more complex performance
model and allows generic expressions of data parallelism.
Instead of splitting data and computations into one ideally-
sized partition per processor, [22] and [23] allocate many
smaller chunks: This may add overhead, but achieves adap-
tation implicitly as faster processors consume chunks.

If an algorithm can be expressed by simple patterns like
MapReduce, heterogeneous data parallelism can be realized
using skeletons: [24] or [25] implement such patterns and of-
fer automatic memory management. [26] combines skeletons
or high-level functions into a macro data flow graph which
is processed to heterogeneously. Neither the aforementioned
frameworks nor our library match the skeletons’ conciseness,
but are more flexible w. r. t. suitable algorithms.

Optimizing energy efficiency usually requires either mea-
suring power consumption with additional sensors [27] or
estimating it e. g. from artificial neural networks based on
hardware performance counters [28]. Mappings from each
processor’s voltage/frequency state to its power consumption
are employed by [29] to maximize a heterogeneous system’s
throughput at a given power budget. [30] finds a compromise
between performance and power by optimizing the energy-
delay product metric. In contrast, [31]’s and our goal is to
achieve a given throughput as efficiently as possible. Our
power model’s unique feature is providing estimates not only
per processor, but for each pair of processor and filter.

When shifting the focus from stream processing to data
flow and task parallelism, Intel TBB [32] is commonly used:
It can dynamically map a dependency graph of tasks to CPU
cores, but does not support accelerators equally well. Other
frameworks specifically target heterogeneous systems, e. g.
[33] which nevertheless requires a shared address space. [34]
makes scheduling decisions based on the relative speed-
up between CPU and GPU. A comparative overview of
scheduling heuristics for independent tasks is given by [35].
[36] introduced the popular heterogeneous earliest-finish-
time algorithm. It is used among others by the PEPPHER
component model [37] or the StarPU runtime system [38],
which optionally take into account pre-defined or history-
based performance models. The extensive XPU/MHPM
framework [39] supports the same three kinds of parallelism
as our library through an interface which also requires only
few application-specific lines of code. libHawaii however
includes two additional noteworthy features: The assignment
of tasks to processors is automatically adapted on-line,
and not only performance but also energy efficiency can
be optimized. This second aspect has mainly been studied
beyond our scope of single applications: [40] distributes
recurring tasks among two heterogeneous processors, which
is relevant e. g. for real-time operating systems. On a similar

+run()
+push(: ItemBase)
+pull() : ItemBase

Flow
+serialNumber

+split()
+merge()

ItemBase

+process(src : ItemBase, dst : ItemBase)
StepBase

Pipeline Partitioning

+push(: ItemBase)
+pull() : ItemBase

Adapter

Series +upload(src : ItemBase, srcGPU : ItemBase)
+compute(srcGPU : ItemBase, dstGPU : ItemBase)
+download(dstGPU : ItemBase, dst : ItemBase)

StepBaseGPU

DemandAlloc

1..*

1..*

1..*

1..*

Figure 1. UML class diagram of libHawaii types related to adaptive
heterogeneous computing, including only relevant methods and members

level, [41] and [42] manage all enqueued tasks such that the
power states of processors or whole nodes can be reduced
without affecting throughput.

III. IMPLEMENTATION AND SCHEDULING STRATEGIES

We now present the algorithms, implementation and usage
of libHawaii in detail. Section III-A covers its fundamental
building blocks and their interfaces to a user’s application.
Our library’s classes for combining these blocks to adap-
tively optimize performance and efficiency on heterogeneous
systems are described in section III-B. Finally, section III-C
introduces supplemental functionality for easily and effec-
tively using CUDA-capable GPUs in particular. We will refer
to libHawaii’s UML class diagram in fig. 1 repeatedly.

A. Fundamental Building Blocks

Virtual inheritance is a common pattern not only within
our library. Interfacing it with an application also requires
deriving specific versions of ItemBase and StepBase:

1) Work Item: As stated above, we expect an application
to process a stream of work items, which transport inputs as
well as intermediate and final results between filters. Since
this data is application-specific, it should be defined in one
or more child classes of ItemBase. The base itself merely
contains a running number for timing latencies and sorting
items. The methods for splitting an input item into smaller
parts and merging the respective results are only required for
partitioning an item type across heterogeneous processors.

2) Processing Step: This class – often called a filter –
applies computations to work items via its virtual method
StepBase::process(). Any single processor can be
used in it through an API of choice. Once an application is
run, each instance of StepBase launches its own thread
to repeatedly pull, process and push one work item at a
time. Dividing applications into more rather than fewer steps
ensures flexibility, while the Series class still allows to
easily re-combine and to sequentially apply them.

Optimizing an application’s energy efficiency depends on
knowing the power consumption of every filter instance on
its associated processor. Appropriate sensors are rare in or-
dinary systems and likely unable to assign a measurement to
concurrent filters sharing one processor. libHawaii therefore
contains a model which merely requires specifying the GPU
or the number of CPU cores utilized while a step processes a
work item. This time interval ∆t is measured individually by
each step instance3. We observed that processors spend most
time in either their highest or idle voltage/frequency state4,
and thus assume that each processor i consumes its thermal
design power (TDP) Pi while being utilized. Given this
characteristic value for each processor of a heterogeneous
system, a single filter instance’s energy per work item can
be estimated:

w =
∑
i

Pi ∆ti (1)

3) Base Flow Component: libHawaii’s interface to appli-
cation code is now complete, but one fundamental building
block remains: As fig. 1 indicates, Flow::pull() and
push() implement the interface for acquiring and passing
work items. While doing so, this abstract class can measure
performance metrics such as latency and throughput f for
evaluation by derived classes. This information may be
generated and accessed concurrently, so lock-free implemen-
tations minimize runtime overheads. We apply exponential
filtering to obtain smooth estimates f based on noisy mea-
surements f̂ acquired from the kth work item:

fk = α fk−1 + (1− α) f̂k, α ∈ [0, 1) (2)

Apart from these measurements, an instance of Flow can
be configured to actively limit throughput. For evaluating an
on-line application with recorded off-line data, this allows
making inputs available at the original sensor’s rate. How-
ever, the key purpose of this feature is enabling the following
strategies to optimize energy efficiency by throttling less effi-
cient processors. Please note that these strategies also require
an estimate of each filter’s potential maximum throughput:
Flow provides this by compensating not only for throttling,
but also for empty input or full output queues.

B. Adaptive Heterogeneous Computing

A user’s application-specific processing steps can now be
combined using different methods to achieve optimized per-
formance and energy efficiency on a heterogeneous system.
We have laid the foundation for this part of libHawaii in [8]
by evaluating the feasibility and potential of the strategies
below tightly coupled within a single prototype application.
Therefore, this section repeats only core statements and
otherwise focuses on added improvements such as energy
efficiency, generalized implementations, and extensions.

3using Linux’s getrusage() call for CPUs and the event API of GPUs
4from Linux’s file /sys/devices/system/cpu/cpu*/cpufreq/

stats/time_in_state for CPUs and the nvprof profiler for GPUs

task
(consecutive
work items)

data element
(single work

item)

data flow
(processing steps)

pipelining

task
(consecutive
work items)

data element
(single work

item)

data flow
(processing steps)

demand-based allocation

task
(consecutive
work items)

data element
(single work

item)

data flow
(processing steps)

partitioning

Figure 2. Strategies to exploit different kinds of parallelism using multiple heterogeneous processors, each being indicated by an individual color

Fig. 2 shows that our library offers one heterogeneous
computing strategy corresponding to each orthogonal kind of
parallelism constituted e. g. in [7]: Demand-based allocation
exploits task parallelism while pipelining and partitioning
make use of data flow and data parallelism respectively. The
UML diagram in fig. 1 reveals that the classes Pipeline,
DemandAlloc and Partitioning not only inherit from
Flow, but also can wrap instances of this base type. This
allows users to not only combine processing steps but also
to nest different strategies. Example configurations will be
illustrated in section IV after explaining each strategy:

1) Pipelining: The Pipeline class implements a stan-
dard approach: If an application processes a stream of work
items in multiple steps, each of them is mapped to one spe-
cific processor. The set of possible mappings is therefore not
only countable, but often limited to very few combinations
– this interferes with precise adaptation to the conditions
present in a heterogeneous system. For that reason and due
to the merely moderate results of pipelining in [2] and [8],
Pipeline is the only strategy not to implement automatic
performance and energy optimization in the class itself.
It is nevertheless very useful in conjunction with I/O-related
processing steps such as reading from disk, receiving sensor
data, displaying results or connecting to a middleware [43].
With those being typical starts and ends of processing, a
Pipeline is usually used as a basis within which other
heterogeneous parallelization strategies are nested.
Queues are used to connect consecutive stages, i. e. filters or
nested strategies. Each queue must be specified by the user
for two reasons: It can and should have a limited capacity so
that a high-throughput upstream stage is eventually throttled
in case a downstream stage cannot keep pace with it. Also,
we provide three different types: FIFO and priority queues
as well as an ordered queue for use after a DemandAlloc.

2) Demand-based allocation: The class DemandAlloc
regards work items as individual tasks which can be pro-
cessed concurrently by different heterogeneous processors. It
is therefore preferable to minimize synchronization between
items, yet they are not required to be completely indepen-
dent. Our implementation is able to optimize performance in
an implicit way: The threads controlling each participating
processor pull work items from a shared input queue and
thereby effectively combine their throughputs. Because an
earlier item assigned to a slow processor might be “over-
taken” by a later item processed on a sufficiently faster one,
the output queue needs to buffer items and only give them
away ordered by their running number.

Optimization of energy efficiency requires a more complex
scheduling: For the contribution of each processor i to an in-
stance of DemandAlloc, we regularly evaluate the energy
it consumes per work item according to section III-A2. This
metric is used to sort the processors by descending energy
efficiency. Additionally, the minimum combined throughput
fmin required to keep pace with the stream of input items is
measured. Based on the processors’ unconstrained through-
puts func,i the j most efficient ones can be spared from any
throughput limit flim:

flim,j =∞ ∀j :

j∑
i=1

func,i < fmin (3)

The next best processor in terms of efficiency may only
contribute as much as necessary and is therefore limited to:

flim,j+1 = fmin −
j∑

i=1

func,i (4)

To exclusively optimize energy efficiency, the remaining
processors should actually not be used at all. However, our
implementation only limits them to 5% of fmin in order to
always gather updated performance measures from them.

3) Partitioning: Data parallelism can be expanded across
multiple processors using Partitioning. Because all of
them cooperate in processing a single work item at a time,
this strategy can achieve the lowest latencies and is thus most
suitable for real-time applications. Adaptation finds the ideal
ratios for splitting an item into per-processor partitions.
We have implemented two major extensions since [8]: Aside
from optimizing energy efficiency, the underlying perfor-
mance model for each individual processor has been refined.
Its throughput f is not only assumed inversely proportional
by a factor m to a partition’s fraction or ratio r of a full work
item, but now also includes a constant per-item overhead c:

1/f = mr + c (5)

Although this change may seem minor, it especially stabi-
lizes the small r of slower processors. Jointly estimating both
model parameters based on throughput as a single measure
also requires a more complex algorithm: As a novelty in this
domain, our implementation uses an individual Kalman filter
[44] for each processor, which incorporates the partitioning
ratio of the current work item k in its measurement matrix
Hk. Its state vector x̂k concatenates the most recently
estimated model parameters. With the period 1/fk being
the time difference between finishing the last two work item
partitions, the above performance model can be written as:

1/fk = Hk x̂k =
(
rk 1

) (
mk ck

)ᵀ
(6)

A parameter update requires several helper variables: The
internal constants Q and R define the noise (co-)variance
of the state vector and the period respectively. The state
error co-variance Pk measures the uncertainty of the most
recently estimated model parameters. Finally, the Kalman
gain Kk is an intermediate variable to facilitate updating the
state estimate and its uncertainty based on the most recently
completed work item partition’s rk and 1/fk:

Kk = Pk−1H
ᵀ
k (HkPk−1H

ᵀ
k +R)

−1 (7)

x̂k = x̂k−1 + Kk (1/fk −Hk x̂k−1) (8)

Pk = (I−KkHk)Pk−1 + Q (9)

This algorithm is implemented within the Adapter class,
via which Partitioning connects to each participating
processor. To determine the partition ratios for the next work
item, only the most recently estimated performance model
parameters are used – we will therefore omit the item index
k used above, but re-introduce the processor index i. Like
with demand-based allocation, processors are initially sorted
by their efficiency, i. e. their energy consumption per full
work item. Here we assume that energy is proportional to
partition ratio. This strategy then attempts to keep pace with
the stream of input items fmin in an energy-efficient way by
first finding the maximum allowed work item ratio of each
processor:

ri = (1/fmin − ci) /mi (10)

If
∑
ri ≥ 1 holds true, the ratios of the least efficient proces-

sors can be reduced until this sum equals one full work item.
Otherwise, Partitioning may be a bottleneck for the
incoming stream of work items and – to minimize this effect
– falls back to optimizing performance: This is achieved by
preventing any processor from idling, which is equivalent
to equalizing their respective throughputs. Algorithmically,
we create a system of linear equations to be solved for the
partitioning ratios ri via LU decomposition:
m1 −m2 · · · 0 0

...
...

. . .
...

...
0 0 · · ·mn−1 −mn

1 1 · · · 1 1




r1
...

rn−1

rn

=


c2−c1

...
cn−cn−1

1

 (11)

For a total of n processors, the first n− 1 rows ensure pair-
wise equal throughputs, while the last row states that exactly
one full work item is to be partitioned.
An equilibrium of ratios emerges iteratively as the adaptation
algorithm is applied to consecutive work items. It is in this
respect similar to the Newton-Raphson method for finding
a function’s roots. This also explains why the performance
model in equation (5) does not necessarily have to be valid
globally for any processing step, but only locally at its cur-
rent partition ratio or “operating point”. Partitioning
is therefore well-suited even for filters whose computational
complexity does not depend just linearly on input size.

U

C

D

U

C

D
U

C

D

upload compute downl.

U

C

D

U

C

D

U

default

U

C

D

U

C

D

U

C

D

copy compute

hardware queues

ti
m

e

Figure 3. Time-lines of uploads (U) to, computations (C) on and downloads
(D) from a discrete-memory GPU: default scheduling (left), pipelined pro-
cessing with one shared copy engine (center) and with dedicated up- and
download engines (right). ∆t is latency, 1/f inverse throughput or period.

C. Supplemental Functionality

As stated initially, our library does not require the use
of a specific software framework or architecture. Neverthe-
less it includes optional functionality making it particularly
efficient to use discrete-memory GPUs compatible with the
CUDA framework. Since they offer a higher bandwidth than
memory shared with any CPU, such GPUs are prevalent in
heterogeneous high-performance systems. The price of this
advantage is that data usually needs to be copied to and
from this discrete memory – the associated impacts on both
runtime and code complexity can fortunately be mitigated:

1) GPU Processing Step: GPUs can perform computa-
tions and memory transfers concurrently, which enables ex-
ploiting data flow parallelism. While a generic Pipeline
could be used for this purpose, the specific filter template
StepBaseGPU allows doing so more concisely and deter-
ministically: It requires the upload, compute and download
parts of processing to be implemented separately, so they can
be scheduled to overlap for consecutive work items. Fig. 3
shows that the sum of upload, compute and download time
remains a lower bound for a single item’s latency: ∆t ≥
∆tU + ∆tC + ∆tD. Throughput can however be improved
from the default non-overlapping case f = 1/∆t signifi-
cantly: The Tesla series GPUs for scientific computing offer
dedicated hardware queues for up- and downloads, which
increases the upper bound to f = 1/max(∆tU ,∆tC ,∆tD).
The GeForce consumer models share a single copy engine
but still raise the limit to f = 1/max(∆tC ,∆tU + ∆tD).
The pattern which our scheduling follows by default in each
iteration k is suitable for both types of GPUs:

1) pull work item k
2) enqueue upload of item k
3) enqueue download of item k − 1
4) enqueue computation of item k
5) push item k − 2 after it has been downloaded

Exceptions are made to maintain low latencies: While only
5) uses blocking calls, we also try to push item k − 2 and
even k−1 to the next filter in a non-blocking way on earlier
occasions. If a new item k does not become available before
the computation of k − 1 finishes, the latter’s download is
given priority. This abandons overlap for one iteration, but
prevents item k − 1 from unnecessarily waiting for k.
Please note that users’ implementations of the virtual Step
BaseGPU::upload/compute/download() methods
must not synchronize the GPU. This obviously excludes
cudaDeviceSynchronize() but also GPU memory
allocation. As an alternative, libHawaii provides pools which
internally organize memory in bins of 2i, i ∈ [8, 32) bytes.

2) Implicit Memory Management: The impact of discrete
GPU memory on code complexity can be mitigated more
easily than that on throughput. Due to libHawaii’s origin
in computer vision, we do so using OpenCV types: Mat
and GpuMat represent images as well as matrices in CPU
or GPU memory respectively. By mimicing their interface,
libHawaii’s AutoMat can be used as a drop-in replacement.
It stores one Mat and an individual GpuMat for each GPU,
and keeps track of their validity – write access by the 2nd

GPU e. g. invalidates all other instances. On read access from
a specific processor, data is copied from the quickest valid
source: The ranking for a discrete GPU e. g. begins with
its own memory, followed by that of peer-to-peer-accessible
GPUs. Thereafter, page-locked is preferred to pageable CPU
memory. Lastly, data from a non-peer-to-peer-accessible
GPU is copied to the host and from there to the target GPU.

IV. EXPERIMENTAL EVALUATION

The following evaluation of libHawaii employs two sam-
ple applications, which at first are introduced briefly. After
that, the respective programming efforts for interfacing them
with our library are presented in detail using, inter alia, ex-
emplary source code excerpts. The performance and energy
efficiency achieved by our automatic adaptation strategies
are analyzed and compared to each applications’ baselines.

A. Sample Applications

Our aim in selecting the applications described below was
to broaden the scope of our initial feasibility analysis [8]: Its
single application of dense stereo vision combines various
image processing operations and is computationally demand-
ing, but also mostly deterministic by rarely depending on the
input images’ actual content. The second sample application
is contrary in this respect while the first one is very basic:

1) GEMM: General matrix multiplication is a fundamen-
tal subroutine for high-performance computing applications.
The best-known among these is probably the LINPACK [45]
benchmark used to rank the world’s top 500 supercomputers
[46]. Instead of only multiplying two matrices, GEMM
computes the expression αAB + βC. This allows A and
B to be sub-blocks of much larger matrices to be multiplied

Figure 4. ORB feature matches between overlaid consecutive images from
a motorcycle-mounted camera: few results on ground due to motion blur

– the products of all such sub-blocks can then be found
in a cache-friendly way before being accumulated to form
a sub-block of the result matrix. Our sample application
operates on real-valued matrices sized 1024 x 1024 elements
in single-precision format. For heterogeneous pipelining, the
above expression had to be split into two steps: a matrix
multiplication T = AB, followed by a scaled addition αT+
βC. Our CPU implementation wraps the Eigen library [47]
for linear algebra and adds multi-core support via OpenMP,
while CUBLAS [48] is used on GPUs – both have proven
to be very efficient on their respective platforms.

2) Feature Matching: Like the previously evaluated dense
stereo vision, feature matching is a computer vision appli-
cation. It differs in one important respect however: Instead
of providing dense results across most pixels, it only finds
correspondences between small sets of points from different
images5. These keypoints are selected by detecting corners
or small blobs – their number and local distribution may
therefore vary significantly depending on an image’s content.
This causes irregular memory accesses during the subse-
quent process of describing their appearance.
The development of descriptors, i. e. concise representations
of a keypoint’s appearance, is an active research topic. In
addition to being efficiently computable and comparable,
requirements include robustness against changes in illumi-
nation, rotation and scale. Open source implementations for
both CPUs and GPUs exist for the SURF [49] and ORB [50]
descriptors – nevertheless the former’s usage is restricted by
patents [51]. We chose the latter for evaluating libHawaii:
ORB has not been designed from scratch, but rather built
upon BRIEF [52] – both describe a keypoint’s appearance
using a 256-bit vector containing the results of 256 pair-
wise brightness comparisons between pixels around it. This
allows quantifying the dissimilarity of two descriptors by
finding their Hamming distance, i. e. the number of unequal
bits – a computation suitable for the population count
instructions of most modern processors. While comparing

5Finding results for fewer pixels may be a disadvantage. In compensation,
sparse feature matching can successfully be applied e. g. to images captured
before and after considerable camera movement, while dense stereo vision
usually requires rigidly-connected cameras and off-line calibration.

// derive work item for feature matching using the "curiously recurring template pattern"
class ItemFeatureMatching : public hawaii::flow::ItemTemplate< ItemFeatureMatching,

hawaii::flow::PartInfoImageOverlap > {
// inputs, intermediate and final results
public:
hawaii::AutoMat imageCurr, imagePrev ;
std::vector< cv::KeyPoint > keypointsCurr, keypointsPrev ;
hawaii::AutoMat descriptorsCurr, descriptorsPrev ;
hawaii::AutoMat matchIndices, matchDistances ;

// split and re-combine work item (required for partitioning only)
public:
virtual void splitImpl(std::vector< ItemFeatureMatching::Ptr >& parts,

const std::vector< double >& ratios,
const hawaii::flow::PartInfoImageOverlap& partInfo) ;

virtual void mergeImpl(const std::vector< ItemFeatureMatching::Ptr >& parts,
ItemFeatureMatching::Ptr& whole,

const hawaii::flow::PartInfoImageOverlap& partInfo) ;
} ;

Figure 5. Work item type for feature matching: Not deriving directly from ItemBase, but instead via its child class template ItemTemplate, merely
makes implementing the partitioning methods more convenient – their arguments would otherwise need to be cast from and to ItemBase pointers.

brightnesses already compensates for illumination changes,
ORB adds rotation- and scale-invariance by adapting the
distance and angle between a keypoint’s center and each
adjacent pixel to be compared with one another.
As shown in fig. 4, our sample application matches corre-
sponding features, i. e. tuples of a keypoint and its descriptor,
between consecutive frames of a video stream. Such matches
are useful e. g. for estimating the camera’s motion, but also
create a dependency between subsequent work items. The
next section explains how such dependencies can be made
compatible with heterogeneous parallel processing. For the
sake of simplicity and because algorithmic improvements
of computer vision are not in the focus of this paper, our
matching processing step is very straightforward: For each of
the current image’s features, the corresponding match from
the previous image is selected by minimizing their Hamming
distance. Data-parallel implementations of this algorithm
as well as the aforementioned detection and extraction of
features for CPU and GPU are included in OpenCV [11].
Unfortunately, the first of its corresponding classes ORB_
GPU and BFMatcher_GPU does not support enqueuing its
operations to any but the default stream. This unnecessarily
synchronizes them with all other tasks on that stream, par-
ticularly feature detection and extraction on a different GPU.

B. Programming Efforts

Instead of statistics on the lines of code needed to in-
terface the sample applications with libHawaii, this section
will present excerpts of that code itself. We believe this
direct view is more insightful for potential users who want
to estimate the same efforts w. r. t. their own applications.

As described in section III-A, work items and processing
steps are the building blocks from which application-specific
types must be derived. Figs. 5 and 6 exemplarily illustrate
this for the feature matching work item and the GPU-based
GEMM processing step. The base class templates Item
Template and StepTemplate(GPU) extend their par-
ents ItemBase and StepBase(GPU) by only one aspect:
Their purely-virtual methods can be implemented more con-

// derive GEMM processing step for one GPU
class GEMMGPU :
public hawaii::flow::StepTemplateGPU< ItemGEMM > {

// options as members, CUBLAS support
public:
float alpha, beta ;
protected:
cublasHandle_t handle ;

// implement purely-virtual methods: "{Src,Dst}(GPU)Ptr"
// are typedefs to "boost::shared_ptr< ItemGEMM >".
// always pass the same work item through
public:
void uploadImpl(SrcPtr& srcPtr,

SrcGPUPtr& srcGPUPtr,
cv::gpu::Stream& stream) const {

srcGPUPtr = srcPtr ;
srcGPUPtr->A.readGPU(stream) ;
srcGPUPtr->B.readGPU(stream) ;
srcGPUPtr->C.readGPU(stream) ; }

void computeImpl(SrcGPUPtr& srcGPUPtr,
DstGPUPtr& dstGPUPtr,
cv::gpu::Stream& stream) const {

dstGPUPtr = srcGPUPtr ;
gemmGPU(srcGPUPtr->A, srcGPUPtr->B, srcGPUPtr->C,

dstGPUPtr->result,
this->alpha, this->beta,
this->handle, stream) ; }

void downloadImpl(DstGPUPtr& dstGPUPtr,
DstPtr& dstPtr,
cv::gpu::Stream& stream) const {

dstPtr = dstGPUPtr ;
dstPtr->result.readCPU(stream) ; }

} ;

Figure 6. GPU Processing step for general matrix multiplication: Separate
methods for uploading inputs, performing computations and downloading
results allow overlapping these operations on consecutive work items.

veniently because their arguments use the actual rather than
the base item type. The methods for partitioning the item are
merely declared in fig. 5 because their definition is repetitive:
Current keypoints and descriptors are split proportionally to
the ratios argument, while previous ones are shared as a
whole. The original input image is divided into stripes which
must overlap by the area within which the ORB descriptor
compares pixels. Since this is common in computer vision,
our library provides helper functions for mapping continuous
partitioning ratios to discrete and optionally overlapping
intervals. They apply the largest remainder method, which
is also common for the allocation of seats after elections.

Partitioning partGEMM

StepBase
stepGEMMCPU

StepBaseGPU
stepsGEMMGPU[0]

StepBaseGPU
stepsGEMMGPU[1]

S
t
ep

B
a
s
e

s
o
u
r
c
eG

E
M
M

Q
u
e
u
e

Pipeline pipeGEMM

DemandAlloc
demalExtract

S
t
e
p
B
a
s
e

s
t
e
p
s
E
x
t
r
a
c
t
G
P
U
[
0
]

S
t
e
p
B
a
s
e

s
t
e
p
E
x
t
r
a
c
t
C
P
U

S
te

p
B
a
s
e

s
o
u
r
c
eI

m
a
g
e
s

Pipeline pipeFeatureMatching

S
te

p
B
a
s
e

s
t
e
p
B
uf

f
e
r

DemandAlloc
demalMatch

S
t
e
p
B
a
s
e
G
P
U

s
t
e
p
s
M
a
t
c
h
G
P
U
[
1
]

S
t
e
p
B
a
s
e
G
P
U

s
t
e
p
s
M
a
t
c
h
G
P
U
[
0
]

S
t
e
p
B
a
s
e

s
t
e
p
M
a
t
c
h
C
P
U

Q
u
e
u
e

Q
u
e
u
e

Q
u
e
u
e

Figure 7. Illustrated configurations for adaptive heterogeneous computing as listed in figs. 8 (left) and 9 (right): The system has a number of symmetric
multiprocessing CPU cores as well as two GPUs. While GEMM only receives its input items through a pipeline, feature matching between consecutive
images also requires an intermediate buffer for the previous keypoints and descriptors – its processing steps must therefore be optimized separately. Feature
detection and extraction cannot effectively use the 2nd GPU because its wrapped OpenCV code merely enqueues to the synchronous default CUDA stream.

// adaptive partitioning across all CPU cores and GPUs
hawaii::flow::Partitioning partGEMM(stepGEMMCPU) ;
for(int GPU = 0 ; GPU < hawaii::GPUs ; ++GPU) {
partGEMM.add(stepsGEMMGPU[GPU]) ;

}

// add source of input matrices via pipeline,
hawaii::flow::Pipeline pipeGEMM(sourceGEMM,
hawaii::flow::queueFactory(typeFIFO), partGEMM) ;

// run for 30 seconds, then print evaluation
pipeGEMM.run() ;
sleep(30) ;
pipeGEMM.eval() ;
pipeGEMM.stop() ;

Figure 8. Use of partitioning for GEMM: partGEMM receives new work
items from sourceGEMM through a FIFO queue. Since generating new
input matrices is much faster than multiplying them, partGEMM attempts
to keep pace by optimizing performance rather than energy efficiency.

The final step towards implementing adaptive heteroge-
neous computing is combining one’s filters within one or
more of the strategies introduced in section III-B. As before,
this is demonstrated by source code excerpts – fig. 7 provides
complementary illustrations of the example configurations
to be described: Both employ a pipeline to connect their
IO-based work item sources to their respective processing.
Fig. 8 explains how all processors of a heterogeneous
system can be configured to cooperate at GEMM using the
partitioning strategy. Aside from showing DemandAlloc’s
identical interface, fig. 9 presents a solution to the depen-
dency between consecutive feature matching items: Because
filters and adaptation strategies may be flexibly nested, the
extraction and matching steps can be optimized indepen-
dently – even by different strategies. This allows inserting a
queue to sort incoming work items and a buffer to add the
respective previous features to each current item in between.

Table I
HARDWARE SPECIFICATIONS OF TEST SYSTEM

CPU GPU
model Intel Xeon E5645 nVidia GeForce GTX 470
count 2 sockets 2 expansion cards
parallelism 6 cores x 14 streaming multiproces-

128-bit SIMD sors x 32 SIMT cores
clock frequency 2400 MHz 607 MHz
memory bandwidth 32.0 GB/s 133.9 GB/s

// demand-based allocation: OpenCV’s wrapped feature
// detection/extraction effectively supports one GPU only.
hawaii::flow::DemandAlloc demalExtract(stepExtractCPU) ;
hawaii::flow::DemandAlloc demalMatch(stepMatchCPU) ;
if(hawaii::GPUs > 0) {
demalExtract.add(stepsExtractGPU[0]) ;

}
for(int GPU = 0 ; GPU < hawaii::GPUs ; ++GPU) {
demalMatch.add(stepsMatchGPU[GPU]) ;

}

// add source of input images and buffer for previous
// keypoints/descriptors via pipeline
hawaii::flow::Pipeline pipeFeatureMatching(sourceImages,
hawaii::flow::queueFactory(typeFIFO), demalExtract,
hawaii::flow::queueFactory(typeOrdered), stepBuffer,
hawaii::flow::queueFactory(typeFIFO), demalMatch

) ;

// emulate real camera’s frame rate of 30 Hz
sourceImages.setThroughputLimit(30.0) ;

// run until the final image has been processed
pipeFeatureMatching.run() ;
pipeFeatureMatching.wait() ;

Figure 9. Use of demand-based allocation for feature matching: If
demalExtract exceeds the image source’s throughput of 30 Hz, its
performance is sufficient to allow optimizing energy efficiency. The same
logic applies to demalMatch if it can keep pace with demalExtract.

C. Performance and Energy Efficiency

Prior to quantitatively evaluating the performance and
energy efficiency achieved by the different strategies, table I
introduces our test system. We use such systems not only
stationarily, but also in autonomous prototype vehicles [53].

Two experiments were conducted to analyze the optimiza-
tion of performance and energy efficiency respectively. First,
we provided input work items at an unlimited rate, making
each adaptation strategy attempt to keep pace by maximizing
throughput. Fig. 10 presents the performance achieved by
each strategy and – as a baseline for comparison – by using
all CPU cores or a single GPU only. In this context, “series”
means sequential execution of processing steps for each
item while each step leverages data parallelism. Two main
observations can be made:

• GEMM fully supports asynchronous CUDA streams for
overlapping GPU memory transfers and computations.
Therefore, throughput could be improved by 76% on
average, with the drawback of latency also increasing

CPU
series

GPU
series

pipe-
line

demand-
based
alloc.

parti-
tioning

0

5

10

15

20

25

30

GEMM GEMM w/ overlap
feature matching feat. mat. w/ overlap

la
te

nc
y

[m
s]

CPU
series

GPU
series

pipe-
line

demand-
based
alloc.

parti-
tioning

0

100

200

300

400

500

600

th
ro

ug
hp

ut
 [

H
z]

Figure 10. Latency (top) and throughput (bottom) achieved by each
combination of scheduling and application: Apart from libHawaii’s adap-
tation strategies, scheduling includes all CPU cores and a single GPU as
references. If available, both sample applications have additionally been
profiled with overlapping GPU memory transfers and computations.

by 59%. Both numbers were just 8% for our 2nd sample
application, because its synchronous feature detection
and extraction step constitutes the majority of runtime.

• Partitioning yielded lower throughputs than demand-
based allocation, even though we verified that the found
ratios represent a global optimum, i. e. their optimiza-
tion operates successfully. Instead, both applications in-
clude measurable per-item overheads independent from
their partition ratios. The higher latencies can however
be explained by our experiment: Partitioning pre-
pares a new set of work item partitions immediately
after processing of the current set has started. While
this reduces the latency of actual on-line applications,
it practically implements a one-item queue when com-
bined with our experiment’s unlimited input rate.

Even though energy efficiency is explicitly analyzed only
by the following experiment, it has already been optimized
here as well: Since the actual matching of features could
easily keep pace with their more demanding detection and
extraction, DemandAlloc and Partitioning were al-
ready able to prefer the more efficient GPUs for this step.

In our second experiment, we limited the rate of input
items to trigger adaptive energy efficiency optimization. We
arbitrarily chose exactly half the throughput achieved before
by each respective combination of scheduling strategy and
sample application. As fig. 11 shows, single processors and
the non-adaptive pipelining strategy on average required
55% of their original estimated power consumption to main-
tain this throughput, while the adaptive strategies only used
45%. This was realized differently for each application: At
feature detection and extraction, the more efficient CPUs still
needed 30% of support by a GPU. Basic GEMM preferred
both GPUs equally, while even a single GPU was found to
be most efficient and fast enough if overlapping is enabled.

CPU
series

GPU
series

pipe-
line

demand-
based
alloc.

parti-
tioning

0

100

200

300

400

500

600

GEMM GEMM w/ overlap
feature matching feat. mat. w/ overlap

po
w

er
 c

on
su

m
pt

io
n

[W
]

CPU
series

GPU
series

pipe-
line

demand-
based
alloc.

parti-
tioning

0
10
20
30
40
50
60
70

re
l.

po
w

er
 a

t
50

%
 t

hr
ou

gh
pu

t
[%

]

Figure 11. Absolute power consumption while achieving maximum
performance (top) and relative power consumption (bottom) when limiting
the input item rate to 50% of each respective maximum: Only demand-based
allocation and partitioning can explicitly prefer more efficient processors.

To finally quantify the overheads introduced by wrapping
an application’s code in libHawaii classes, we repeated the
above experiments with empty processing steps: Overall
latencies did not exceed 10 µs, so overheads are negligible
for application throughputs below at least 1000 Hz.

V. CONCLUSIONS AND OUTLOOK

We conclude by revisiting the goals stated in section I:
Concerning generality, we have demonstrated our library’s
capability of exploiting applications’ data element, data flow
and task parallelism by evaluating two considerably different
sample applications. Its adaptation strategies have proven to
successfully optimize not only performance but also energy
efficiency continuously throughout runtime. The impact of
transfers between a system’s main and accelerators’ discrete
memory has been effectively mitigated. These optimizations
are portable to a different system merely by specifying its
processors’ thermal design powers. Regarding productivity,
the presented code examples allow an own assessment of
libHawaii being worthwhile for own programs.

While optimization within the presented strategies oc-
curs automatically, we did not automate the selection of
strategies: It is considerably less tedious than the tuning of
scheduling parameters and can follow few simple, system-
independent but application-specific guidelines: Pipelining
is preferable for processing steps that either perform IO
or are exceptionally suitable/exclusively available for a spe-
cific processor. Using demand-based allocation and overlap-
ping GPU memory transfers and computations maximizes
throughput and therefore allows processing static data sets in
the shortest time. It is also likely to offer the best efficiency.
In contrast, partitioning should be employed by on-line
applications for which latency is critical. Regarding applica-
tions, we will next apply libHawaii to a full-scale advanced
driver assistance system of an autonomous prototype vehicle.

REFERENCES

[1] D. Delling et al., “Phast: Hardware-accelerated shortest path
trees,” in IPDPS, 2011.

[2] B. Ranft et al., “Parallel matching-based estimation - a case
study on three different hardware architectures,” in IV, 2011.

[3] R. Vuduc et al., “On the limits of gpu acceleration,” in
Proceedings of the 2nd USENIX conference on Hot topics
in parallelism, 2010.

[4] What is heterogeneous system architecture (hsa)? Advanced
Micro Devices, Inc. [Online]. Available: developer.amd.com/
resources/heterogeneous-computing

[5] Opencl: the advantages of heterogeneous approach. Intel
Corporation. [Online]. Available: software.intel.com/en-us/
articles/opencl-the-advantages-of-heterogeneous-approach

[6] big.little processing. ARM Ltd. [Online]. Available: arm.
com/products/processors/technologies/biglittleprocessing.php

[7] T. Mattson et al., Patterns for parallel programming, 1st ed.
Addison-Wesley, 2004.

[8] B. Ranft and O. Denninger, “Run-time adaptation to heteroge-
neous processing units for real-time stereo vision,” in HPCC-
ICESS, 2012.

[9] J. Hoberock and N. Bell. Thrust – parallel algorithms library.
[Online]. Available: thrust.github.io

[10] Nvidia performance primitives. NVIDIA Corporation.
[Online]. Available: developer.nvidia.com/npp

[11] Opencv. Itseez. [Online]. Available: opencv.org
[12] The openacc application programming interface. OpenACC.

[Online]. Available: openacc.org/Downloads
[13] V. K. Elangovan et al., “Ompss-opencl programming model

for heterogeneous systems,” in LCPC, 2012.
[14] L. Chen et al., “Dynamic load balancing on single- and multi-

gpu systems,” in IPDPS, 2010.
[15] J. Kim et al., “Snucl: an opencl framework for heterogeneous

cpu/gpu clusters,” in ICS, 2012.
[16] A. Hormati et al., “Sponge: portable stream programming on

graphics engines,” in ASPLOS, 2011.
[17] C. Dubach et al., “Compiling a high-level language for gpus:

(via language support for architectures and compilers),” in
PLDI, 2012.

[18] S. Kamil et al., “An auto-tuning framework for parallel
multicore stencil computations,” in IPDPS, 2010.

[19] Y. Ogata et al., “An efficient, model-based cpu-gpu heteroge-
neous fft library,” in IPDPS, 2008.

[20] C.-K. Luk et al., “Qilin: exploiting parallelism on heteroge-
neous multiprocessors with adaptive mapping,” in MICRO,
2009.

[21] T. Scogland et al., “Heterogeneous task scheduling for accel-
erated openmp,” in IPDPS, 2012.

[22] T. D. R. Hartley et al., “Automatic dataflow application tuning
for heterogeneous systems,” in HiPC, 2010.

[23] V. T. Ravi and G. Agrawal, “A dynamic scheduling framework
for emerging heterogeneous systems,” in HiPC, 2011.

[24] U. Dastgeer et al., “Auto-tuning skepu: a multi-backend
skeleton programming framework for multi-gpu systems,” in
Proceedings of the 4th International Workshop on Multicore
Software Engineering, 2011.

[25] M. Steuwer et al., “Skelcl - a portable skeleton library for
high-level gpu programming,” in IPDPS Workshops, 2011.

[26] M. Aldinucci et al., “Targeting heterogeneous architectures
via macro data flow,” Parallel Processing Letters, vol. 22,
no. 2, 2012.

[27] P. Alonso et al., “Tools for power-energy modelling and
analysis of parallel scientific applications,” in ICPP, 2012.

[28] S. Song et al., “A simplified and accurate model of power-
performance efficiency on emergent gpu architectures,” in
IPDPS, 2013.

[29] G. Wang and Y. Lin, “Heterogeneity-aware peak power man-
agement for accelerator-based systems,” in ICPADS, 2011.

[30] T. Hamano et al., “Power-aware dynamic task scheduling for
heterogeneous accelerated clusters,” in IPDPS, 2009.

[31] A. Benoit et al., “Performance and energy optimization of
concurrent pipelined applications,” in IPDPS, 2010.

[32] Threading building blocks. Intel Corporation. [Online].
Available: threadingbuildingblocks.org

[33] G. F. Diamos and S. Yalamanchili, “Harmony: an execution
model and runtime for heterogeneous many core systems,” in
HPDC, 2008.

[34] G. Teodoro et al., “High-throughput analysis of large mi-
croscopy image datasets on cpu-gpu cluster platforms,” in
IPDPS, 2013.

[35] M. Maheswaran et al., “Dynamic mapping of a class of
independent tasks onto heterogeneous computing systems,”
J. Parallel Distrib. Comput., vol. 59, no. 2, 1999.

[36] H. Topcuoglu et al., “Performance-effective and low-
complexity task scheduling for heterogeneous computing,”
IEEE Trans. Parallel Distrib. Syst., vol. 13, no. 3, 2002.

[37] S. Benkner et al., “Peppher: Efficient and productive usage
of hybrid computing systems,” IEEE Micro, vol. 31, no. 5,
2011.

[38] C. Augonnet et al., “Starpu: a unified platform for task
scheduling on heterogeneous multicore architectures,” Con-
currency and Computation: Practice and Experience, vol. 23,
no. 2, 2011.

[39] N. Khammassi et al., “Mhpm: Multi-scale hybrid program-
ming model: A flexible parallelization methodology,” in
HPCC-ICESS, 2012.

[40] J.-J. Chen and L. Thiele, “Energy-efficient task partition for
periodic real-time tasks on platforms with dual processing
elements,” in ICPADS, 2008.

[41] Y. Li et al., “A heuristic energy-aware scheduling algorithm
for heterogeneous clusters,” in ICPADS, 2009.

[42] L. Wang et al., “Power aware scheduling for parallel tasks
via task clustering,” in ICPADS, 2010.

[43] M. Quigley et al., “ROS: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[44] G. Welch and G. Bishop, “An introduction to the kalman
filter,” Chapel Hill, NC, USA, Tech. Rep., 1995.

[45] A. Petitet et al. Hpl - a portable implementation of the
high-performance linpack benchmark for distributed-memory
computers. [Online]. Available: netlib.org/benchmark/hpl

[46] H. Meuer et al. Top500 supercomputer sites. [Online].
Available: top500.org

[47] B. Jacob et al. Eigen. [Online]. Available: eigen.tuxfamily.org
[48] Cublas. NVIDIA Corporation. [Online]. Available: docs.

nvidia.com/cuda/cublas
[49] H. Bay et al., “Surf: Speeded up robust features,” in ECCV

(1), 2006.
[50] E. Rublee et al., “Orb: An efficient alternative to sift or surf,”

in ICCV, 2011.
[51] R. Funayama et al., “Robust interest point detector and

descriptor,” Patent US 2 009 238 460, Sep. 24, 2009.
[52] M. Calonder et al., “Brief: Binary robust independent ele-

mentary features,” in ECCV (4), 2010.
[53] A. Geiger et al., “Team annieway’s entry to the 2011 grand

cooperative driving challenge,” IEEE Transactions on Intelli-
gent Transportation Systems, vol. 13, no. 3, 2012.

