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Abstract—This presentation focusses on key technologies for
automobiles that perceive a priori unknown environment and
automatically navigate through everyday traffic. Methods for
3D Machine perception based on lidar and video sensors are
outlined. Beyond classical metrology, the recognition and basic
understanding of situations must be accomplished for automated
trajectory planning in urban traffic. We discuss how to represent
and acquire metric, symbolic and conceptual knowledge from
video and lidar data of a vehicle. A hardware and software ar-
chitecture tailored to this knowledge structure for an autonomous
vehicle is proposed. Emphasis is laid on methods for situation
recognition employing geometrical and topological reasoning and
Markov Logic Networks. A quality measure for trajectories is
imposed that considers safety, efficiency, and comfort. We adopt
a flat input parameterization to plan trajectories that optimize
the imposed quality measure. Results from the autonomous
vehicle AnnieWAY that recently won the Grand Cooperative
Driving Challenge are shown in real world urban and platooning
scenarios.

I. INTRODUCTION

Autonomous Vehicles that perceive their environment, com-
municate with each other, understand the current traffic situa-
tion and may by themselves or cooperatively with others plan
and conduct appropriate driving trajectories are an intense field
of international research. This contribution outlines the con-
cept and architecture of the ’Cognitive Automobile AnnieWAY’
that has successfully participated in international competitions
such as the 2005 Grand and the 2007 Urban Challenge, and
recently won the 2011 Grand Cooperative Driving Challenge
[1], [2], [3], [4]. The vehicle constitutes an experimental basis
for automated machine behaviour [5], [6]. Within a few years,
large improvements in traffic safety is expected from such
technologies [7].

A major goal of the scientific research is to advance knowl-
edge acquisition and representation as a basis for automated
decisions. As illustrated in Figure 1, driving - whether by
a human or by a cognitive machine - involves knowledge
representation in various forms. Metric knowledge, such as
the lane geometry and the position or velocity of other traffic
participants is required to keep the vehicle on the lane at a
safe distance to others. Symbolic knowledge, e.g. classifying
lanes as either ’vehicle lane forward’, ’vehicle lane rearward’,
’bicyle lane’, ’walkway’, etc. is needed to conform with basic
rules. Finally, conceptual knowlegde, e.g. specifying a rela-
tionship between other traffic participants allows to anticipate
the expected evolution of the scene to drive foresightedly.
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Fig. 1: Metric (yellow), symbolic (orange), and conceptual
(red) knowledge for cognitive automobiles

II. ANNIEWAY SYSTEM OVERVIEW

A. AnnieWAY Hardware Architecture

Embodiment is widely considered a crucial element in
cognitive systems research. To assess and validate theoretical
findings we have adopted the unified hardware and software
framework of the Karlsruhe-Munich collaborate research cen-
ter ’cognitive automobiles’ [8], [9]. Based on the architecture
depicted in Figure 2, meanwhile some ten experimental cog-
nitive automobiles were set up [10], [6], [11]. To ensure real-
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Fig. 2: Hardware setup for the cooperative cognitive automo-
bile AnnieWAY.

time capabilities, vehicle control is performed on a dedicated
dSpace AutoBox which directly communicates with the actu-
ators over the vehicle CAN. All other perception and planning
modules as well as sensor data acquisition are performed
by a single multicore multiprocessor computer system which
delivers sufficient computing power to host all processes
providing low latencies and high bandwidth for inter-process
communication.
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B. AnnieWAY Software Architecture
The hardware is complemented with a real-time capable

software architecture as depicted in Figure 3. The framework
has been proposed, implemented, and made publicly available
by [8], [12]. Its central element is a real-time database for in-
formation exchange. The various driving and perception tasks
run in separate processes that communicate via the database
and share a centralized view on all available information
at every time. The framework supports parallel operation of
processes at variable update rates and ascertains hard real-time
performance where needed.
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Fig. 3: Software setup for the cooperative cognitive automobile
AnnieWAY.

III. SITUATION RECOGNITION

A. Simple geometric and topological reasoning
In this section, we will assume that a representation of

the road network is available. This representation has to
contain the geometry of single lanes as well as a topology,
i.e. their interconnectedness within the network. Formally,
this representation is a special geometric graph, i.e. a graph
whose edges describe a distinctive road geometry, expressed
by a planar curve. Such a representation was available during

Fig. 4: Geometric graph for road representation and situation
recognition.

the Urban Challenge in form of a so called road network
definition file (RNDF). As has been shown in [13], such a
representation can also be derived from vision cues using
formal logic reasoning. Figure 4 shows an example for such a
graph. The depicted situation is that of a one-way road forming
a T-type-junction towards a road which allows two-way traffic.

Other road users are embedded into the graph using purely
geometric reasoning. They are assigned to that edge in the
graph which best explains their position and heading. A
simple, orientation-aware point-to-curve distance function can
be used for this task. Figure 4, depicts three vehicles and their
association to edges in the graph.

The graph provides a rich description that readily allows to
determine roles of and relations among other road users. From
Figure 4, e.g., the relations “A follows B” and “B must yield
to C” can be derived ad-hoc.

B. Markov Logic Networks

Markov Logik Networks (MLNs) refer to a class of prob-
abilistic logical models combining first-order predicate logics
with Markov random fields [14]. An MLN is defined through
a set of formulas {F1, . . . , Fn} in first-order predicate logics
on a random field with random variables X = (X1, . . . , Xq)
and a set of scalar weights {w1, . . . , wn} such that one weight
is attributed to each formula.

The joint distribution of the random field is then defined by
a Gibbs distribution

P (X = x) =
1

Z
exp

�
n�

k=1

wkFk(x)

�
, (1)

where x = (x1, . . . , xq) denotes a realization of the random
field X, and Z is a normalizing constant. The logical formulas
Fk are instantiated by the realizations x rendering each for-
mula either true or false. Typically, each formula will depend
on a small subset of variables in x only that forms a clique
of the Gibbs distribution.

Table I shows a simple example for an MLN with two
generic formulas. The first formula is applied to each vehicle
Oi while the second formula is applied to each pair of vehicle
and lane (Oi ,Rj ) detected in the scene. For a specific scene

wi Fi

1 1.4 ∀o hasDirection(o,Same) ⇒ car(o)
2 0.6 ∀o∀r on(o,r)∧road(r)∧hasSpeed(o,Low) ⇒ car(o)

TABLE I: Formulas and weights specifying an MLN

with, e.g. two vehicles {O1 ,O2} and one lane {R1}, one is
left with the Markov random field shown in the graph of Fig. 5.
This simple example supports the classification of cars through
context information [15]. The formulas of an MLN can thus be
considered as probabilistic rules with the weights quantifying
our degree of belief in these rules. The Gibbs distribution (1)
models world configurations as most probable the more they
conform with rules that posses large weights.



Fig. 6: AnnieWAY’s hierarchical state automaton.
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Fig. 5: Graphical representation of the Markov Logic Network
defined through the generic formulas and weights from Table I
and a scene with two vehicles {O1 ,O2} and one lane {R1}.

IV. BEHAVIOUR GENERATION

Building on the information provided by the situation
recognition module, the behavioural layer makes decisions on
actions which need to be carried out in the current situation.
Actions are communicated downstream to the trajectory gen-
eration stage in the form of center and boundary lines for the
driving corridor, or as hard constraints which are imposed onto
the generated trajectories (like forcing a stop at a stop line, or
obeying a speed limit). Some simplistic tasks, like flashing an
indicator, are passed on to the vehicle hardware directly. All
these actions are generated using a state automaton which is
organised in a hierarchical fashion. The possibility to describe
state automata hierarchically has first been described by David
Harel in [16] (Harel state charts). Figure 6 shows the state
automaton which has been used on board ANNIEWAY during
the Urban Challenge. Descriptors of states and events are
prefixed by St...and Ev..., respectively. Substates are, for the
most part, displayed in short form, e.g. the state StDrive

contains sub states StOnLane, StFollow, StChangeLane

etc. The principle of hierarchal organisation is illustrated by
an exemplary “zoom” into the state StIntersection, which

shows the detailed structure of the relation of StIntersection’s
sub states. For a detailed treatment of state charts and their
graphical notation cf. [16]. For a more detailed discussion
of the specific use on board ANNIEWAY we refer interested
readers to [17].

V. TRAJECTORY PLANNING

After the situation has been recognized and an appropriate
behaviour has been identified a specific trajectory is planned.
The planning concept described in the sequel belongs to the
class of state lattice planers which has been adapted for on road
driving in the presence of moving obstacles. A more complete
description of the methodology can be found in [18].

A. Spatiotemporal state lattices

Static state lattices result from appropriate sampling of the
continuous configuration space and are known as efficient rep-
resentations for path planning in static environments [19], [20].
Spatiotemporal augment the configuration space of a standard
state lattice with time into a single manifold, followed by
discretization. To illustrate this concept, we will first consider
the simplistic case of a one dimensional spatial configuration
space.

Consider a vehicle traveling with varying velocity in . Its
state is described by its distance from the origin, l and time t.
In the spirit of the state lattice approach, we constrain the state
space to an equidistantly sampled subset of 2 with sampling
interval ∆l,∆t.

Figure 7 depicts a spatiotemporal state lattice over the
described workspace. The figure sketches state transitions
for piecewise constant, positive velocities and C2 continuous
paths achieved by quintic polynomials, respectively. Quintic



Fig. 7: A spatiotemporal state lattice over a one dimensional
workspace. The lower left shaded area depicts a control set
for paths in C0 while the upper right one depicts one designed
for higher order continuity, consisting of quintic polynomials.

polynomials are attractive for planning dynamic driving ma-
noeuvres, because they minimize squared jerk [21] and allow
for fast computation of their coefficients for given boundary
conditions. Closed form expressions exist to describe the
integral of squared jerk and for maximum speed, acceleration
and speed along the trajectory [22]. Quintic splines have been
used for automotive motion planning before [23], albeit only
to describe kinematic paths without time parametrization.

B. Motion planning using spatiotemporal state lattices

In order to account for moving obstacles their future posi-
tions are predicted. Obstacles can then readily be transferred
to the space-time manifold, as shown in Figure 8. The shaded
area is occupied by a small object that moves with velocity
1
2
∆l
∆t . A trajectory is found within the spatiotemporal lattice

that does not collide with the obstacle.
To deal with obstacles efficiently, we create a mapping

between a discrete space-time obstacle map and the set of
all edges in the graph. This can be done in the offline graph
generation phase. Then, edges blocked by obstacles can be
invalidated quickly by a single run over the obstacle map. This
method scales well with the number of obstacles maintaining
an almost constant overall processing time.

Edge costs consider the integral of the squared jerk of their
geometric representations, as opposed to simply considering
arc length. This improves safety, controllability and driving
comfort.

Graph-based motion planning algorithms usually employ
shortest path algorithms that maintain vertices visited in a
partially ordered data structure. Algorithms belonging to this
class include A* search, as well as Stentz’ D* [24] and focused
D* [25]. Spatiotemporal lattices belong to the class of directed
acyclic graphs (DAG). Hence, sorting vertices by time yields
a topological ordering in advance, and vertices can be just
processed in this order. The resulting algorithm is linear in
the number of vertices n, as opposed to Dijkstra’s general
scheme which is in O(n log n).

Fig. 8: Planning with a moving obstacle in the space-time
manifold. The shaded area is covered by a moving object. A
trajectory is shown that is composed of elements of the control
set. Shortest paths can be found by relaxing vertices from left
to right.

Fig. 9: Reparametrisation of the Cartesian plane. The dotted
line indicates the original run of the road, (X,Y ). The grey
structure illustrates the discrete reparametrization in l and r.

C. Lane-adapted reparametrization
The principle of spatiotemporal state lattices developed in

the preceding sections generalizes naturally to two dimensions.
Doing this naı̈vely, however, produces dimensionality prob-
lems due to the required dense sampling of the state space.
Note that, in comparison with [20] the dimensionality of the
sampling space for the state lattice rises from 3 (2D position
and orientation, in [19], curvature is consider additionally) to
7 (2D position, 2D velocity, 2D acceleration and time), due to
moving from a kinematic to a higher order dynamic model and
the incorporation of time. With dimensionality rising, coverage
of the configuration space requires an exponentially growing
number of samples. Hence, an efficient way of sampling the
configuration space is needed that is adapted to the special
case of navigating on a road whose run is known a prioi, e.g.
from digital map data.

Given a continuous, piecewise twice differentiable, arc
length s parametrized representation (X(s), Y (s)) of the
course of the road, we define the following reparametrization
(l, r) of the 2D workspace, where (x, y) denote Cartesian
coordinates, l(t) is the distance travelled along the road, and
r(t) is the lateral offset towards the road centre:

x(t) = X(l)− rY �(l) (2)
y(t) = Y (l) + rX �(l). (3)



Fig. 10: State transitions on the transformed grid. The succes-
sors of one vertex are shown in black.

This is a base change towards a local orthogonal coordinate
system that has its abcissa aligned with the road for any l. It
defines a two dimensional manifold as depicted in Figure 9.
As described earlier, differential boundary conditions of up to
second order are required for edge generation. We therefore
need to transform them through equations (2) and (3): Given
l̇, ṙ, l̈ and r̈, by application of the chain rule we obtain

ẋ = l̇X �(l)− ṙY (l)− rl̇Y �(l) (4)
ẏ = l̇Y �(l) + ṙX(l) + rl̇X �(l) (5)

and

ẍ = l̈X � + l̈2X ��
− r̈Y − (2ṙl̇ + rl̈)Y �

− ṙl̇2Y �� (6)
ÿ = l̈Y � + l̈2Y ��

− r̈X − (2ṙl̇ + rl̈)X �
− ṙl̇2X ��. (7)

We now restrict parameters l, r, l̇, ṙ, l̈ and r̈ to a discrete,
grid like set (the vertices of the search graph) and transform
them through equations (2) - (7). The resulting x, y, ẋ, ẏ, ẍ
and ÿ, together with discrete values for time t, are used as
boundary values to calculate quintic polynomial trajectories
as described in section V-A. To assert dynamic and kinematic
feasibility, a respective edge is only added to the graph, if
velocity, acceleration and jerk stay within bounds defined in
advance. In the effort to further reduce the number of vertices,
some ad hoc reductions can be applied to the sets of discrete
parameters: r is constrained to an interval so as to restrict all
vertices of the lattice to be within the bounds of the road.
We set ṙ = 0 and constrain l̇ to be positive, since we wish
the vehicle to make progress along the road, while crosswise
motion is to be avoided. Second derivatives l̈ and r̈ of the
untransformed coordinates are set to zero at the grid points.

Figure 10 gives an impression of the graph we used for our
experiments by displaying successor edges of a single vertex.
The outdegree of vertices is approximately 200.

VI. EXPERIMENTAL RESULTS

Figure 11 shows an exemplary result of the proposed
trajectory planning method. The scenario selected for this
example is that of merging into running traffic at a T-junction.
As can be seen, the proposed method yields a trajectory that is

smooth in the sense of minimum mean squared jerk and safe
in the sense of entering the gap at a safe distance to all other
vehicles with a velocity of the gap itself. The proposed method
inherently selects the optimum gap to cut in. The planner
is also able to find trajectories under more complex traffic
conditions.

Figure 12 shows AnnieWAY performing in the Urban Chal-
lenge in 2007, where AnnieWAY was one of only two non-US
Vehicles that successfully entered the finals and belonged to
the the few vehicles that drove collision-free through a mock
up suburban environment. The graph based representation
of the road network can be seen. In the top right of each
frame, the sequence of states the hierarchical state automaton
traverses is displayed.

The Grand Cooperative Driving Challenge 2011 (GCDC)
was the first international competition to implement coop-
erative driving in a realistic, heterogenous scenario. It was
organized by the Netherlands Organisation for Applied Sci-
entific Research (TNO) on a highway near Helmond. Ve-
hicle to vehicle (V2V) and vehicle to infrastructure (V2I)
communication in the ITS band at 5.8 GHz following the
IEEE 802.11p standard built the basis for cooperation between
vehicles [26]. The information broadcasted by each vehicle
included vehicle length and width, latitude and longitude of
position, heading and yaw rate, and velocity and acceleration.
The main challenge for participating teams was to develop
longitudinal control strategies that allowed autonomous and
cooperative vehicle platooning maneuvres without knowing
the algorithms and technical equipment of other vehicles in
the platoon. Control strategies had to cope with standard
maneuvres, like platoon merging as well as with unexpected
behavior of other vehicles, such as, e.g., varying data quality,
or sudden failure of communication. Vehicles were repeatedly
and randomly teamed up for heats in two platoons. Both
platoons were led by the same vehicle that induced challeng-
ing braking and acceleration maneuvres to the competitors.
Figure 13 shows one of these heats of the GCDC, illustrating
the large variety of vehicles and technical solutions in the
competition. Our vehicle AnnieWAY is the silver vehicle
directly in front of the truck. AnnieWAY won the Grand
Cooperative Driving Challenge 2011 tightly followed by the
team from Halmstedt. In contrast to previous challenges, the
GCDC not only assessed individual driving of each vehicle
but also considered its impact on other traffic participants, i.e.
the criteria included platoon velocity, length, and damping of
acceleration/deceleration cycles [27]. For more details we refer
interested readers to the IEEE Trans. ITS special issue on the
GCDC including team AnnieWAYs contribution [4].

VII. CONCLUSIONS

AnnieWAY is an experimental autonomous vehicle that
perceives a priori unknown environments, recognizes situa-
tions, plans appropriate trajectories, and controls its actuators
to follow these. It acquires metric, symbolic and conceptual



Fig. 12: AnnieWAY in the Urban Challenge of 2007
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Fig. 11: Merging into traffic. The planner selects a comfortable
and safe trajectory into a convoy of five vehicles traveling
towards a T-junction.

Fig. 13: One heat of the GCDC with six competing vehicles.

knowledge from video and lidar data and employs prior
knowledge from maps. The current driving situation is rec-
ognized employing geometrical and topological reasoning.
Furthermore, we experiment with Markov Logic Networks
for automated inference of pair relations among objects. Spa-
tiotemporal state lattices have been shown to allow for efficient
trajectory planning without severe restrictions on optimality
and generality. Moving vehicles are accounted for by disabling
spatiotemporal nodes along their paths. Thus the method main-
tains its computational load irrespective of scene complexity.
The quality criterion optimized during planning can be chosen
with large freedom. Currently, we minimize mean squared
jerk, but extended measures could account for safety, energy
efficiency, or phsycokinetic comfort in the future. Results are
shown from the autonomous vehicle AnnieWAY that is able to
autonomously and cooperatively travel in urban and platooning
scenarios.
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