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Abstract— This paper presents an approach for online es-
timation of the extrinsic calibration parameters of a multi-
camera rig. Given a coarse initial estimate of the parameters,
the relative poses between cameras are refined through recur-
sive filtering. The approach is purely vision based and relies
on plane induced homographies between successive frames.
Overlapping fields of view are not required. Instead, the ground
plane serves as a natural reference object. In contrast to other
approaches, motion, relative camera poses, and the ground
plane are estimated simultaneously using a single iterated
extended Kalman filter. This reduces not only the number of
parameters but also the computational complexity. Further-
more, an arbitrary number of cameras can be incorporated.
Several experiments on synthetic as well as real data were
conducted using a setup of four synchronized wide angle fisheye
cameras, mounted on a moving platform. Results were obtained,
using both, a planar and a general motion model with full
six degrees of freedom. Additionally, the effects of uncertain
intrinsic parameters and nonplanar ground were evaluated
experimentally.

I. INTRODUCTION AND RELATED WORK
Multi-camera systems are often preferred over single

cameras as they capture in general more information and
help to resolve ambiguities in the observed scene or motion.
For egomotion estimation, as an example, Chen et al. [4]
showed that significantly better estimates can be achieved
with multiple cameras. The calibration of a multi-camera
rig on the other hand is more complex and time consum-
ing. While cameras can be calibrated intrinsically one at
a time and beforehand, in order to determine the extrinsic
calibration parameters, the cameras have to be attached to
the rig. In order to reduce the effort of calibration and to
be able to compensate for changes during runtime, online
estimation of the extrinsic calibration parameters is desirable.
In contrast to offline calibration methods, online calibration
cannot rely on calibration patterns with known appearance
and geometry and need to work in natural environments.
Promising solutions based on different assumptions have
been proposed in the recent past. For stereo applications
with overlapping fields of view, Dang et al. [5] presented
an approach which continuously estimates the intrinsic and
extrinsic calibration parameters of an active stereo rig using
an iterated extended Kalman filter with a robust innovation
step. However, the requirement for overlapping fields of view
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is often not met. For extrinsic calibration, Esquivel et al. [6]
proposed an approach which is also applicable in case of
totally disjoint fields of view. Starting from the hand-eye
calibration problem, a solution for the estimation of relative
orientations is derived. Then, relative position and scale are
estimated and thereafter refined using nonlinear optimization.

Carrera et al. [3] as well as Lebraly et al. [9] extend this
work by using a specific bundle adjustment which considers
the rigid coupling between cameras. In the approach of
Carrera et al. [3], each camera uses SLAM (simultaneous lo-
calization and mapping) to determine a map of feature points
separately. An initialization for bundle adjustment is then
found through robust fusion of the individual maps. In order
to ensure overlap between the maps, a set of programmed
motions is performed. In contrast, Lebraly et al. [9] use a
linear initialization based on the solution proposed by Esqivel
et al. [6]. Both approaches use a minimal parameterization
of the camera rig, and describe the motion only in the
global coordinate system of a master or reference camera.
The approach, presented in this paper adopts the minimal
parameterization concept.

Recently, Pagel [12] presented an approach for relative
pose estimation between two cameras with non-overlapping
fields of view. A sparse bundle adjustment is used to estimate
the motion trajectories and 3D point positions within a slid-
ing time window. The trajectories as well as the correspond-
ing scales are then refined using a bundle adjustment type
of algorithm. However, the author states that the approach is
not suitable for planar motions.

Planar motions represent a special case and cause some
approaches to fail. In case of planar motion, there is only
one rotation axis. Hence, the decoupled estimation of the
relative orientation, such as in [6], based on rotations only,
is not possible. The work of Ruland et al. [15] is dedicated to
this case. They use the Ackermann steering model and given
motion parameters to estimate the 2D position of a camera
with respect to the vehicle coordinate frame. The orientation
of the camera with respect to the ground plane is assumed to
be known. This, however, is not restrictive as several methods
for orientation estimation exist. As an example, Miksch et al.
[11] use plane induced homographies in combination with
epipolar geometry to estimate the camera orientation from
linear motions.

Pagel and Willersinn [13] extended an earlier approach to
the case of planar motion. Their approach is most closely
related to the one presented in this paper, as it also relies
on Kalman filtering and the ground plane for calibration.

Christoph Stiller
Knorr, Moritz ; Niehsen, Wolfgang ; Stiller, Christoph: Online extrinsic multi-camera calibration using ground plane induced homographies. In: IEEE Intelligent Vehicles Symposium. Gold Coast, Australia, June 2013, pp. 236–241



However, it is by far more complex. Their concept is based
on continuous parameter estimation, propagation and fusion.
Several robust iterated extended Kalman filters, as presented
in [5], are used to filter the motion of each camera, the
ground plane and relative poses. The egomotion estimation
itself is based on the epipolar and trifocal constraint in
combination with the minimization of the projection error
of previously triangulated points. Unfortunately, results were
only obtained for a two camera setup and synthetic data.

Our main contribution is that we seek to estimate the
parameters of the moving camera rig by observing corre-
sponding features in successive frames, which are related by
plane induced homographies, using a single iterated extended
Kalman filter [1], thus reducing the overall number of state
parameters and computational complexity. The motion of the
camera rig, the relative poses of the cameras with respect to
a global coordinate system that is affixed to a master camera,
and the ground plane are estimated simultaneously. The filter
is described in more detail in Section IV. The motion of
the camera rig is described in the coordinate system of the
master camera. The motion of the remaining cameras can be
determined using the rigid coupling and estimated extrinsic
calibration parameters.

Although using the ground plane is restrictive since it
requires visibility, detection, and planarity in the considered
vicinity, it establishes a reference object which can be
captured by all cameras even in the case of disjoint fields
of view. Furthermore, it allows for direct estimation of the
relative motion scales and will also work in the special case
of planar or almost planar motion. Kitt et al. [8], for example,
use constraints, imposed by the ground plane, to prevent bun-
dle adjustment from long term scale drift. From the related
work, we could identify two different motion models, planar
motion and unconstrained or 3D general motion. This paper
presents comparative experimental studies on approaches
based on both models. More details on the motion models
are given in Section II. The setup for experimental evaluation
consists of four synchronized wide angle fisheye cameras. In
Section III it is shown how homographies can be combined
with projection models other than the pinhole camera model.
The projection model as well as the intrinsic calibration
toolbox of Mei [10] were used. The cameras were calibrated
intrinsically offline and beforehand.

In our experiments, corresponding features in consecutive
frames are determined using the feature detector by Rosten
and Drummond [14] in combination with the feature descrip-
tor by Calonder et al. [2]. Corresponding features are then
found by comparison of Hamming distances. Besides the
comparative evaluation of both motion models on real and
synthetic data, the effect of uncertain intrinsic parameters
and the nonplanarities in the scene are determined experi-
mentally. The evaluation can be found in Section V.

II. MOTION MODELS
A. GROUND PLANE INDUCED HOMOGRAPHY

The goal of this work is to determine the relative poses of
N −1 cameras with respect to a master camera. For camera

i this relative pose transformation ∆Ti can be written as a
homogeneous matrix [7]

∆Ti =

�
∆Ri ∆Ci

0T 1

�
, (1)

where ∆Ri ∈ SO(3) is an orthonormal rotation matrix and
∆Ci ∈ R3×1 is a displacement vector. Hence, it involves the
full six degrees of freedom of a rigid transformation in 3D.
Fig. 1 depicts this relationship. The relative motion of the
master camera m from frame k−1 to frame k is

Tm
k =

�
Rm

k Cm
k

0T 1

�
. (2)

According to [7] we can express the ground plane induced
homography at frame k for the master camera as

Hm
k = Rm

k −Cm
k (nm

k−1)
T/hm

k−1, (3)

where nm
k−1 is the normal of the plane in the preceding

camera coordinate system (CCS), and hm
k−1 is the corre-

sponding height above ground. The homography describes
the mapping of any point of the normalized image plane at
time k−1 onto the normalized image plane at time k

p� � Hm
k p. (4)

Here ”�” denotes equality up to scale since we are using
homogeneous point coordinates. For the ith camera, the
motion between consecutive time steps can be determined
using the relative pose and motion with respect to the master
camera according to (1) and (2)

Ti
k = (∆Ti)−1Tm

k ∆Ti. (5)

Fig. 2 depicts this relationship between master camera and
camera i. The plane normal in the coordinate system of
camera i is

ni
k−1 = (∆Ri)T nm

k−1, (6)

and the respective height is

hi
k−1 = hm

k−1 − (∆Rini
k−1)

T ∆Ci. (7)

The plane induced homography Hi
k can then be determined

by replacing the respective terms in (3) by (5) to (7).

Fig. 1. Schematic representation of the multi-camera rig. Several camera
coordinate systems are related to the coordinate system of the master camera
via relative poses.



Fig. 2. Geometric relationship of the master camera and camera i for time
instances k−1 and k.

B. PLANAR MOTION
In the previous section, the transformation between con-

secutive time steps was introduced for the general case
with six degrees of freedom (2). In case of planar motion,
the corresponding transformation has only three degrees of
freedom, i.e. the rotation of the camera about the ground
plane normal, the translation direction within the plane and
the length of the translation vector. A change in height or a
rotation about a different axis are not intended. The rotation
about the ground plane normal is given by

�Rm
k = R(nm, �ωm

k ), (8)

where the tilde indicates the planar case and �ωm
k denotes the

angular velocity. The translation vector �Cm
k is expressed with

respect to the projection xm
⊥ of the camera’s x axis onto the

ground plane

�Cm
k = R(nm, �αm

k )
xm
⊥

||xm
⊥||2

||�Cm
k ||2. (9)

Here �αm
k denotes the angle between projected x axis and �Cm

k .
Fig. 3 depicts this relationship. Translation and rotation as
defined by (8) and (9) can then be used to determine the
camera motion (2) and the homography (3).

C. SYSTEM PARAMETERIZATION
To avoid ambiguities and inconsistencies, a minimal pa-

rameterization is chosen. All rotation matrices, except for (8),
are described using angle-axis representation [7]. The relative
motion in case of the planar motion model is expressed by
the angular velocity �ωm

k , the angle �αm
k , and velocity ||�Cm

k ||2

Fig. 3. Planar motion. The translation vector is expressed via the angle to
the projected x axis of the camera and the length of the translation.

as described in the previous section. The ground plane is
defined by the distance to the master camera and the normal
using spherical coordinates. Unfortunately, we are only able
to estimate the calibration parameters and motion up to scale.
Hence, to avoid ambiguities, the height above ground is
fixed in case of the planar motion model, and the distance
of the master to an arbitrary other camera is fixed in the
case of the general motion model. The fixed values are set
to their corresponding known values, so that the estimation
results and the ground truth can be compared metrically.
The ground plane normal is not assumed to be known and
will therefore be estimated in both cases. The motion of the
master camera and the plane are then described using nine or
five free parameters, depending on the model. The relative
poses are described using six parameters. For the general
3D motion model, one of the relative camera poses has only
five parameters due to the fixed distance. The total number
of parameters, depending on the number of cameras N, is
9+5+6 · (N −2) for the general 3D, and 5+6 · (N −1) for
the planar motion model.

III. CAMERA PROJECTION MODEL
The homography, as given in (3) describes the mapping

between normalized image planes. For pinhole cameras, the
transformation between the image plane and the normalized
image plane is given by an intrinsic calibration matrix K [7].
Pre- and post-multiplying (3) with the calibration matrix and
its inverse yields a new homography KHK−1 which directly
relates image planes. However, for different camera models,
the transformation becomes, in general, nonlinear. For the
calibration of the wide angle fisheye cameras, as used in the
experimental evaluation, the projection model and calibration
toolbox of Mei [10] were used. The model describes the
transformation between a world point XW = (XW ,YW ,ZW )T

and an image point p, as summarized in the following. First,
the world point is projected onto the unit sphere

XS =
XW

�XW�2
. (10)

Then, a new reference frame is chosen, which allows
projecting all world points to finite pixel positions. After
normalization, radial and tangential distortions are corrected.
The resulting point is then projected into the image plane
using a general calibration matrix. The projection of a point
on the unit sphere into the image plane is then given by

p = κ(XS,k), (11)

where k comprises the intrinsic calibration parameters and
κ(·) is the combination of projections described above. The
inverse projection is given by XS = κ−1(p,k). The predicted
position of a feature in camera i at time k is then

p̂� = κ(Hi
kκ−1(p,ki),ki), (12)

where Hi
k is the ground plane induced homography (3) for

camera i. The calibration toolbox [10] also provides an
approximate covariance matrix of the intrinsic parameters
which is obtained through forward propagation [7]. It was



used to evaluate the effect of uncertain intrinsic parameters
on the calibration results (Section V).

IV. RECURSIVE FILTERING
We seek to estimate the parameters of the moving camera

rig by observing corresponding features in successive frames
in each view respectively. Kalman filters have proven to
work well for similar parameter estimation problems [5]. The
motion and ground plane parameters, as well as the relative
pose parameters are associated with a single state vector of a
dynamic system which evolves, corresponding to a discrete
time stochastic system [1]

xk = f(xk−1)+vk−1 (13)

with associated measurements

zk = m(xk)+wk. (14)

The process noise vk and the measurement noise wk are
assumed to be zero mean, white, mutually uncorrelated,
and additive [1]. The respective covariance matrices are Qk
and Rk. The Kalman filter is initialized with state x̂+0 , as
described in Section II-C, and state covariance P+

0 .
The measurements are provided by a feature matching

algorithm. It determines the position p of a feature in one
frame and the position p� of the corresponding feature in
the subsequent frame. Due to limited accuracy, the position
in the subsequent frame will in general not correspond to
the same physical point as in the preceding frame. Instead,
only a perturbed position p� is provided as observation. The
position prediction of a feature in camera i at time k, p̂�, is
carried out by (12) in the previous section. The measured and
predicted x and y positions of the features in the subsequent
frame are stacked to vectors

zi
k =

�
p�1,x, p�1,y, p�2,x, ...

�
i,k (15)

ẑi
k =

�
p̂�1,x, p̂�1,y, p̂�2,x, ...

�
i,k , (16)

respectively. The measurement vector and the predicted
measurement vector are then obtained by combining the
measurements and predictions of all cameras

zk = (zm
k ,z1

k , ...,zN−1
k )T (17)

ẑk = (ẑm
k , ẑ1

k , ..., ẑN−1
k )T , (18)

where the superscript m denotes the master camera. The state
and measurement prediction function are then given by

x̂−k = f(x̂+k−1) (19)
ẑk = m(x̂−k ), (20)

where the superscripts minus and plus denote prediction and
measurement update respectively. Equation (20) combines
the feature position prediction (12) for all cameras. The
respective homographies are determined using the predicted
state parameters (19) and the equations given in Section
II. For simplicity, the dependence on the intrinsic camera
parameters k as well as the feature positions in the preceding
frame are omitted. Equation (19) describes, in case of the

general motion model, the transformation of the plane normal
into the subsequent camera coordinate system as well as
the change in height above ground. For the planar motion
model, the function becomes an identity matrix. At least one
of the functions (19) and (20) is nonlinear. Therefore, an
iterated extended Kalman filter, according to [1], is used.
The prediction covariance is then

P−
k = Fk−1P+

k−1FT
k−1 +Qk, (21)

where

Fk−1 =
∂ f(x)

∂x

�����x=x̂+k−1

. (22)

In an extended Kalman filter the predicted state (19) is
used to determine the measurement prediction (20). In case
the state prediction is already erroneous, the effect on the
measurement prediction might be even more significant due
to the linearization around the prediction. It is therefore
proposed to use a relinearization of the measurement equa-
tion [1] which yields an approximate maximum a posteriori
estimate (MAP) of the true state when assuming Gaussian
noise. Starting from the predicted state estimate 0x̂+k = x̂−k ,
the Jacobi matrix of (20)

jMk =
∂m(x)

∂x

����x= j x̂+k
, (23)

as well as the Kalman gain and the updated state estimate

jWk = P−
k

jMT
k
� jMkP−

k
jMT

k +Rk
�−1 (24)

j+1x̂+k = x̂−k + jWk
�
zk −m( jx̂+k )+

jMk
� jx̂+k − x̂−k

��
. (25)

are computed iteratively. The superscript j denotes the itera-
tion index. After J iterations the final updated state estimate
and updated covariance are

P+
k =

�
I− JWk

JMk
�

P−
k (26)

x̂+k = J x̂+k , (27)

where I is the identity matrix. The explicit matrix inversion in
(24) can be avoided, using sequential processing as described
in [1]. To illustrate the filter structure, Fig. 4 visualizes an
exemplary Jacobi matrix (23) for the general motion model.

V. EXPERIMENTS AND EVALUATION

A. EXPERIMENTAL SETUP

The camera rig used for experimental evaluation consists
of four synchronized megapixel wide angle fisheye cameras,
mounted on a moving platform. The maximum distance be-
tween any two cameras is approximately four meters. Three
sequences of lengths 420 to 1045 frames, including three to
five turns, have been captured at low speeds. Corresponding
features in successive frames have been determined, using
the feature detector by Rosten and Drummond [14] and the
feature descriptor by Calonder et al. [2]. Matching is then
carried out by comparing the absolute and relative Hamming
distance in a fixed search window. This approach provides
corresponding feature points at pixel accuracy. Including the



Fig. 4. Jacobi matrix of the measurement prediction with respect to the
state parameters (absolute values in logarithmic scale). Zero elements are
indicated in black, higher values are brighter. Four views with 1000 feature
correspondences were used respectively. The relative pose of camera 2 is
parameterized by five parameters only as the distance between this camera
and the master camera is fixed (general 3D motion case).

uncertainties in the intrinsic parameters, a standard devi-
ation of approximately 0.5 pixels in each dimension was
assumed. The synthetic sequences are supposed to resemble
the characteristics of the first real sequence (Real1) with
the difference that

• the first synthetic sequence (Synth.1) contains only
planar motions of the multi-camera rig,

• the second synthetic sequence (Synth.2) contains
additionally pitching and rolling during turns, and

• in the third synthetic sequence (Synth.3), the mobile
platform moves on a concave surface.

The first two synthetic sequences are used to compare the two
motion models, whereas the third one is used to determine
the effect of nonplanarities on the calibration results. In the
real world sequences, few non-rigid objects were close to
the moving platform and all cameras were able to capture
a part of the ground plane at any time. The ground truth
was determined using calibration pattern boards, additional
cameras, and bundle adjustment.

B. PREPROCESSING

The iterated extended Kalman filter is highly sensitive to
outliers, i.e. feature points on non-rigid objects or off the
ground plane. Therefore, in a first step, the measurement
prediction (20) was used to eliminate features with significant
deviations form the predicted image positions. Then, the
predicted state estimate (19) was used to determine the
horizon. Features located above or close to the horizon were
discarded. Finally, we used a RANSAC (random sample
consensus) algorithm [7] to determine an inlier set which was
then further processed by the Kalman filter. The homography
hypotheses were generated from randomly drawn samples
and the feature pairs were classified using the transfer error
and a fixed threshold.

C. QUANTITATIVE EVALUATION

Given the ground truth relative pose ∆Ti and the estimated
relative pose ∆T̂i of camera i, the residual transformation
Ti

∆ = (∆T̂i)−1∆Ti is computed. From this, the mean position
and angular errors are determined as

eP =
1

N −1

N−1

∑
i=1

||Ci
∆||2 (28)

eA =
1

N −1

N−1

∑
i=1

acos(
�
tr(Ri

∆)−1
�
/2) (29)

respectively. From the ground truth, 20 sets of perturbed
initial relative pose parameters were generated. Additional
20 sets were generated with four times the position and
angular error. Results were then obtained, using the initial
parameter sets and the real and synthetic sequences. For
reference, further 20 runs were performed with ground truth
initialization. Table I and II show the mean errors before
and after estimation. The mean initial errors are given in
the first row, respectively. The deviation of the mean initial
position errors for both motion models is due to different
fixed parameters, distance and height, respectively. The initial
angular errors are not affected. In total, 720 runs were
performed.

Results show that the position estimates are significantly
better for the general 3D motion model, except in case
of pure synthetic planar motion. While the general motion
approach is only slightly affected by rolling and pitching,
it strongly affects the estimation results with the planar
motion model. This can be explained by the change in
height and orientation with respect to the ground plane during
turns. Ruland et al. [15] also observed a strong dependency
between errors in camera height and estimation errors. Both
approaches appear to be very sensitive to nonplanarities, as
can be seen in the last row in both tables respectively. For the
real sequences, the accuracy of the orientation estimation is

TABLE I
MEAN POSITION AND ANGULAR ERRORS (GENERAL MOTION)

Mean error for different initializations
Sequence 298.2mm (5.28◦) 76.5mm (1.32◦) 0.0mm (0.00◦)
Real 1 37.1mm (0.44◦) 23.7mm (0.44◦) 22.3mm (0.43◦)
Real 2 80.7mm (0.43◦) 26.8mm (0.43◦) 25.3mm (0.44◦)
Real 3 22.4mm (0.29◦) 13.9mm (0.29◦) 13.2mm (0.29◦)
Synth. 1 28.4mm (0.06◦) 7.5mm (0.02◦) 2.6mm (0.02◦)
Synth. 2 53.5mm (0.06◦) 11.1mm (0.03◦) 3.6mm (0.03◦)
Synth. 3 54.4mm (0.24◦) 14.6mm (0.23◦) 9.7mm (0.23◦)

TABLE II
MEAN POSITION AND ANGULAR ERRORS (PLANAR MOTION)

Mean error for different initializations
Sequence 317.9mm (5.28◦) 82.6mm (1.32◦) 0.0mm (0.00◦)
Real 1 89.4mm (0.46◦) 53.4mm (0.48◦) 48.6mm (0.50◦)
Real 2 134.5mm (0.38◦) 43.5mm (0.30◦) 27.4mm (0.30◦)
Real 3 84.5mm (0.26◦) 41.4mm (0.26◦) 34.9mm (0.26◦)
Synth. 1 71.8mm (0.20◦) 15.8mm (0.05◦) 2.7mm (0.01◦)
Synth. 2 99.9mm (0.43◦) 31.7mm (0.33◦) 21.7mm (0.30◦)
Synth. 3 106.0mm (0.64◦) 48.7mm (0.55◦) 44.0mm (0.53◦)



roughly the same for both approaches. The remaining mean
angular errors are approximately 0.26 to 0.48 degrees. The
remaining mean position errors are approximately 14 to 27
millimeters in case of the general motion approach and 41 to
53 millimeters in case of the planar motion approach, when
initialized with the medium level of perturbation.

To illustrate the accuracy of the egomotion estimation, a
reconstruction of the ground plane of the first real sequence
is given in Fig. 5. The close-up shows the overlapping region
at start and end of the sequence. Ground truth was used here
for initialization. The ghosting artifacts are caused by errors
in the egomotion estimation.

D. INTRINSIC PARAMETERS
In order to assess the influence of intrinsic calibration, sets

of perturbed intrinsic parameters have been generated accord-
ing to kperturbed ∼ N (k,Σkk) using the intrinsic parameters
k and the approximate covariance matrix Σkk, see Section
III. The algorithm for general motion was then initialized
with ground truth extrinsic, and ground truth and perturbed
intrinsic parameters. Table III shows the results for the first
synthetic sequence. It can be seen that the uncertainty in the
intrinsic parameters has a larger impact on orientations than
on positions.

Fig. 5. Reconstruction of ground plane of the first real sequence and
close-up of the overlapping region at sequence start and end. The ghosting
artifacts are caused by errors in the motion estimation. The reconstructed
area is approximately 40 meters across.

TABLE III
INFLUENCE OF INTRINSIC PARAMETERS

Mean angular and position error
and respective standard deviations

Ground truth parameters 2.63mm (0.55mm) 0.0228◦ (0.0055◦)
Perturbed parameters 3.65mm (0.95mm) 0.0438◦ (0.0128◦)

VI. CONCLUSION AND FUTURE WORK
In this paper an online approach for extrinsic calibration of

a multi-camera rig was presented. We have exploited ground
plane induced homographies to impose constraints on the
extrinsic calibration of all cameras. Rather than applying
Kalman filters individually to each camera pose, we have
introduced a joint Kalman filter whose state vector comprises
extrinsic parameters of all cameras. Two motion models
were compared. Except for the special case of pure synthetic
planar motion, the general 3D motion approach was always
superior. Furthermore, The results indicate that a violation
of the planar ground assumption has a strong effect on the
estimation results. Therefore, future work will focus on the
relaxation of the planarity assumption.
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