
Urban Localization with Camera and Inertial Measurement Unit

Henning Lategahn, Markus Schreiber, Julius Ziegler, Christoph Stiller
Institute of Measurement and Control

Karlsruhe Institute of Technology
Karlsruhe, Germany

{henning.lategahn, stiller}@kit.edu, {schreiber,ziegler}@fzi.de

Abstract— Next generation driver assistance systems require
precise self localization. Common approaches using global
navigation satellite systems (GNSSs) suffer from multipath and
shadowing effects often rendering this solution insufficient. In
urban environments this problem becomes even more pro-
nounced.
Herein we present a system for six degrees of freedom (DOF)
ego localization using a mono camera and an inertial measure-
ment unit (IMU). The camera image is processed to yield a
rough position estimate using a previously computed landmark
map. Thereafter IMU measurements are fused with the position
estimate for a refined localization update. Moreover, we present
the mapping pipeline required for the creation of landmark
maps.
Finally, we present experiments on real world data. The accu-
racy of the system is evaluated by computing two independent
ego positions of the same trajectory from two distinct cameras
and investigating these estimates for consistency. A mean
localization accuracy of 10 cm is achieved on a 10 km sequence
in an inner city scenario.

I. INTRODUCTION

Future driver assistance systems ranging from next genera-
tion navigation systems to fully automatic driving require an
accurate estimation of the ego position. Often, a centimeter
level accuracy is sought. However, commonly used solutions
of coupling a high precision GPS with IMUs may only reach
these accuracies in open sky environments. In street canyon
like scenarios shadowing effects and multipath propagation
render these approaches infeasible. Moreover, this solution
is prohibitively expensive for mass production.
Recently, methods that use a previously acquired map of
some kind for ego localization are emerging [14], [16], [2],
[18], [13]. First a detailed map of the environment is built
from sensor data and stored for future use. Thereafter, online
measurements are filtered by an estimator which outputs
the ego position relative to the map. Localization is thereby
independent of atmospheric disturbances and may even work
in areas where satellite reception is completely blocked.
Despite its appealing properties these methods still require
sensors like laser scanners [14], [16] which are both costly
and bulky preventing a wide spread use.
Herein we present a method which uses a mono camera
and an IMU to yield an ego position estimate relative to
a previously recorded landmark map. Thus we refrain from
using laser scanners and merely use visual information for
localization. Our algorithm runs in real time on modest
computing hardware and has been extensively tested on

Fig. 1: A vehicle with a backward facing mono camera is
shown. Landmarks (circles) are matched into the current
image (shown on the right bottom) and back projection errors
are minimized yielding a rough single shot pose estimate.
IMU readings (arrows) are blended with past single shot
estimates yielding the final result.

our test vehicle. Due to a lack of accurate ground truth
trajectories we evaluate the accuracy of our method by
comparing two independent estimates of the same trajectory
using two independent cameras. The degree of consistency
of these two distinct estimates serves as an approximation of
the overall localization accuracy. We demonstrate an average
localization accuracy of 10 cm in an inner city and partially
rural scenario.
Section II reviews related work. Thereafter the mapping
pipeline used for computing landmark maps is elucidated
in Section III before introducing the localization estimator
in IV. An experimental validation is presented in Section V
and conclusions are drawn in VI.

II. RELATED WORK

The presented work is related to Simultaneous Localiza-
tion and Mapping (SLAM) [4], [3], [17], [21], [8], [10], [15],
[12] and Localization in general [14], [16], [2], [18], [13],
[20].
SLAM methods try to solve the problem of a robot that maps
an unknown area while at the same time localizing within
this map. Much progress has been put forward to solving this
elusive problem. Early works use extended Kalman filters
and variants thereof [4], [3]. The filter state is comprised
of the positions of a set of landmarks and the current
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and optionally all past robot poses. Sensor readings can be
fully predicted from such a state and compared to the true
measurements yielding the required filter innovation.
Despite its theoretical soundness this branch of methods
quickly hit an insurmountable complexity issue. Scalability
could be improved by considering only subproblems at each
time step and postponing a global update as long as possible.
Pinies et al. present one such submapping method in [17].
At the same time a long known solution from photogram-
metry experienced a renaissance: bundle adjustment. A state
consisting of all robot poses and landmarks is sought that
best explains the entire set of sensor measurements by means
of nonlinear least squares estimate. Sibley and collaborators
present a relative approach in [21].
Nowadays, a landmark-free approach is mostly followed for
city scale problems of this sort. The state to be estimated
consists of poses and estimated displacements (motion) be-
tween them. Once loop closures are introduced into the set
of constraints the entire system becomes overdetermined and
no state with zero residual can be found anymore. Non-
linear least squares solvers using the Levenberg-Marquardt
or Gauss-Newton method seek a minimum of the squared
residual error. A 2D variant is presented in [8] and was later
extended to 3D in [10]. Most pose graph approaches can be
traced back to Lu’s and Milios seminal work [15].
Our work decouples mapping from localization and handles
each step independently despite showing some influence of
the aforementioned methods.
Recently, precomputed maps have been used for localization
purposes. The obtained localization is always relative to a
previously recorded map and global position accuracy there-
fore depends on the map accuracy. However, map relative
accuracy is often the desired goal for e.g. path planning and
the like.
A rotating laser scanner has been used by Levinson and
co-workers as presented in [14]. The current laser scan is
matched to a 3D point cloud map while also considering
remittance of the laser beam as an extra measure. Moos-
mann and colleagues also use a scan matching approach in
[16] reporting an improved localization accuracy over high
precision GPS. Our method uses images of a mono camera
for localization. The landmark map consists of much fewer
landmarks and the sensor is less expensive.
Cameras have also been used by Badino in [1], [2]. Imagery
was recorded for an urban area and holistic image features
describing each single pose of the mapping trajectory are
extracted from the images and stored as the map. During
online localization current image features are matched to the
map and position estimates are smoothed by fusing odometry
information. The method is dubbed topometric localization.
The final position estimate will always correspond to exactly
one pose of the mapping trajectory.
Point features are computed from aerial imagery in [18] to
create a sparse landmark map. Pink et al. then process an
online mono camera image taken from street level, extract
features and match these to the previously computed map for
ego localization. The availability of an up-to-date and well

Fig. 2: First step of mapping pipeline: Triangles denote
camera poses (backward facing in this case) and squares
represent GPS readings. Solid variables are fixed during
optimization. Edges between variables constitute constraints.
Consecutive poses are e.g. constrained by visual odometry
oi.

Fig. 3: Second step of mapping pipeline: Triangles denote
camera poses which are kept fixed in this step and hollow
circles denote landmark positions which are estimated. Poses
and landmarks are interrelated by measuring their pixel
position and stereo disparity (uij , vij , dij)T .

georeferenced aerial image however may become a problem.
We have presented a preliminary version of our method in
[13]. However the localization was computed from a single
image without IMU integration. This method achieves a high
accuracy in feature rich areas but robustness can be greatly
improved by integrating IMU measurements. Furthermore
a more robust image descriptor is used in this work. The
mapping framework presented herein is more efficient and
scales to almost arbitrary map sizes.

III. MAPPING

The creation of the landmark map is a crucial step in our
processing pipeline and we present it next. Throughout the
rest of the paper we assume a backward facing stereo camera
setup. Moreover, we assume all sensors to be calibrated. In
particular we assume the coordinate transform from camera
to GPS receiver to be fully known [6]. For the sake of brevity
we present all calculations in the camera coordinate system.
For the mapping task, we record stereo data and high
precision GPS for the area we wish to map. This data is
thereafter processed by our tool chain in two steps. First, we
line up our GPS readings and visual odometry to balance



a good georeference with good 3D landmark reconstruction
ability. Secondly, we match image points across the entire
sequence, reconstruct 3D landmarks from these tracklets and
store the landmarks with associated image descriptors to
disk. Both steps are explained in more depth next.
The recorded GPS trajectory is denoted by g1, . . . , gN with
gi representing the GPS reading for pose qi. Poses are
represented by 4 × 4 homogeneous matrices consisting of
a 3 × 3 rotation matrix and a three dimensional translation
vector. A motion estimate between any two consecutive
poses qi−1 and qi is computed from visual odometry [5]
and denoted by oi. Hence, one expects qi to be the motion
update oi applied to qi−1. At the same time however, the GPS
readings gi−1 and gi shall correspond to these two poses as
good as possible as well. Thus, our system of constraints is
overdetermined. We resort to nonlinear least squares (NLS)
estimate for resolution.
NLS estimates are extensively used throughout this paper.
To ease the readability we present the underlying sums of
squared error terms whose minimizing argument is sought
by factor graphs [9]. The graph of the NLS problem as
stated above is depicted in Figure 2. The nodes of the graph
are triangles denoting camera poses and squares representing
the GPS readings. Nodes of the graph are the variables of
the system of equations. An edge between nodes constitute
a constraint each. Measurements may be associated with
edges and edge labels are shown in this case (e.g. the visual
odometry motion estimates oi). Solid nodes always denote
a fixed variable (one that is constant during optimization)
whereas hollow ones are alterable (the argument of the sum
of squared errors).
The graph of Figure 2 can be summarized by the error
function

Emap1(q1, . . . , qN ) =
N�

i=2

|| (qi � qi−1)� oi||2

+
N�

i=1

||gi � qi||2 (1)

where � is an appropriate subtraction of the over parameter-
ized poses (see e.g. [10]). The Norm || · || is a Mahalanobis
norm whose Covariance matrices are neglected here for
better readability. Note that the sums of equation 1 extend
exactly over all edges of the graph. The minimizing argument
of Emap1 can be found by standard NLS machinery [19]

q̂1, . . . , q̂N = argmin
q1,...,qN

{Emap1(q1, . . . , qN )} (2)

and we utilize the g2o library [10] in this case. The pose
estimates q̂i are kept fixed after optimization and are used
during the second mapping step.
During the second step we aim for a set of 3D landmarks
and their visual description computed from the recorded
imagery. To this end we detect salient image points and
associate these across all images. We refer to a set of pixel
positions belonging to the same point in 3D as a tracklet.
Every landmark that is stored in the final map is computed

Fig. 4: First step of localization (single shot estimate):
Landmarks are detected in the current camera image and their
pixel position (ui, vi)T is determined. The pose pi is varied
such that the landmark back projection error is minimal.

from exactly one tracklet. Hence we obtain one pixel position
and disparity (from stereoscopy) for a landmark j and a
camera pose i and summarize it in the measurement vector
zij = (uij , vij , dij)T . The 3D landmark position lj can
then be estimated by minimizing the sum of squared back
projection errors. More concisely, we define the landmark
error function to be

Emap2(l1, . . . , lM ) =
�

ij

||π(lj , pi)− zij ||2 (3)

with a camera projection function π(p, l) that computes a
pixel position and disparity from pose p and landmark l
[7]. The minimizing argument of (3) is finally taken as
the landmark position estimate. A simple heuristic removes
landmarks that seem inappropriate from the map. The back
projection error and track length of each tracklet is basically
threshold for this purpose. We also try to keep landmarks
close to the camera since these play an important role for
longitudinal localization.
The NLS problem (3) can again be displayed as a graph. Fig-
ure 3 shows pose estimates q̂i which are fixed and landmark
positions lj (shown as circles) which are optimized. These
are mutually interrelated by their respective measurements
(uij , vij , dij)T .
Lastly, landmark positions are stored with their respective
image descriptors forming the map. For every landmark one
descriptor is stored for every pose that observed the landmark
(see [13]). For a high robustness to illumination changes
between mapping and localization we use our novel DIRD
descriptor presented in [11].

IV. LOCALIZATION

The localization algorithm presented herein is a two step
approach and yields a six degrees of freedom ego pose
estimate. First, we query the map for landmarks close to the
current ego pose, associate these landmarks with the current
(mono) image and translate these landmark measurements
into a rough ego position estimate which we refer to as single
shot estimate. Second, a set of previous single shot estimates



Fig. 5: Second step of localization (pose adjustment): Single
shot estimates p̄i are balanced with IMU readings ii to yield
the final pose estimate. p̄is serve as a prior in this step.

are fused with motion information from an IMU to yield the
final ego pose. We will refer to this step as pose adjustment.
Each step is elucidated detailedly next.
The pose of the camera that is the aim of our endeavor is
denoted by pi and we strive for an (intermediate) single
shot estimate p̄i of it first. Thereto the map is searched
for a pose q of the mapping trajectory that is closest to
the current ego pose. All landmarks originally visible from
q are then matched into the current camera image as in
[13]. For the very first image of each run we use a GPS
position to query the map but are completely independent
thereof afterwards. By slightly overusing this notation we
denote the pixel position of landmark j in the current image
by (ui, vj)T . An error function of sums of squared back
projection errors is then defined by

Eloc1(pi) =
�

ij

||π(lj , pi)− (uj , vj)
T ||2 (4)

whose minimizing argument p̄i is found by NLS estimate.
The corresponding factor graph is shown in Figure 4. Solid
nodes again denote fixed variables whereas hollow ones
represent variable ones. The pose pi of the graph is the sole
argument of the error function in (4).
Since (4) is essentially a quadratic error function it is highly
susceptible to any outlying measurements which cannot be
fully avoided in practice. Outliers may arise from false
point matches or incorrectly estimated landmark positions
during mapping. To handle these outliers we classify each
measurement after optimizing (4) by examining its back
projection error. If the error exceeds a given threshold it
is flagged as an outlier. These are removed and a cleaned
version of (4) is re-optimized. However, we allow for only
half the measurements to be removed at most and always
keep the “best” half of them in any case.
During a second pose adjustment step a set of W past
single shot estimates p̄i−W+1, . . . , p̄i are fused with motion
information ii−W+2, . . . , ii from the IMU. The single shot
estimate p̄i is now taken as a prior for the poses and
combined with the IMU readings. All past W poses are

Fig. 6: Top view of three parts of the map. The trajectory of
the mapping vehicle is shown in orange and landmarks are
shown in violet. Landmark density varies depending on the
environment. A traffic circle can be seen on the left.

estimated such that the error function

Eloc2(pi−W+1, . . . , pi) =
i�

k=i−W+1

||p̄k � pk||2 (5)

+
i�

k=i−W+2

|| (pk � pk−1)� ik||2

is minimal. Note the great similarity to (1). The factor graph
is shown in Figure 5. As before, covariance matrices of the
Mahalanobis norm are omitted even though they are taken
into consideration. The covariance matrices of the first sum
are determined by the number of valid landmark associations
of (4). Thereby unreliable single shot estimates are weakened
hence increasing the overall accuracy.
The reason for separating both of these localization steps
(single shot, pose adjustment) from each other is twofold.
First, both estimates are very fast to compute thereby reduc-
ing computational burden if computed separately. Secondly,
it is possible to add a robustification to the second estimates
much like the first. We detect likely outliers of the single
shot estimates and simply remove them from (5). Unlike
filter like algorithms this detection is run on every time step
and an outlier classification decision can always be revised
in the future. Experiments on several hours of recorded data
show that these outlier classifications are indeed revised quite
often. No such decision is ever final thus contributing to the
overall robustness.

V. EXPERIMENTS

Next, we present experiments on real world data. First the
mapping results are furnished before showing localization
results
We have mapped approximately 10km of an urban and
partially rural area. The mapping trajectory was chopped
into manageable pieces and the mapping algorithm pre-
sented above was applied to each chunk independently.



Fig. 7: A typical image of the mapping sequence. The
landmarks that are successfully computed are marked by
orange circles. Circle size corresponds to back projection
error. A histogram of these back projection (pixel) errors is
shown as well.

These sub maps overlap to avoid any landmark sparsity due
to initialization or the like. Mapping is robust and takes
approximately two hours for this map size without having put
much effort into any parallelization. Furthermore, mapping
is fully automatic and requires no manual intervention. We
extracted roughly 610000 landmarks for this map size. Top
views of some parts of the landmark map are shown in
Figure 6. A traffic circle can be seen on the left. We observed
that landmark density is particularly high in the urban areas
whereas the rural parts are much sparser (middle of Figure
6). The map was created from a sequence recorded during
noon on a sunny day. Figure 7 shows one frame with a
histogram of squared back projection errors for that frame.
The extracted landmarks are marked in the image.
To validate the robustness of the localization we have then
recorded image data for the same area on a different day in
the morning, at noon and in the evening. These sequences
have been taken for testing. To provide a baseline for the
capability of the method we have also added the mapping
sequence to the set of test sequences. Thus the mapping
sequence was also tested for localization from which we
expect excellent results due to a perfect feature matching.
In the sequel we will refer to these four test sequences as
“morning”, “noon” , “evening” and “self”. The localization
algorithm was run with these four test sequences. A window
length of W = 35 (cf. (5)) has been chosen for all
experiments.
For each of the four localization runs we have monitored
the number of correctly associated landmarks per image.
We report the numbers for the detected inlier set according
to the single shot estimator (cf. Section IV). The results
are depicted in Figure 8 as four violin plots. The mean
number of point matches is marked by a small cross.
Figure 8 shows a summary of the findings. Feature matching
degraded significantly in areas of poor texture (rural) as it
was expected. Matching for the “self” sequence was perfect.
Thus the left plot of Figure 8 shows an upper bound with an
average of 517 correctly associated landmarks per image.
Moreover, matching worsens considerably from noon to
evening to morning. Henceforth, illumination conditions are
most difficult for the morning sequence in our case.

Fig. 8: Localization results: Violin plots (vertical histograms)
of the number of successfully associated landmarks per
image are shown. The orange plot (Self) shows results
for localization with the mapping sequence to serve as an
optimistic reference.

Next we present experiments for assessing the localization
accuracy. Our attempts in finding an accurate enough ref-
erence GPS trajectory as ground truth has been without
success. Partially the required accuracy was available but
in areas of high GPS blockage (the areas we are mostly
interested in) it was not. Furthermore, one may bear in mind
that a high precision GPS trace is of no avail for assessing
the localization precision if the mapping GPS trace was
inaccurate in this area. The precision we are able to achieve
with GPS and IMU is at best of the same magnitude as the
one we achieve with our method. Hence, GPS traces cannot
be used as ground truth as GNSS inaccuracies would heavily
distort our findings. Thus, we report an accuracy measure
which is map relative and not necessarily global. However,
this is the desired accuracy oftentimes.
We have evaluated the residual of (5) after optimization.
That is after pose adjustment we examine the translation
error between the single shot estimates (p̄i, first step of
localization) and the final pose estimate (pi, second step of
localization). The mean norm of this translation error for
all time steps are shown in Figure 9. The residual increases
with fewer landmark associations. For the “self” test set the
mean (norm of) translation residual is approximately 5cm
and increases to roughly 10cm for the “morning” dataset.
Finally, we have estimated a trajectory for every test dataset

from two independent cameras thus obtaining two trajectory
estimates each. These two estimates are compared to each
other. Since the cameras are calibrated the offset can be
subtracted and the results are compared. Figure 10 shows
the translation difference (error) between two such estimates.
Localization accuracy is consistent with the residual error
analysis shown in Figure 9. Localizing with the image data
that was used for mapping achieves an accuracy of around
5cm and increases to about 10cm on average for the morning
sequence.



Fig. 9: Violin plots of the mean residual after pose adjustment
(translation only) is shown in meters. See also Figure 8.

Fig. 10: Violin plots of the mean consistency between two
distinct cameras of the same trajectory is shown in meters.
See also Figure 8.

The algorithm runs with 3Hz on a compact automotive
computer and reaches roughly 10Hz on a better equipped
computer with image processing being the main bottle neck.
However, we still see much room for improvement here.

VI. CONCLUSION AND FUTURE WORK

Herein we have presented a method for robust six degrees
of freedom ego localization using a visual landmark map.
The creation of the map from recorded imagery and GPS
traces has been presented. During online localization the
map is queried, landmarks are matched with salient points
of the current camera image and converted into a single
shot pose estimate. These single shot estimates are combined
with IMU data during a second optimization step yielding
the final result. The algorithm runs robustly in real time.
Comparing the estimated trajectories of a single run from two
independent cameras has been the metric of choice to asses
the accuracy of the presented approach. Both trajectories are
consistent to within 10 cm on average. First experimental
results of varying illumination conditions between mapping
and localization are encouraging.
Automatically augmenting the landmark map with vehicle
relevant infrastructural information like curb stones, lanes,
traffic lights etc. seems an obvious next step which we
are currently working on. Thereby we hope to shift these

computationally demanding tasks from an online to an offline
computation. Furthermore, we believe that finally dropping
the dependency on the initial GPS position needed for jump
starting the localizer and the IMU for constraining the motion
is a fruitful direction of future research.
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