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Abstract—Predicting turn and stop maneuvers of potentially
errant drivers is a basic requirement for advanced driver
assistance systems for urban intersections. Previous work has
shown that an early estimate of the driver’s intent can be
inferred by evaluating the vehicle’s speed during the intersection
approach. In the presence of a preceding vehicle, however, the
velocity profile might be dictated by car-following behavior rather
than by the need to slow down before doing a left or right
turn. To infer the driver’s intent under such circumstances, a
simple, real-time capable approach using a parametric model to
represent both car-following and turning behavior is proposed.
The performance of two alternative parameterizations based
on observations at an individual intersection and a generic
curvature-based model is evaluated in combination with two
different Bayes net classification algorithms. In addition, the
driver model is shown to be capable of predicting the future
trajectory of the vehicle.

Index Terms—Driver Intent Inference, Intelligent Driver
Model, Path Curvature, Velocity Profile, Intersection Approach

I. INTRODUCTION

Urban intersections have long been known to be a hotspot
for accidents resulting in major injuries [1]. While passive
safety systems can help to prevent such injuries for passengers
inside a car, pedestrians and cyclists – so called vulnerable
road users (VRU) – are left with limited protection.

Active safety systems aim to prevent or mitigate the effects
of accidents before they happen. A typical application would
be to warn the driver if he seems to have overlooked a relevant
VRU. This poses two major challenges to the system: First,
the early detection of VRUs which cannot satisfactorily be
achieved by state-of-the-art onboard sensors, and second, to
determine whether there is a need to warn the driver of that
particular VRU.

The research initiative Ko-FAS [2] addresses the issue
of detecting VRUs both by research on cooperative sensor
technology [3] and stationary high resolution camera systems
[4]. The general idea of Ko-PER [5], one of the projects
associated with Ko-FAS, is to share the local perception of
each individual car or infrastructure unit using a novel data
fusion architecture [6] based on a manufacturer independent
Car2X communication solution. Also, several approaches to
lane level self localization are investigated [5], [7].

To resolve the second issue of whether or not the driver
should be warned, the trajectory on which he intends to
cross the intersection needs to be determined. This and the
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underlying task of estimating the probability for each possible
intent are addressed by this paper.

A. Related Work

Driver intent inference for urban intersections has been
an important research topic for the past couple of years.
Approaches reported in literature include Bayesian networks
[8], Monte Carlo Simulation [9], Hidden Markov Models
(HMM) [10], [11], [12], Support Vector Machines [13] and
prototype based methods [14].

The most obvious feature for predicting a driver’s intent to
do a left or right turn would be the turn indicator. However,
according to a study of the Auto Club Europa, the indicator is
set for only 80% of all turn maneuvers [15]. Also, it might be
set although the driver actually intends to go straight, which
is often the case when there are multiple possibilities to turn
right that are close to each other. Finally, the indicator signal
might just not be available, which is the case when we try to
reason about surrounding vehicles that are observed only by
RADAR or LIDAR sensors.

An alternative feature for estimating the driver’s intent has
been identified to be the velocity profile of a driver ap-
proaching the intersection [16]. In the presence of a preceding
vehicle, however, the velocity profile might be dictated by
car-following behavior rather than by the need to slow down
before doing a left or right turn. For prototype based methods
like [14], this is very difficult to account for due to the
large number of possible situations. While HMM and Monte
Carlo based methods are capable of dealing with interaction
between vehicles in principle, doing so is computationally
rather expensive.

In [17], the Gipps model [18] was used to represent car-
following behavior directly. The deceleration of a driver in
preparation of a turn maneuver was modeled deterministically
by a set of fuzzy-logic rules based on the geometry of the
path lying ahead. The driver’s intent was estimated using
a computationally expensive particle filter that limited the
approach to non-realtime use.

B. Problem addressed

Similar to the approach taken in [17], this paper introduces a
method to infer the driver’s intent based on an explicit model
for the vehicle’s velocity profile. Explicit models are more
transparent than machine learning methods and more robust
when generalized to situations for which there is no training
data available.

In contrast to [17], the Intelligent Driver Model [19] is
used to represent both car-following and turning behavior.
Alternative parameter sets are extracted from real world data
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Fig. 1. Pedestrian crossing and intersection approach. The rightmost lane
has been used for measurements and evaluation.

to account for different driving styles. The general idea is
to compare the trajectory of the past few seconds with the
simulated driver behavior obtained from different parameter
sets and driver intents to estimate the posterior probability
of each such hypothesis. The resulting probability distribution
can be used to make predictions both about the driver’s intent
and the future trajectory of the vehicle. Based on a Bayes net
instead of a particle filter, our approach is real-time capable
and can be easily extended to include additional features such
as the turn indicator or the lateral lane center deviation.

The capability of our approach is evaluated for the rightmost
lane of the intersection approach shown in Figure 1. In prin-
ciple, there are four possible driver intents to be recognized:

1) Go straight.
2) Stop at red light.
3) Turn right.
4) Turn right, but stop at pedestrian crossing.

In the paper at hand, evaluation is based on distinguishing
between going straight and turning right only. This is in line
with a possible application of the system: To warn the driver
of a cyclist that is moving parallel to the street if and only if
the driver actually intends to do a right turn.

This paper extends preliminary work presented in [20] by
a more elaborate analysis of the comparison-based approach
and the introduction of a curvature-based parameterization
method that generalizes velocity-based driver intent inference
to arbitrary intersections. Different driving styles are modeled
by the maximum acceleration parameter a and the desired
velocity model M , both of which depend on the actual driver
intent I . A brief summary of our investigations is given in
Figure 2.

The remainder of this paper is organized as follows: In
Section II, the general data collection and trajectory mapping
framework is described. Section III introduces the IDM car-
following model and demonstrates how it can be used to model
turning behavior. Two different parameterizations are obtained
from real world data, one by clustering actual intersection
crossings and one by evaluating the path curvature. In Sec-
tion IV, two alternative approaches to the classification task

Fig. 2. Brief summary of our approach to velocity-based driver intent
inference. The investigations include two alternative approaches both for the
modeling and the classification task.

are discussed. Section V serves to evaluate the performance
of each parameterization and classification method and to
demonstrate the ability of our approach to predict the future
trajectory of the vehicle. Finally, Section VI concludes this
paper.

II. DATA COLLECTION AND MAP USAGE

Measurement data was collected from 4 different drivers at
an inner-city intersection. The data set contains 165 right turns
and 80 straight intersection crossings, including situations with
and without a preceding vehicle. Special care was taken to cap-
ture both defensive and sporty driving styles. Previous works
have shown that a single driver exhibits a much larger variance
in his intersection approaches than can be found between
the average behavior of different drivers [16]. Therefore, the
number of different drivers used for data acquisition should not
be that important. The corresponding GPS traces are shown
in Figure 3.

In industrialized countries, road traffic takes place in a
highly structured environment where, most of the time, cars
and even cyclists follow their designated lanes. In such an
environment, accidents occur mostly due to right-of-way viola-
tions, i.e. in situations where one of the conflicting traffic par-
ticipants should have waited for the other but did not. There-
fore, the challenge of risk assessment and collision avoidance
lies more in predicting discrete decisions like the planned
path through the intersection, right-of-way interactions with
other traffic participants and the longitudinal behavior of the
driver rather than the fully fledged 2D-trajectory. Reducing
the options of each driver to a discrete set of one-dimensional
trajectories lowers the computational burden and allows to
spend more effort on the question of how the driver is going
to interact with other traffic participants.

A common way to map two-dimensional trajectories onto
one-dimensional lanes is to use lane markings obtained from
digital maps or satellite pictures. Beside the disadvantage of
having to deal with an additional map error, this approach does
not work well at the inside of intersections that often lack lane
markings. Instead, we chose to use the GPS traces obtained
by a high-precision differential GPS/INS platform to generate



Fig. 3. GPS traces of intersection crossings and map consisting of two
smooth circular arc splines. Auxiliary lines and arc centers are shown for the
right turn branch only.

TABLE I
DISTANCE ALONG CIRCULAR ARC SPLINE

Spline segment 0 1 2 3 4 5

Total distance [m] 0 33.52 42.00 45.92 51.98 57.36

a map that represents the mean path of vehicles crossing the
intersection rather than the lane markings themselves.

Internally, the map uses smooth circular arc splines to
represent the paths from one intersection entry to all possible
exits. For the right turn path, the traveled distance at the end
of each individual circular arc is summarized in Table I. An
efficient algorithm to generate smooth circular arc splines is
given in [21].

Compared to the standard polyline representation, smooth
circular arc splines have a couple of advantages:

• Finding the correct mapping of an arbitrary point is
computationally very efficient.

• Compact representation: Only few parameters are needed
to model the individual arcs.

• The mapping of a smooth two-dimensional trajectory is
continuous in the distance coordinate s, the orthogonal
deviation y and their derivatives.

• The path curvature is directly represented in the map.
The velocity profiles of the intersection crossings are shown

in Figure 4. Apparently, a significant difference between the
profiles for turning right and going straight can be observed
starting from 20 to 30 meters onwards. In contrast, the drivers
intent to stop at the pedestrian crossing before turning right
seems to be predictable only for s > 35m. Many trajectories
include a stop at s ≈ 13m, which corresponds to the position
of the stop line at the traffic light.

For the mean path, the lateral deviations of the individual
trajectories sum up to zero by definition. However, this is only
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Fig. 4. Velocity profiles for going straight and turning right. The position of
the stop line and that of the pedestrian crossing are indicated by dotted lines.

0 20 40 60
−2

−1

0

1

2

Distance s [m]

D
ev

ia
tio

n 
y 

[m
]

Front

0 20 40 60
−2

−1

0

1

2

Distance s [m]

D
ev

ia
tio

n 
y 

[m
]

Rear

Fig. 5. Lateral deviation for turning right.

the case for the front of the vehicle for which the mean path
was calculated. The rear of the vehicle is following a slightly
different path throughout the right turn, which leads to high
lateral deviations as shown in Figure 5. In order to obtain a
correct mapping of preceding vehicles for which only the rear
is observed, this fact has been accounted for by a model based
approach.

III. DRIVER BEHAVIOR MODEL

Microscopic car-following models have long been used
to simulate individual driver behavior in the presence of
preceding vehicles. A continuous, accurate but simple model
for the acceleration v̇ is given by the Intelligent Driver Model
(IDM):

v̇ = a

�
1−

� v
u

�δ
−

�
d∗(v,∆v)

d

�2
�
, (1)

d∗(v,∆v) = d0 + T v +
v∆v

2
√
a b

. (2)

TABLE II
PARAMETERS OF THE INTELLIGENT DRIVER MODEL

Parameter Value
max. acceleration a 0..5m/s2

acceleration exponent δ 4
desired velocity u 0..60 km/h
comf. deceleration b 3m/s2

min. gap to leading vehicle d0 2.0m
time gap to leading vehicle T 0.8 s

The corresponding parameter values are given in Table II. In
the absence of a preceding vehicle, the calculated acceleration
v̇ is determined only by the maximum acceleration parameter
a, the current actual velocity v, the desired velocity u and
a fixed acceleration exponent δ. The influence of a preceding
vehicle is represented by the ratio between the effective desired
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Fig. 6. Driver behavior during right turn maneuver. Original trajectory (thick
blue), synthesized desired velocity curve (dashed green), trajectories for stop
at red traffic light and consecutive right turn (thin blue), simulated trajectory
(thick red).

gap d∗ and the actual gap d. For the case without a preceding
vehicle, we define the relative velocity ∆v to be zero and d
to be infinite which leads to d∗/d = 0. Note that the model
is collision free, i. e. the calculated deceleration will always
be as high as necessary to prevent a collision. Afterwards, it
approaches the so-called comfortable deceleration b asymptot-
ically.

In a typical instantiation of the model, the desired velocity
u is a fixed value depending on the legal speed limit and the
individual driver. For right turn modeling, however, it needs
to be set dynamically as drivers will slow down when they
approach the intersection. For a given velocity profile vi(s)
that is uninfluenced by a preceding vehicle, Equation (1) can
be rewritten to obtain the desired velocities

ui(s) = min

�
vi(s)

δ
�
1− v̇i(s) / ai

, ū

�
, (3)

assuming a maximum desired velocity ū = 60 km/h. Note
that the car following term in Equation (1) has been omitted.
To calculate the desired velocity profile, the maximum accel-
eration parameter ai for the individual intersection crossing i
needs to be known. Assuming ui(s) = ū for s ≥ 48m, ai is
first estimated based on the acceleration after turning and then
used to calculate the desired velocity profile for s < 48m.

An example velocity profile and the corresponding desired
velocity profile are shown in Figure 6. The advantage of
representing observations by u(s) rather than v(s) is that the
former generalizes very well to arbitrary situations. This is
demonstrated for a couple of velocity profiles that include a
stop at s ≈ 13m, which are reproduced by an IDM simulation
using the original desired velocity profile and a virtual zero-
velocity obstacle at the stop line at s = 16m, which is
removed when v reaches zero. As can be seen, the simulated
trajectory matches the observed trajectories very well even
though the desired velocity profile has been obtained from a
completely different trajectory.

Nevertheless, drivers can cross the intersection at different
speeds and with varying acceleration parameters a. For the
task of driver intent inference, it is necessary to obtain a small
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Fig. 7. Result of the k-means clustering algorithm. Cluster centers (thick
lines) for Model 1 (blue square), Model 2 (green circle) and Model 3
(red triangle) and their associated desired velocity curves.

number of parameter sets covering a wide range of possible
driver behaviors. In the following, two different approaches are
investigated: One that creates desired velocity models based
on observed driver behavior at this particular intersection, and
one more general approach that calculates these models based
on the curvature of the path lying ahead.

A. Clustering of desired velocity profiles

One way to obtain characteristic driver models is to use
the k-means clustering algorithm to group N non-stop right
turns without a preceding vehicle into K different models. In
our experiments, we used N = 50 and K = 3 with results as
shown in Figure 7. The cost function for the cluster assignment
step has been chosen as

Jij =

� 48m

0m
(ui(s)− cj(s))

2 ds (4)

where cj(s) represents the j-th cluster center and ui(s) the
desired velocity profile of the i − th intersection crossing.
For s > 48m, each cluster has been assigned a different
value cj(s) = ūj so as to be consistent with the approach
of the following section. Note that although the parameter ai
of the individual intersection crossing has been estimated for
a different ū, the error in ai is very small as the velocity
during the acceleration period used for parameter estimation
is considerably smaller than each ūj .

The probability for an arbitrary crossing belonging to one of
the three desired velocity models is obtained by counting the
trajectories that have been assigned to each cluster center. In
order to represent differend driving styles, we also distinguish
between three values of the maximum acceleration parameter
a: 1.5m/s2, 2.0m/s2 and 2.5m/s2. The corresponding prob-
ability distributions given a specific desired velocity model M
can again be obtained by counting. The results visualized in
the upper row of Figure 8 show that on average, Model 1 is
associated with higher values for the maximum acceleration
parameter a than, judged by the driver’s deceleration during
the intersection approach, the more sporty Model 2. It seems
that on this particular intersection, drivers tend to accelerate
stronger after the turn if they approach the intersection more
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Fig. 8. Probability distributions for each model M and acceleration parameter a given that the parameterization was obtained by clustering (upper row) or
from path curvature (lower row).

slowly. A higher number of desired velocity models might
improve modeling in this point, but it would also increase the
risk of overfitting and require more training data to obtain a
meaningful distribution for the parameter a.

While the driver profiles above have been obtained from
non-stop right turn maneuvers without a preceding vehicle,
they have been shown to generalize well to arbitrary situations.
In particular, preceding vehicles are taken into account by the
brake term

v̇Brake = −a

�
d∗(v,∆v)

d

�2

of Equation (1), whereas stops can be modeled by placing a
virtual, zero-velocity obstacle. For straight intersection cross-
ings, we assume the same driver profiles as obtained for right
turn maneuvers. The only difference is that there is no turn-
related deceleration, so we have cj(s) = ūj .

B. Obtaining desired velocity models from path curvature

In the previous section, the desired velocity models have
been obtained from observed driver behavior at one particular
intersection. For a practical application, this would require a
database of typical driver behavior at each individual intersec-
tion. Although it is possible to create such a database using
low-precision GPS onboard units, a less costly approach would
be to generate the desired velocity models from information
that is already contained in the map.

Based on circular arc splines, our map directly represents
the path curvature that, as it turns out, is well suited to
automatically generate desired velocity models. The process
is illustrated in Figure 9. First, the path curvature k1(s) is
smoothed using a moving average filter. Roads are normally
designed with continuous curvatures, so the result is a more re-
alistic curvature profile that, to some degree, may also include
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Fig. 9. Construction process for the desired velocity models based on path
curvature, see text.

TABLE III
PARAMETERS THE CURVATURE BASED APPROACH

Model 1 Model 2 Model 3
lateral acceleration alat 2.00m/s2 2.75m/s2 3.50m/s2

maximal velocity v̄ 48 km/h 54 km/h 60 km/h
minimal gradient g 0.15 s−1 0.20 s−1 0.25 s−1



cutting corner behavior of the driver. Based on different values
for the maximum lateral acceleration ālat j , the smoothed
curvature profile k2(s) is then converted into velocities

vj(s) = min

��
ālat j
k2(s)

, v̄j

�
, (5)

with v̄j being the maximum velocity for each profile j. In
a final step, the desired velocity gradient dvj

ds is limited to
different values of g

j
so as to model stronger and weaker

deceleration before the turn.
The parameter values for ālat j , v̄j and g

j
are given in

Table III. In order to parameterize the process shown in
Figure 9, velocity profiles have been collected for a total of
12 intersections as shown in Figure 10. For each individual
intersection crossing, the corresponding desired velocity model
and acceleration parameter ai have been determined. Then,
the parameter values for alat, v̄ and g have been manually
optimized to capture a broad range of actual driver behaviors,
assuming that drivers who accept high lateral accelerations
will also show a more sporty intersection approach and higher
maximum desired velocities.

The resulting probability distributions for the desired ve-
locity model and the maximum longitudinal acceleration pa-
rameter a are given in the lower row of Figure 8. Based on
all 12 intersections, the distributions for a now also reflect
the general driving style of their associated desired velocity
model, ranging from rather defensive given Model 1 to sporty
given Model 3.

IV. DRIVER INTENT INFERENCE

In the last section, we introduced the Intelligent Driver
Model that allows us to model the longitudinal behavior
of a driver for a given path or maneuver. Now, we would
like to estimate the probability for each available maneuver
based on how well the driver’s current velocity profile fits the
longitudinal behavior that we would expect if the driver was
to perform that particular maneuver.

For the intersection shown in Figure 1, we defined four
possible driver intents as shown in Table IV. For each intent,
we would expect a different set of desired velocity profiles, and
for each type of desired velocity profile a different probability
distribution for the maximum acceleration parameter a. Stops
are modeled using a virtual zero-velocity obstacle.

TABLE IV
HYPOTHESES FOR DRIVER INTENT INFERENCE

Intention I H: Model× a [m/s2] Obstacle
I1: Go Straight {1, 2, 3}× {1.5, 2.0, 2.5} –
I2: Stop at stop line {1, 2, 3}× {1.5, 2.0, 2.5} 16m
I3: Turn right {1, 2, 3}× {1.5, 2.0, 2.5} –
I4: Turn right but stop {1, 2, 3}× {1.5, 2.0, 2.5} 46m

Each combination of driver intent and expected longitudinal
behavior is represented by a separate hypothesis H . Taking
into account four different driver intents, three desired velocity
models and three values for a each, we have a total of 36
hypotheses.

The probability distribution for the actual driver intent I , the
applicable hypothesis H and a not yet defined observation O
can be modeled by a simple Bayes net:

The probability for a particular intent Ij given the observation
O can thus be written as

P (Ij |O) =
�

i

P (Ij |Hi)P (Hi|O) (6)

where P (Ij |Hi) is either 0 or 1 depending on Hi, i. e. each
expected longitudinal behavior is uniquely assigned to a single
intent. The probabilities for the individual hypotheses are given
by

P (Hi|O) =
P (O|Hi)P (Hi)�
j P (O|Hj)P (Hj)

. (7)

The prior probabilities P (Hi) can be obtained from

P (Hi) = P (Ij)P (Mk)P (al|Mk) (8)

where Ij is the intent, Mk the desired velocity model and al
the maximum longitudinal acceleration parameter associated
with hypothesis Hi. The distributions for P (M) and P (a|M)
are given in Figure 8. The prior distribution of the intent I
can be set heuristically or from statistical data. For our exper-
iments, we assume a uniform distribution P (Ij) = 0.25 ∀ j.

The remaining term P (O|Hi) represents the likelihood of
our current observation given the longitudinal behavior of the
driver could be modeled by the parameter set associated with
hypothesis Hi.

A. Simulation-based approach

One possibility to estimate P (O|Hi) at time t is to simulate
the driver behavior corresponding to hypothesis Hi for the
time interval [t− TS, t] with starting values

ŝi(t− TS) = s(t− TS) and v̂i(t− TS) = v(t− TS)

where ŝ and v̂ denote the simulated values for distance and
velocity. For a typical right turn maneuver, the simulation
results at two different times t are shown in Figure 11. There
are no hypothesis curves for I2, as the stop line of the traffic
light has already been passed.

The velocity profiles of the remaining hypotheses terminate
at different velocities v̂i(t) and distances ŝi(t). These are the
expected values given that the current driver could be modeled
by the parameter set of the corresponding hypothesis. One
possible way to define the observation O is to use only the
final values of the simulation and compare them to the actual
values v(t) and s(t). Assuming normal distributed noise for
both s(t) and v(t), the probability density function fAS for
hypothesis Hi is given by

fAS (a(t), s(t)|Hi) =
1

2πσsσv
exp

�
−1

2
e2
�

with (9)

e =

��
s(t)− ŝ(t)

σs

�2

+

�
v(t)− v̂(t)

σv

�2

. (10)
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Fig. 10. Geometry and desired velocity profiles for 12 different intersections. Thin lines represent desired velocity profiles for individual intersection crossings,
thick lines represent desired velocity profiles generated using path curvature.
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Fig. 11. Typical right turn maneuver in absence of a preceding vehicle. Simulation is carried out at s = 30m and s = 40m, starting 1 s in the past. The
predicted trajectories are colored and marked by their corresponding driver intention: Cyan triangle for I1 ”Go straight”, red circle for I3 ”Turn right” and
magenta square for I4 ”Turn but stop first”. The resulting probabilities for the driver intents are shown on the right.

Using Bayes Theorem for probability density functions, the
probability P (Hi|a(t)) is then determined by

P (Hi|a(t), s(t)) =
fAS (a(t), s(t)|Hi) P (Hi)�
j fAS (a(t), s(t)|Hj) P (Hj)

(11)

which, basically, evaluates the likelihood of observation
[v(t), s(t)] for Hi relative to all other hypotheses.

For empirical σs = 1.2m and σv = 1.2m/s, the posterior
distribution of the driver intent is shown on the right in
Figure 11. Using appropriate values for σs and σv is important
as they have a major influence on how easily a hypothesis will
be favored above others.

One advantage of using explicit models to infer the driver’s
intent is that arbitrary environmental conditions such as the
presence of a leading vehicle can be easily taken into account.
Figure 12 shows the simulation results for a straight inter-
section crossing which is influenced by a preceding vehicle
that is slowing down to do a right turn. For s = 28m,
all hypotheses H lead to similar results due to the car-
following situation. Only after the leading vehicle has turned,
the curves corresponding to intention I1 for going straight
show a significantly different behavior which is reflected in
the calculated probabilities P (Ij |O) as shown on the right in
Figure 12. This demonstrates that the approach is well suited
to express ignorance in situations for which the driver’s intent
cannot be determined by the velocity profile alone.

B. Comparison-based approach

As an alternative to the simulation-based approach, the
current driver intent can also be estimated by comparing
the actual acceleration v̇(t) with that calculated by the IDM
equation for each individual hypothesis Hi directly. Similar to
Equation (9), the probability density function fA(tj) for a(tj)
and Hypothesis Hi is given by

fA(tj)(a(tj)|Hi) =
1

σa

√
2π

exp

�
−1

2

�
aj − âij

σa

�2
�
.

(12)

For robustness against errant detections of preceding ve-
hicles and fluctuations in the longitudinal behavior of the
driver, it is still necessary to take observations over the full
time interval [t − TS, t]. The individual observations are not
independent given Hi, so a naive Bayesian approach would
not model the underlying probability distribution correctly.
Instead, we chose to average the individual scores from (12)
to obtain

fA(a|Hi) =
1

N

N�

j=1

fA(tj)(a(tj)|Hi) (13)

which is not a real probability density function anymore as
� ∞

−∞
fA(a|Hi) da =

1

N

N�

j=1

�

k∈{1..N\j}

� ∞

−∞
dak (14)

but can still be used to calculate

P (Hi|a) =
fA (a|Hi) P (Hi)�
j fA (a|Hj) P (Hj)

(15)

because (14) is the same for each hypothesis Hi. Compared
to the simulation-based approach, the comparison-based ap-
proach has two major advantages:

• It is more robust in the presence of sporadic false positive
detections of a preceding vehicle directly in front of our
own, as each time step influences the final score only
by 1/N whereas for the simulation based approach, all
hypotheses will become unlikely as the expected driver
behavior will be a full stop.

• It is much faster, because at each time step, only the
current acceleration needs to be evaluated while all other
scores can be reused.

One drawback, however, is that the comparison-based ap-
proach cannot average car-following behavior as good as
the simulation based approach. If a driver is keeping an
untypically large clearance to his preceding vehicle, the
comparison-based approach will deduct scores for the accel-
eration mismatch throughout the whole interval whereas for
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Fig. 12. Classification results for going straight in the presence of a leading vehicle. The gap d between the two vehicles is represented by the black line.

the simulation-based approach, the simulated driver will close
the gap to the preceding vehicle but then assume the same
velocity as the actual driver, so scores will be deducted for
the mismatch of the distance variable s(t) at the end of the
simulation only.

V. EXPERIMENTAL RESULTS

Evaluations have been carried out for the intersection shown
in Figure 1. The counts for the different cases contained in the
dataset are given in Table V.

A. TTC Estimation

As mentioned before, a possible application of driver intent
inference at intersections is to warn the driver of cyclists
moving parallel to the road if and only if he intends to do
a right turn. Assuming a reaction time of up to 1.5 s and a
turning velocity of around 6m/s, TTC = 2 s would be an
appropriate value for the time-to-collision threshold at which
the corresponding driver assistance system issues the warning.
However, estimating the remaining TTC is non-trivial since
its conventional constant velocity definition does not hold due
to the turn-related deceleration. Much better results have been
obtained by simulating the driver behavior according to the
desired velocity profiles of the hypotheses H . A comparison
between the two approaches is shown in Figure 13. The desired
velocity-based TTC estimation overestimates the remaining
TTC by a maximum of 0.5 s, which still allows for a reaction
time of 1 s. The underestimates are mainly due to slow
preceding vehicles.

TABLE V
CASES INCLUDED IN THE TEST SET (PV: PRECEDING VEHICLE)

No PV PV turns right PV goes straight
Turning right 119 21 25
Going straight 33 28 19
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Fig. 14. Right turn prediction results for the dataset containing cases as in
Table V. The best results are obtained for the case of no preceding vehicle,
the worst for the case when the preceding vehicle is doing a right-turn itself.

B. Classification Performance

Based on the dataset shown in Table V, the classification
performance has been evaluated at a predicted TTC of 2
seconds. Parameter sets obtained either by clustering driver
behavior at that particular intersection or by the more general
path curvature approach have been evaluated in combination
with each of the two classification methods. The results are
shown in Figure 14.

Apparently, the cluster-based method obtains somewhat
better results than the curvature-based method. This is not
surprising, as the curvature-based approach has been optimized
for all 12 intersections while the cluster-based approach is
only suited for the one that is evaluated. Both simulation and
comparison-based approach deliver equally good results.

As expected, the comparison-based approach is computa-
tionally much more efficient than the simulation-based ap-
proach, as it has to compute only one score at each time
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step whereas the simulation-based approach needs to run
a simulation for the whole time interval. In MatLab 2010,
evaluating the velocity profile for the past one second with
a discretization of 0.01 s took 17ms using the comparison-
based and 207ms using the simulation-based approach. As a
C-coded MEX-function, the comparison-based approach took
less than 1ms.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a simple, transparent and real-time capable
approach to driver intent estimation for urban intersections
has been presented. It is based on an explicit parametric
model for the longitudinal velocity and considers a desired
velocity that is approached in the absence of a preceding
vehicle. Two different methods have been proposed to extract
characteristic desired velocity profiles from real world data
that allow the IDM to account for turn-related deceleration.
For the example of a right turn assistance system, it has been
shown that good classification performance can be achieved
both with the simulation-based and the comparison-based
classification method even in the presence of a preceding
vehicle. If the driver intent cannot be inferred in a particular
situation, the approach is able to express ignorance which is an
advantage if combined with additional features like the lateral
displacement, the driver’s head pose or the turn indicator.

Ongoing work focuses on the development of a more so-
phisticated driver model. For situations in which the preceding
vehicle is doing a right turn but has to wait at the pedestrian
crossing, a typical misclassification cause with the current
model is that some drivers will pass the preceding vehicle
even though it is still blocking the straight lane to some degree,
while others will not. Hence, this decision should be modeled
explicitly. Also, in order to improve classification performance
as well as to infer the driver’s intent in situations in which
this is not possible based on the velocity profile alone, we
are working on a generic architecture that allows to infer the
driver’s intent by comparing expected and observed behavior
for multiple features. Finally, another exciting field of research
is posed by the need to take interactions with other traffic
participants into account. Detecting driver’s gaze direction
might help to infer both his intent and his cognitive model
of the environment, based on which he might or might not
change his planned trajectory to allow for a safe intersection
crossing.
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