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Abstract— In this paper we propose a novel part-based
approach to scene understanding, that allows us to infer the
properties of traffic scenes, such as location and geometry of
lanes and roads. Lanes and roads are parts of our undirected
graphical model in which nodes represent parts or sub-parts
of scenes and edges represent spatial constraints. Spatial
constraints are statistically formulated and allow us to take
advantage of low-level relations as well as high-level contextual
information. The estimation of scene properties is formulated
as an inference problem, which is solved using non-parametric
belief propagation. Inferring about high-level scene properties,
while relying on error-prone sensory cues is challenging and
computational expensive. Therefore, we introduced a novel
depth-first message passing scheme. This scheme is applied to
several challenging real world scenarios showing robust results
and real-time performance.

I. INTRODUCTION

The ability of sensing and understanding the vehicles
environment is a key technology for autonomous driving
and Advanced Driver Assistance Systems (ADAS). Each of
these applications require a robust estimation of geometrical
and topological scene properties like e.g. location, course
and number of lanes in the vehicles environment as well as
topological relations. Retrieving such high-level information
from sensory cues is extremely difficult due to their error-
proneness and ambiguities.
Many scene understanding approaches rely on one specific
computer vision approach or one sensory cue [1]. Applied
to real world applications, these approaches are expected to
have a poor performance. To overcome this issue, recent
approaches make use of a combination of different sensory
cues and low-level vision approaches [2], [3], [4]. Similarly,
our approach allows us to use different low and high-level
sensory cues.
Another important requirement is the ability to model uncer-
tainties as well as contextual, spatial and semantic relations
between objects. The drawback of recent approaches is that
they only consider high-level contextual relations like e.g.,
ground, sky, and walls [5] and thus they can not benefit from
low-level relations like e.g., the spatial configuration of local
vision features. However, we found that by incorporating
low-level relations we can greatly improve the robustness
of our approach.
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II. RELATED WORK
Many approaches treat scene understanding as a seg-

mentation problem. Bileschi [6] proposed a method, which
segments street scenes in classes, such as cars, pedestri-
ans, roads and trees using an biologically inspired image
representation. A conditional random field is proposed by
Wojek et al. [7] to jointly perform object detection and scene
labeling. Sturgess et al. [4] developed a segmentation of road
scenes based on appearance cues and structure-from-motion
features. Another segmentation approach is presented in Ess
et al. [8]. Their traffic scene segmentation allows them to
assign semantic labels like road types, cars or pedestrian
crossings to individual segments.
Existing approaches for high-level scene understanding often
use generative graphical models. Wang et al. [9] proposed a
hierarchical Bayesian network to perform activity detection
in traffic scenes from a static platform. A dependent Dirichlet
processes is used in [10] to understand the behavior of
moving object in scene. A generative model for 3d scene
interpretation was proposed by Wojek et al. [3]. Their model
jointly performs multi-class object detection, object tracking,
scene labeling and 3d geometric relations. For inferring about
3d scene context as well as 3d multi-objects a reversible-
jump Markov Chain Monte Carlo (MCMC) scheme is em-
ployed. Geiger et al. [2] also proposed the use of reversible-
jump MCMC to infer geometrical, topological properties of
scenes as well as semantic activities.
Closely related to our approach is the work of Spehr et
al. [11], where a part-based scene understanding approach
for parking lots is proposed. They proposed a hierarchical
decomposition of a parking-lot scene into geometrical prim-
itives like u-shapes and l-shapes. These primitives are again
decomposed into simple features like lines.
Similarly, we propose a hierarchical model for inferring
about more general traffic scenes. In our approach complex
traffic scenes are decomposed into roads and lanes. Lanes
are again decomposed into patches representing e.g. two
parallel lane-marking features. The lowest level of our model
is representing observable sensory cues like e.g. road-edges
or lane-markings. These low-level sensory cues incorporate
noise and clutter into our model, which makes performing
inference challenging. Towards this goal we developed a
novel depth-first message passing scheme, which allows us
to perform inference over complex scenes in real-time.

III. PART-BASED SCENE UNDERSTANDING
In this section we present our part-based approach for

scene understanding. We start by brief introducing our proba-
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bilistic representation of lanes, roads and traffic scenes. In the
following we present our approach to performing inference
including non-parametric belief propagation, belief sharing
and our novel depth-first message passing scheme.

A. PART-BASED ROAD MODEL

Our approach to scene understanding is based on an
undirected graphical model (see Fig. 3). Generally, graphical
models capture the way, joint distributions over random vari-
ables can be decomposed into a product of factors. Each of
these factors only depends on a subset of the variables. This
local decomposition leads to efficient inference algorithms.
As can be seen in Fig. 3 our graphical model is composed
of a set of hidden x = {x1 . . .xN} and observable y =
{y1 . . .yN} random variables. Hidden random variables rep-
resent complex objects (e.g.. lane, roads) or parts of objects.
In our model, all parts and objects have a continuous and
multidimensional state vector, which defines the position and
orientation of objects in two-dimensional Euclidean space.
Edges in our graphical model represent the relationship
between pairs of random variables. The relationship between
two hidden variables xi and xj is encoded by an associ-
ated pairwise potential ψij (xi,xj), representing their spatial
compatibility. Furthermore, we introduced observation poten-
tials φi (xi,yi) encoding the relationship between a hidden
variable xi and an observable variable yi.
Formally, our graphical model is defined by the graph G =
{V, E} with nodes V and edges E . Nodes represent our
model parts and edges E = {Eψ, Eφ} observation potentials
and spatial constraints. Accordingly, the joint probability
distribution over all random variables in our graphical model
can be written as

− log
(
p(x1,x2, . . . ,xnp |y)

)
= log(Z) +

∑
(i)∈V

Φi(xi,yi) +
∑

(i,j)∈Eψ

Ψij(xi,xj) (1)

where Φi = − log(φi), Ψij = − log(ψij) and the real
number Z denotes the partition function that normalizes the
probability distribution.

1) REPRESENTATION OF LANES AND ROADS:
The basic parts of our graphical model are local patches
representing finite areas of road scenes (see Fig. 2). As can
be seen in Fig. 1a patches are defined by a left and a right
sensory cue corresponding to lane-markings or road-edges
(e.g. curbstones, crash barriers, greensward etc.). This gives
us the opportunity to apply patches to a variety of scenes
(e.g. highway, rural or urban roads).
Formally, patches are defined by a five-dimensional state
vector xPi = (xi, yi, αi, wi, li). The parameters xi, yi and
αi define the configuration of a patch in a local vehicle
centred coordinate frame, where (xi, yi) ∈ R2 is the patches
position and αi ∈ [0, 2π) its orientation angle. Additionally,
li and wi define the length and the width of a patch.
Another important object of our part-based model are
lanes (see Fig. 2). In order to describe lanes, often
specific geometrical representations are selected such as
clothoid for highways or splines for intersections [2].

(a) Parametrization (b) Part-based model

Fig. 1: Parametrization and part-based model of a patch

(a) (b)

Fig. 2: Example for a patch-based lane representation (b) of
a road with two lanes (a).

However, in our approach, a major requirement is that our
lane representation is applicable to a variety of different
scenarios. Furthermore, generating lanes from their sub-parts
has to be computational inexpensive. Therefore, we propose
to represent lanes by a set of nP individual patches given by
xL = {xP1 ,xP2 , . . . ,xPnP } (see Fig. 2b). Besides the ability
of describing various lane geometries, this representation
avoids to introduce additional object parameters, which
minimize the computational complexity during inference.
However, some application may require a smooth lane
representation. In that case, we can easily adopt our model
by introducing additional object parameters (e.g. curvature
or curvature rate).
As shown in Fig. 3a, lanes are once again used as parts
of more complex objects representing road scenes. Since
we apply our model to very different scenes, such as
multi-lane roads, highway exit-ramps or urban roads, a
flexible scene representation is required. Generally, road
scenes are defined by a set of nl lanes and are given by
xR = {xL1 ,xL2 , . . . ,xLnl}. In order to distinguish between
scenes with e.g. parallel, splitting or merging lanes we
introduce dedicated spatial constrains. An example is given
in Fig. 3a, where the potentials ψ29,31 and ψ28,31 ensure a
parallel lane configuration.

2) SPATIAL CONSTRAINTS: One key aspect to model
lanes and roads as a graphical model is the formulation
of local spatial constraints between pairs of hidden random
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(a) Compositional hierarchy (b) Sharing structure

Fig. 3: Compositional hierarchy (a) and corresponding sharing structure (b) of our part-based Road Model.

variables.
Following [12], [13], [11], we use a mixture of L Gaussian
kernels to approximate our potential functions. Accordingly,
potentials are defined by

ψij(xi,xj) ∝ ε0N0(xj ;µ0,Λ0)+

(1− ε0)
L∑
l=1

wlijN (xj ; Ωlij(xi),Λ
l
ij)

(2)

where ε0 is a fixed outlier probability, which allows
us to handle occlusions. The outlier distribution N0 is
parametrized to be approximately uniform.
Each mixture component of our potential function has an
assigned weight wlij , mean µlij and covariance matrix Λlij .
The covariance matrix Λlij represents uncertainties regarding
the spatial relationship, between model parts xi and xj .
Ωlij(xi) is a transformation function describing the spa-
tial relationship of xi and xj . In case of the potential
ψ1,17(x1,x17) depicted in Fig. 3a Ωlij(xi) is defined by

Ωl1,17 =


x1
y1
α1

w1

l1

+


cos(α1) 0 0 0 0

0 sin(α1) 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

 dl17

(3)
where dl17 refers to an a priori patch-width, which e.g.
corresponds to a common lane-width.
One challenge we were faced with formulating the potential
functions is, that at least on dimension of the random
variables represents a periodic variable αi ∈ [0, 2π). In order
to overcome issue regarding the choice of origin, commonly
von Mises distributions are employed.
Despite the fact that, non-parametric belief propagation can
be applied to graphs containing von Mises distributions, the
necessary modifications lead to additional model complexity.
Hence, we use a linearized approximation introduced in [14]
and [15] to model densities of periodic variables.

3) INFERENCE AND PART SHARING: Essential for the
application of our approach is the ability to perform inference
in real-time. Towards this goal we employ belief propagation

(BP), which allows us to efficiently perform inference in our
graphical model. In BP, messages mij(xj) are passed from
node i to j, encoding which state node j is in. Messages
mij(xj) can be computed iteratively using

mij(xj) =

∫
ψij(xi,xj)φi(xi,yi)

×
∏

k∈P(i)\j

mki(xi)dxi
(4)

where P(i) is the set of neighboring nodes of xi. Generally,
we are interested in estimating the distribution p(xj |yj) often
referred to as the belief b(xj) of a node xj . This belief can
be determined by combining all incoming messages with the
local observation potential as follows

b(xj) = p(xj |yj) ∝ φj(xj ,yj)
∏

k∈P(i)

mij(xj) (5)

If the potentials ψij(xi,xj) and φi(xi,yi) are Gaussian the
belief can be calculated exactly using Eq. 4 and 5 [16].
However, in our case the potentials are multimodal due to
noisy and ambiguous sensory cues. In this case, standard BP
is not applicable.
In order to overcome this issues, we employ non-parametric
belief propagation (NBP) [17], [12], which is a generalization
of the particle filter [18] to general graphical models. In NBP
messages are approximated by a set of L smoothed samples
as follows

mij(xj) =
L∑
l=1

w
(l)
j N (xj ;µ

(l)
j ,Λj) (6)

where each mixture component l has an associated weight
w

(l)
j , a mean µ(l)

j and a bandwidth parameter Λj .
Using approximated messages according to Eq. 6 during BP
leads to high computational complexity, because calculating
the belief b(xj) now requires the multiplication of several
mixtures of Gaussians. In order to accelerate inference,
we apply a sampling based approximation of the message
products, which are similar to the one introduced in [19].
Another aspect that we can use to accelerate inference is that
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evidence is exclusively injected into our model from the ob-
servable nodes yj . This allows us to divide message passing
into an upwards sweep passing messages from the leaf nodes
to the root nodes and a downwards sweep passing messages
back from the root to the leaves. While message passing all
nodes except the root and leave nodes receive messages from
their children containing local evidence and messages from
their parents ensuring the overall structure. Since our model
depicted in Fig. 3a, contains many equal nodes messages
sent from children (e.g. xl1, xl3 and xl5) to their parents (e.g.
xP17, xP18 and xP19) contain equal information.
This circumstance can be used to apply belief sharing
[11]. The basic idea of belief sharing is to avoid redun-
dant calculations by combining random variables, which
contain equal information during the upwards sweep. As
can be seen in Fig. 3b we can combine the patch-nodes
[xP17,x

P
18, . . . ,x

P
20] and [xP21,x

P
22, . . . ,x

P
24] into the nodes

xP17/18/19/20 and xP21/22/23/24. The belief of e.g. node
xP17/18/19/20 is then shared between the nodes xL25, xL27
and xL29. Consequently, we have to calculate the belief of
node xP17/18/19/20 only once, while we had to calculate the
belief of nodes xP17,xP18,xP18 and xP20 individually using the
compositional hierarchy.

4) SCENE REPRESENTATION: Besides reasoning about
the location and configuration of objects in the scene the
ability to reason about topological scene properties (e.g.
number of lanes or road-classes) is of high importance for a
complete scene understanding. Thus, we extended our part-
based model as depicted in Fig. 4. Note that, to reduce the
complexity of our illustration, we disregard the length of
lanes.
As can be seen, the sensory evidence is provided by a
road edge detector and a lane-marking detector on level 1.
This evidence is then shared between different patch-types
on level 2. Patches on level 2 differ in their width and
their corresponding sensory cues. Different sensory cues are
needed, because e.g. lanes on highways are usually bounded
by two lane-markings, while urban roads are often bounded
by a lane-marking on one side and a curbstone on the other
side. Additionally, patches differ in their a-priori lane-width
(see Eq. 3), which allows us to reason about e.g. if we are
in a highway or an urban scenario.
The different patches are then shared between more complex
objects on level 3 to level 6. Applying this part-based scene
model allows us to reason about a variety of complex urban
and non-urban scenarios, which greatly extends the area
of application. Additionally, the high-level nodes introduce
important contextual information and ensure the overall
compatibility of parts.
One drawback of performing high-level reasoning in such
complex part-based models while relying on error-prone sen-
sory cues is that performing inference in real-time becomes a
challenge. In order to make inference traceable, we propose
a novel sequential message passing scheme.

5) DEPTH-FIRST MESSAGE PASSING: During the up-
wards sweep of BP, messages are passed from child nodes

Fig. 4: Sharing structure applied to scene understanding.
Levels represent objects of different complexity.

to all of their parents. Thus, each level of our model is
processed one by one (see Fig. 4). Intuitively, this proce-
dure can be understood as a breadth-first search for valid
hypotheses in our graphical model. The main drawback of
this procedure is that low-level nodes often contain many
invalid hypotheses due to noise and clutter. Accordingly,
while belief propagation messages passed through the graph
contain many invalid hypotheses, which cause unnecessary
computational complexity.
In order to improve the message passing, we propose a
depth-first message passing scheme. The fundamental idea
of depth-first message passing is to pass a single or a
subset of samples in several sweeps from low to high-level
nodes. Samples for message passing are randomly selected
according to their weight, which gives us the ability to prefer
valid low-level hypotheses. This is highly beneficial for the
inference, because we first focus on low-level hypotheses,
which are likely to be part of valid high-level hypotheses.
This mean, we can accelerate the generation of valid high-
level hypothesis while minimizing the propagation of invalid
low-level. This in turn reduces the computational complexity
of inference.

B. IMAGE EVIDENCE

Inspired by the virtual sensor concept proposed in [11],
we use different 3d reconstruction approaches, which are
applied to the same camera image in order to gain low-level
information. The symmetrical local threshold method is used
to detect lane-markings. According to the marking detector
evaluation [20], it gives the best result in the general case. On
the other hand, an edge detector is used to gain information in
image regions where markings are missing, but road edges
such as curbs are present. We employ a Sobel detector at
multiple scales for a scale invariant edge detection.
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Fig. 5: Results of lane geometry estimation. (Top) Detected
lane-marking features (red). (Bottom) Projection of the lane-
marking detection into the vehicle reference frame (yellow,
purple, green) and results of lane hypotheses generation
(grey).

IV. RESULTS

In this section, we present the results of applying our
part-based model to several real world scenarios. Important
aspects of our evaluation are (a) the accuracy with which lane
and road geometries can be estimated, and (b) the recognition
performance of our model. Another important aspect is (c)
the computational performance, as it is an important aspect
for in car applications. To show the performance of our
approach in different environments, we tested our approach
in highway, rural and urban scenarios (see Fig. 5).

The database used for this evaluation comprises several
thousand individual video pictures of urban, rural and high-
way scenarios. In order to obtain ground-truth information,
we use a high-accuracy navigation database, which contains
an exact geometric lane description. During the evaluation,
we align the database to the vehicles reference frame using
a DGPS+IMU system. As data-input, we use the two visual
cues presented in Sec. III-B. In respect to the available
image resolution, we are able to detect features up to 80m
(highway), 50m (rural) and 35m (urban).
The used part-based model has the same structure as depicted
in Fig. 3. However, in order to cover the detection range of
the used vision sensor, we extend the model by introducing
random variables representing lanes composed of up to 40
patches. The root nodes of our graphical model represent
roads with two or three lanes. For all tests we set the outlier
probability ε0 to 20% of the total likelihood. The a priori
width and the length of the patches were set to w=3.5m and
a length l=2.0m.

A. RECOGNITION PERFORMANCE

In order to illustrate the importance of contextual informa-
tion incorporated by the high-level nodes, we compare the
belief of patch locations estimated by our model with the
ground-truth database. For this comparison, we approximate
the true belief of patch locations by creating samples from
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Fig. 6: Recognition performance after the upwards sweep
(blue) and after incorporating lane (red) and road level
(green) information.

our ground-truth database and estimating their weights using
our observation potentials φj .
We estimated the marginal distribution over the patch loca-
tions in three different ways:

1) We only perform the upwards sweep of BP. Hence, the
belief of patch-nodes only relies on sensory evidence.

2) In addition to the upwards sweep, we propagate mes-
sages from all lane nodes down to the patch-nodes.
Thus, patch-nodes receive contextual information from
their parents.

3) We perform a full bottom-up top down message pass-
ing scheme, which includes the road-nodes of our
model.

As can be seen in Fig. 6 the recognition performance of
our model increases drastically, as we incorporate contextual
information.
This can be explained by the fact that patch-nodes perform

inference over a relatively small area. Accordingly, they
strongly rely on the presence of local, visual evidence. This
means e.g. missing, occluded or damage lane-markings have
a significant impact on the recognition performance.
Lanes, on the other hand, are based on a set of patches and
thus combine sensory evidence from a larger area. Hence,
the recognition performance is not as affected by missing
local evidence as the one of patches.
Incorporating contextual scene knowledge improves again
the recognition performance of our model, as it ensures the
overall compatibility of objects and object parts.
Some exemplary results for different scenarios are depicted
in Fig. 5. Note hypotheses outside the lane-marking are
supported by visual cues on one side, and by the outlier
process on the other side. As a result, their associated weight
is relatively low compared to hypotheses supported by two
visual cues.

B. DEPTH-FIRST MESSAGE PASSING

As can be seen in Fig. 7, depth-first message passing out-
performs standard breadth-first message passing in means of
recognition performance, while using a significantly reduced
sample set of only 25 samples. The reason for this major
improvement is that by applying depth-first message passing
we are mainly propagating high weighted samples. Hence,
messages contain less invalid hypotheses than in breadth-first
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Fig. 7: Recognition performance of depth-first (red) and
breadth-first (green) message passing for different scenarios.
In both scenarios depth-first message passing (25 samples)
shows better performance than breadth-first message passing
(150 samples).

message passing.
Furthermore, Tab. I shows that we can significantly reduce
computational complexity by reducing the sample set, while
achieving similar geometric accuracy. The overall perfor-

Fig. 8: Results of lane geometry estimation. (Top) Detected
lane-marking features (red). (Bottom) results using breadth-
first (right) and depth-first (left) message passing.

mance of our approach is depicted in Tab. I, which shows that
employing depth-first message passing allows us to apply our
approach to real-time applications.

Patches Lanes (BF) Lanes (DF) Roads
time (ms) 1.47 75.29 4.41 5.38
RMS (m) 0.12 0.25 0.20 0.23

TABLE I: Computational time and location errors.

V. CONCLUSIONS
We presented a novel part-based approach to scene un-

derstanding in intelligent vehicles. Based on simple visual
cues, our approach gives us the ability to robustly infer the
geometry and layout of complex traffic scenes. Furthermore,
we introduced a new depth-first message passing scheme that
allows us to significantly reduce computational complexity,
while performing inference. Our experimental results show
that depth-first message passing significantly increases the

performance of our approach, and allows us to perform
inference in real-time.
In the future, we plan to add additional input sources to
our model (e.g. vehicle tracks), allowing us to increase the
performance in scenarios, where visual cues are not reliable.
Furthermore, we believe that tracking hypothesis by adding
temporal constrains to our model will greatly improve the
robustness of our approach.
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