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Abstract— The prediction of the behavior of other traffic
participants and the generation of respective motion hypotheses
is a key capability of advanced driver assistance systems and
autonomous vehicles. Motion prediction is a difficult task since
it has to deal with the uncertainty within the environmental
perception and the ambiguity of a traffic scene. For this
reason we propose a two-layer situation analysis concept in
this paper. This includes an associative and predictive situ-
ation model which combines probabilistic object hypotheses
with a stochastic model of the road network in a curve
coordinate system. Utilizing this description, we formulate
various hypotheses regarding the evolvement of the situation
using an Extended Kalman Filter supported by the Intelligent
Driver Model. Furthermore, we introduce an evidence theory
based situation interpretation to assess the several behavior
hypotheses as well as to determine the inherent uncertainty.
Especially in ambiguous situations, the ability to determine
the imprecision by the difference of belief and plausibility
of a certain hypothesis provides suitable information for an
appropriate reaction. Both layers of the proposed situation
analysis are not relying on training data and so it is not limited
to previous known traffic scenarios. Finally, the capability of the
concept is demonstrated by evaluating 157 maneuvers, recorded
at an urban intersection.

I. INTRODUCTION

Due to the number of dynamic interacting traffic partici-
pants and maneuver possibilities, urban intersections are one
of the most challenging traffic scenarios. To assist the driver
for a safe passage through intersections, advanced driver
assistance systems (ADAS) require detailed knowledge of the
vehicle surrounding. This holds true not only for detecting
the environment but also for getting additional information
about the current situation the vehicle is in [1]. Especially for
systems with an increasing degree of automation and a rising
number of sensors the situation analysis (SitA) forms the link
between the perception and assist function layer. Thus, SitA
can be seen as the process of reaching situation awareness
by providing an adequate description of the current traffic
situation, the prediction of the future evolvement and the
criticality assessment [2].

The key challenges in this domain deal with the un-
avoidable uncertainty within the environment perception and
the ambiguities of the traffic scene. Following [1], [3], [4]
and [5], the inherent uncertainty of a situation has to be
distinguished into at least two general categories:

1) Inductive: Uncertainty as a state of mind
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2) Empirical: Uncertainty as a physical property of in-
formation

The first meaning of uncertainties consists in the vagueness
of the detected objects in the vehicle environment in the
sense of ”is this object a car or a bicycle?”. The second
meaning results from the sensors which deliver imperfect
data, often limited to basic features like position, orientation
and velocity [6]. An additional uncertainty in meaning of
the first category occur by deriving situation awareness from
limited knowledge about the actual behavior of the traffic
participants. This means that the reasons of decision making
for individual drivers, like their plans or the parts of the scene
they have seen, remain unknown. In summary, the situation
analysis has to deal with the uncertainty of sense (data driven,
empirical) and further with the uncertainty in behavior (goal
driven, inductive).

A. Related Work

In the field of situation understanding several work has
been performed to anticipate behavior of traffic participants
in urban scenarios. To deal with the inherent uncertainties
the most common approaches include (dynamic) Bayesian
networks (BN) ([6], [7]), Hidden Markov Models (HMM)
and Support Vector Machines (SVM) [8]. To regard multiple
hypothesis the approaches [9] and [1] use Multi-hypothesis
Tracker (MHT) respectively Fuzzy Sets with decisions trees.
Particularly the results of (D)BN and SVM methods depend
here strongly on the quantity and quality of the training
data. All approaches have in common, that they differ not
between inductive and empirical uncertainty in the resulting
analysis. To meet these requirements, the SitA layer in this
work is realized by a two-step process in which each kind
of uncertainty is treated separately.

The remainder of this paper is organized as follows. Sec-
tion II gives an overview to the complete system architecture
and characterizes the input and output of the proposed SitA
layer. A brief introduction to the theoretical background for
a transformation in a stochastic curved coordinate system
is described in Section III. In Section IV we formulate an
associative situation model (SitM) based on the information
of the environmental perception. Beside the combination of
uncertain object hypothesis with the stochastic description
of the local road network we generate various maneuver
hypotheses regarding the evolvement of the current situation.
Subsequently in Section V, the second layer of the SitA
is introduced. Here, the defined maneuver hypotheses of
the traffic participants are evaluated and associated with
the intention of the system vehicle. This corresponds to a
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Fig. 1. General system structure with different layers

subjective assessment of the situation, thus we call it situation
interpretation (SitI). Finally, in Section VI the proposed
concept is evaluated by real data recorded at an urban
intersection.

II. SYSTEM OVERVIEW

The main objective of the SitA is to provide the function
layer of the ADAS a state of knowledge (called situation
awareness) in a way it is able to make a decision about
the next steps of the ego vehicle. Figure 1 illustrates an
overview of the entire system structure. In this section we
give a brief introduction to the applied architecture, except
for the situation analysis, which will be discussed in section
IV and V .

A. Data Acquisition

The data acquisition layer provides the two fundamental
inputs for our SitA module by recognizing the traffic environ-
ment and evaluating map data. In contrary to the often locally
stored map data, the measurements of the traffic scene can
either be provided by the sensor system of the ego vehicle or
communicated by Car2X. As shown in the research initiative
Ko-FAS [10], possible sources of these transmissions could
be sensor-equipped intersections or other traffic participants.

1) Measured Data: The output of the sensor fusion layer
at time instance tθ consists of a set of nObj object hypotheses

Xθ = {Xj(tθ) | j ∈ [1, nObj ]}, (1)

including the information of the ego vehicle. A single object
hypothesis

Xj(tθ) = 〈 XΛ0

θ , βobj 〉j (2)

comprises a stochastic representation of the current motion
state XΛ0

θ and some descriptive meta data βobj . Λ0 denotes
here the corresponding coordinate system (CS) which could
be the ego vehicle system Λego or the CS of a sensor-
equipped infrastructure Λx. In both cases, the motion state
Xθ is defined as a normal distributed random vector including
the current pose (xθ, yθ, ψθ)

Λ0 and velocity (vθ). The meta
data covers the unique identifier as well as the estimated
object class with dimensions (length, width and height).

2) Stored Data: In order to support the situation analysis
process, the digital map is specified by a directed acyclic
graph (DAG) G = {R, E}. In this structure nodes R
represents distinct road lane segments (RLS) and the edges
E corresponds to the connectivity between them. Similar to
a object hypothesis, a road segment j is defined by the
tuple Rj = 〈Q, βlane 〉j , where Q denotes the list of
stochastic way points and βlane the appended meta data.
The uncertainty of the specific points results here from the
localization accuracy of the ego vehicle to the map. The meta
data contains the lane width, total length, an unique identifier
and the legal speed limit.

B. ADAS Function

The output of the SitA-layer comprises a formal represen-
tation of the current traffic situation and assessed maneuver
hypotheses for traffic participants in the vicinity of the
ego vehicle and forms the input to ADAS function layer.
Generally, the objectives of this layer are to find appropriate
maneuvers for the ego vehicle (maneuver planning) as well
as to inform the driver and execute the planned maneuvers
(driver information & vehicle control). For autonomous driv-
ing functions, maneuver planning is of central importance
(e.g. [11]).

1) Motion Planning: On a top level, the system has to
make distinct decisions on the ego vehicle’s desired behavior,
e.g. how to obey give-way rules given an intersection’s topol-
ogy and the perceived objects that populate this intersection.
These decisions are then translated by a motion planning
algorithm into a path or trajectory (i.e. a path as a function
of time). For safety functions, e.g. collision mitigation and
avoidance functions, the objectives are similar. Based on the
criticality assessment, maneuver planning decides whether or
not to initiate emergency maneuvers (braking or steering).

2) Driver Information & Vehicle Control: The driver is
alerted based on the criticality measures derived by the SitA
layer. If emergency maneuvers become necessary, these are
executed via specialized vehicle controllers.

III. THEORETICAL BACKGROUND

A. Modelling a RLS using Spline Interpolation

To achieve a smooth and precise approximation between
the consecutive way points of a road lane segment (RLS)
we employ cubic spline curves. A specific way point is given
by qi = [xi, yi, κx,i, κy,0 ]T , where (xi, yi) denotes the
absolute position and (κx,i, κy,i) the product of lane curva-
ture κi and normal vector ni, with (κx,i, κy,i)

T = κi ni.
While the way points are available from the digital map, the
2d centerline s of RLS is interpolated piecewise as an arc
length parametrized spline curve:

si : [0, li]→ R2; si(l) = G(l)

(
qi

qi+1

)
. (3)

Here, G denotes the matrix function of the spline, as
proposed in [12]. This matrix is defined by the transitional
conditions of consecutive lane segments and ensures that the
spline guarantees G2-continuity, i.e. curvature continuity. For
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Fig. 2. Road layout comprising 12 road lane segments (RLS) with
corresponding DAG and exemplary local curve coordinate system (CCS)

the sake of readability, the combined vector [ qi, qi+1 ]T is
indicated by γi in the remaining paper.

B. Stochastic Modeling of a Curve Coordinate System

The localization uncertainty of the ego vehicle to the
digital map is accounted by a stochastic model of the
way point data. To limit the computational complexity, the
combined vector γi is represented by a normal distributed
random vector

γi ∼ N8(

(
µi
µi+1

)
,

(
Σi 0
0 Σi+1

)
) = N8(µ∗i ,Σ

∗
i ).

(4)
Thereby, the density function of any specific point lA on
spline si in Cartesian coordinates is given by

si(lA) ∼ N2

(
G(lA)µ∗i , G(lA) Σ∗i G(lA)T

)
∼ N2(µs,Σs).

(5)

In order to obtain a lane aligned coordinate system we
employ the Frenet-Serret formulas for 2d curves to define
the tangential τ i and normal vector ηi at point lA

τ i(lA) ∼ N2

(
G′(lA)µ∗i , G′(lA) Σ∗i G′(lA)T

)
τα ∼ N2(µτ ,Στ )

ηi(lA) =
(

0 −1
1 0

)
τ i(lA) = U G′(lA)γi

ηα ∼ N2

(
Uµτ , U Στ UT

)
= N2(µη,Ση)

(6)

Appending both vectors to point s(lA) yields a stochastic
model of the curve coordinate system (CCS), as shown in
Fig. 2.

C. Stochastic Coordinate Transformation

Since |tα| = |nα| = 1, the conversion of a random vector
v ∼ N2(µv,Σv) defined in a origin CS (Λ0) into a stochastic
CCS (Λα) complies with an element-wise projection onto the
coordinate axes:

vΛα = RΛ0

Λα
vΛ0 = ( τα ηα )

T
vΛ0 = ( vτ vη )

T (7)

Due using an auxiliary vector y = (e vΛ0)T with
e ∈ {τα,ηα}, this projection can be expressed by its
quadratic form ve = yTAy with A =

(
0 A′

A′ 0

)
and

A′ =
(

1/2 0
0 1/2

)
.

According the principles proposed in [13] the first two
moments of the resulting stochastic product ve is given by:

E{yTAy} = tr[AΣy] + µTy Aµy

V ar{yTAy} = 2tr[(AΣy)2] + 4µTy AΣyAµy.
(8)

IV. SITUATION MODEL

The main task in the situation model (SitM) is to generate
a comprehensive representation of the current traffic situation
and to formulate several hypotheses about the evolvement of
the scene. To achieve this we propose a SitM comprising the
following steps:

1) Situation Comprehension
2) Situation Prediction
The output of the SitM includes several behavioral hy-

potheses for each vehicle concerning the road layout and
relation to other objects. This set of hypothesis will be
assessed in the SitI step.

A. Situation Comprehension

One crucial aspect of successful SitA is the contextual
understanding of the current traffic situation, i.e. the rela-
tionships among the traffic participants as well as to road
layout or infrastructure. Here, the key lies in coupling the
object hypotheses to the road network and evaluating the
corresponding DAG. This leads to a probabilistic situation
representation which covers a hypothetical assignment of the
vehicles to all RLS in its vicinity.

To classify the most probable path, on which an object ve-
hicle is traveling, we use a probabilistic lane association. This
method evaluates the likelihood of a RLS concerning three
features F = (dη, oτ , vτ ) and their respective assignment
functions g{F}, shown in Fig. 3. Employing the conversion
method mentioned on III-B, the current object state vector
XΛα
k ∼ N4(µα,Σα) with expectation vector

µα = ( lA dη vτ vη )
T
. (9)

is expressed in the CCS of RLSα. It consists of the arc
length along the centerline (lA), the lateral deviation (dη)
and the components of velocity in tangential and normal
direction (vτ , vη). Using these curve-based coordinates, we
determine the likelihood of all features by the product of the
convolution integrals:

P (F |RLSα) =

3∏
i=1

∫ ∞
−∞

gFi(ξ)p(Fi − ξ) dξ, (10)

where p(Fi) ∼ N1(µF , σ
2
F ) denotes the probable density

function of feature i and gFi the related assessment function.
Under the assumption that the prior PDF of a RLS follows
an uniform distribution, we assess the hypothesis ”the vehicle
is located in RLSα” by utilizing the Bayes Theorem:

P (RLSα | F) =
P (F |RLSα)∑nRLS

α=1 P (F |RLSα)
(11)

The evaluated features are defined as follows:
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Fig. 3. Assignment function and probability density function (PDF) for
extracting the likelihood of a RLS

1) Lateral Deviation: Obviously, the likelihood of a par-
ticular lane should be greater than zero, if a vehicle at least
protrudes into it. To achieve these, the assignment functions
of the lateral deviation feature gd is determined by the lane
width (wlane) and the projected object width (ŵobj) to the
normal vector of the CCS (see Fig. 3, left).

2) Alignment Deviation: In the CCS the difference be-
tween the alignment of a vehicle and the RLS is evaluated by
mapping the orientation of the vehicle to the tangent vector
ot = oΛ0 τΛ0

α = vτ/|v|. Fits the vehicle orientation to the
direction of the RLS, the corresponding assignment function
becomes go = 1. If they are aligned perpendicular or even
in different directions the assignment equals zero.

3) Tangential Velocity: Previous publications regarding
similar topics, e.g. [?], have shown that the velocity of a
vehicle along a curved road is limited by the resulting lateral
acceleration an. To take this into account, the assessment
function of the tangential velocity gv is defined by two
characteristically velocities. Both velocity boundaries are
specified by the curvature κα at the CCS of a RLS and
a threshold of the lateral acceleration (alat,comf , alat,max).
In case of a velocity lower than the comfortable boundary
vt,comf :=

√
|alat,comf |/κα, the assignment function equals

one and decreases to zero until the velocity reaches the
critical limit vt,crit :=

√
|alat,max|/κα. Especially, when a

curved RLS passes away from a straight one the tangential
velocity is an important feature for the lane assessment.

B. Situation Prediction

To predict the possible evolvements of the current scene,
we formulate at least one motion hypothesis for each RLS
which was classified as relevant for an object. Depending on
the road layout, a RLS can offer more than one maneuver
possibility which each will be covered by a separate motion
hypothesis. At an urban intersection, the set of possible
maneuver hypotheses H may consist of

H = {hM |M ∈ [1, 4]}
h1 = straight h2 = stop at a certain line

h3 = left turn h4 = right turn.
(12)

Due to the stochastic description of the vehicle states, a
particular motion hypothesis comprises K predicted expec-
tation vectors x and covariance matrices Σx.

For objects of type vehicle we use an Extended Kalman
Filter (EKF) combined with a kinematic bicycle model

fveh(xΛ0

k ,u). This method allows us to incorporate knowl-
edge of system dynamics and additional information from
an external source (i.e. digital map). The control input
vector u = (δ, alon)T consists of steering wheel angle resp.
longitudinal acceleration.

Estimating a time-series of input values Uk:K with
TK = {tk = tθ + k∆t | k ∈ {0, 1, . . . ,K}} results in a

predictive future behavior of a traffic participant. This forms
a stochastic representation of a future trajectory

XΛ0

k:K =
{
Xk ∼ N4 (xk,Σx,k) | k ∈ TK

}
. (13)

The arising process of behavioral prediction can be separated
in a lateral and longitudinal part:

1) Lateral Behavior: To estimate the future path of a
vehicle along a specified sequence of RLS, i.e. estimating
δk:K = {δk | k ∈ TK}, we employ the algorithm proposed
by the authors in [14]. Within the time interval TK the future
trajectory is predicted by the EKF due to two alternating
steps: The prediction step subsequently utilizes the motion
model with an estimated steering wheel angle to generate
the next vehicle state vector. The update step incorporates
the relative properties between the predicted vehicle state
and the properties of the RLS in the CCS. In cases where
the vehicle is not yet located entirely on the RLS, this
algorithm ensures that the predicted trajectory successively
approaches. Here, the convergence speed depends strongly
on the assumed system noise which has to be learned from
data.

2) Longitudinal Behavior: In order to predict the ve-
locity profile along an estimated path, i.e. estimating
alon,k:K = {alon,k | k ∈ TK}, we applied the Intelligent
Driver Model (IDM) [15]. Within the IDM, the estimated
future acceleration v̇ is formulated as a time-continuous
function which can be separated into two behavioral inter-
pretations:

v̇ = a

(
1−

(
v

v0

)4
)

︸ ︷︷ ︸
free road behavior

− a
(
s0 + v TM

s
+

v∆v

2 s
√
a b

)2

︸ ︷︷ ︸
interacting behavior

.

(14)
In the case of a free road, the interaction term is negligible.
So, the calculated acceleration is determined just by the
maximal allowed value a as well as by the current and the de-
sired velocity (v resp. v0). The predicted velocity approaches
asymptotically this target speed v = v0

4
√

1− v̇/a.
For straight roads, the desired velocity will be a fixed

value depending on the legal speed limit. However, at urban
intersections the desired velocity needs to be set dynamically
as normal drivers will slow down before they enter a highly
curved road. To estimate the desired speed along a predicted
path we limit it by the resulting lateral acceleration which is
implemented in the same way as proposed in IV-A.3.

When approaching slower or standing objects, like vehi-
cles or even traffic signs, the resulting acceleration depends
additionally on the difference in position s and velocity
∆v. The remaining parameters denotes the minimal distance



at still stand s0, some safe time headway v TM and a
comfortable deceleration value b.

Assuming a certain stop line in front of the
vehicle (∆v = v), a minimum kinematic deceleration
bkin := v2/(2s) is necessary to avoid a collision. In such a
case, the IDM acceleration reduced to

v̇int ≈ − v2

4 b s2
= −b

2
kin

b
= −βbkin, (15)

where β := bkin/b denotes the criticality of a predicted
breaking maneuver. For β > 1 the situation is characterized
by an emergency stop, in contrast to a comfortable maneuver
with β ≤ 1.

V. SITUATION INTERPRETATION

By determining the SitM each object hypothesis Xj is
augmented with a set of maneuver hypotheses H. Hence,
the object hypothesis Xj is represented by the triple

Xj(tθ) = 〈 XΛ0

θ , βobj , H 〉j , (16)

where a single maneuver hypothesis hM is expressed by a
predicted trajectory and the related likelihood of the RLS
H =

{
hM = {XΛ0

k:K , P (RLS) } |M ∈ [1, 4]
}
.

To infer the intention of an observed vehicle we propose
in this section a behavior analysis which is based on the
evidence theory, first introduced by Dempster and Shafer
in 1976 [16]. The main benefit of this theory is the ability
to consider the imprecision of a situation due to the lack
of knowledge in addition to the empirical uncertainty of
the perception. With the key principals of the Dempster-
Shafer theory of evidence (DST), described in the following,
we evaluate the provided maneuver hypotheses by a multi
criteria assessment.

A. Dempster-Shafer Theory of Evidence

In DST, a finite universal set Ω = {hi} of elementary
(singleton) hypotheses hi is called frame of discernment. The
set of all subsets of Ω is its power set 2Ω. It is required that all
hypothesis have to be unique, not overlapping and mutually
exclusive. Any subset A of those 2Ω sets may consist of a
single hypothesis or of a conjunction of hypotheses.

A special feature of DST is the possibility to compute a
lower and an upper bound (belief and plausibility) of the
precise probability of set A. For this purpose the belief
functions theory includes three basic functions for mapping
the power set 2Ω to the interval [0, 1].

The basic belief assignment (BBA) m assigns an evidential
weight to a set A and fulfills

m : 2Ω → [0, 1];
∑
A⊆Ω

m(A) = 1; m(∅) = 0. (17)

Each A that holds m(A) > 0 is called a focal element. When
Ω is the only focal element, the BBA is called the void BBA.
This can be interpreted as complete ignorance.

With the definition of the BBA the degree of Belief (bel)
describes the support for the proposition, i.e. the minimal

0 1

pl(A) 
1 - bel(A)
1 - pl(A) 

bel(A) 
Uncertainty

Belief
Plausibility

Doubt
Disbelief

Fig. 4. Uncertainty, belief, plausibility and its complements of a BBA

belief to set A. This lower bound is defined as the sum of
all BBA concerning the set of interest:

bel : 2Ω → [0, 1]; bel(A) :=
∑

B⊆A;B 6=∅

m(B). (18)

The upper bound of the probability, the degree of Plau-
sibility (pl), commits the maximal belief that can be trans-
ferred to A. It is defined by the sum of all BBAs that intersect
the set of interest:

pl : 2Ω → [0, 1]; pl(A) :=
∑

B∩A6=∅

m(B). (19)

A graphical representation of these basic functions is
shown in Fig. 4. The gap between the belief and plausibility
describes the evidential interval range which represents the
uncertainty concerning the set A.

In the case an evidential source has only a certain level
of trust, this can be taken into account as probability ρ. As
proposed in [7], this probability can be used to discount a
BBA prior to combination with another BBA and is defined
as:

mρ(A) =

{
ρm(A), A 6= ∅
ρm(Ω) + 1− ρ, A = Ω

. (20)

The DST and its extensions also provide several methods
to combine different BBA’s which we distinguish into two
cases of application.

To combine the basic belief assignments from n inde-
pendent sources at a particular time instance we use the
Dempster’s rule of combination. It is called the orthogonal
sum and is donated by

m1⊕2⊕···⊕n = m1 ⊕m2 ⊕ · · · ⊕mn (21)

which is a commutative and associative operation but not
idempotent or continuous.

In the case of A ∈ 2Ω, the aggregation of two BBA’s m1

and m2 can be calculated in the following manner:

m1⊕2(∅) = 0,

m1⊕2(A) =

∑
B∩C=Am1(B)m2(C)

1−K
.

(22)

Where the coefficient K =
∑
B∩C=∅m1(B)m2(C) rep-

resents the existing conflict aspect between the combined
sources. When K = 1, this operation will yield counterintu-
itive results.

In [17] Yager developed a modified dempster rule, which
does not change the evidence through the normalization
coefficient (1 − K). Potential conflicts will be allocated to
the universal set (Ω) instead to the null set (∅). In this way,
the conflict in K is interpreted as the degree of ignorance.
This rule is used especially in the case of updating an
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Fig. 5. Strategy for combining the determined basic belief assignments
(BBA) of individual features. The BBAs at a single time slice are combined
using the Dempster rule (22). The combination of the resulting BBAs at
consecutive time steps is realized by the Yager rule (23).

already combined structure when new information becomes
available. Hence, we employ it to combine consecutive time
slices. The modified Dempster’s rule of combining is defined
as follows:

m1∩2(∅) = 0,

m1∩2(A) =
∑

B∩C=A

m1(B)m2(C),

m1∩2(Ω) =
∑

B∩C=Ω

m1(B)m2(C) +K

(23)

In order to facilitate decision making on BBA’s, we use
the pignistic probability transformation (PPT) [18]:

betP (A) =
∑
B⊆Ω

|A ∩B|
|B|

m(B), (24)

where | · | denotes the number of elementary hypotheses in
·. The PPT links the evidence theory (represented on 2Ω) to
the probability theory (on Ω) and is limited by the results of
belief and plausibility function: bel(A) ≤ betP (A) ≤ pl(A).

B. Hypothesis Assessment

To classify the intended maneuver of a vehicle at an
intersection, we assess the formulated maneuver hypotheses
by combining the evidence of multiple BBAs.

The applied combination strategy, represented in Fig. 5,
distinguishes between the combination of a single time step
using the Dempster Rule (22) and the consecutive fusion
of the resulting BBAs employing the Yager-Rule (23). The
regarded frame of discernment complies the set of maneuver
possibility of a vehicle. Therefore each BBA is established
by a single feature concerning the predicted trajectories or
contextual information.

1) BBA of Prediction Accuracy: Estimating future tra-
jectories from a current state vector results in a strong
correlation of the predicted position and velocity. This is the
reason why we rate the accuracy of a behavior hypothesis
by evaluating the predicted velocity profile v̂τ (l) along the
estimated path in coordinates of CCS. An appropriate method
to assess the prediction error of hypothesis hM offers the
following distance measure

dF1
(lA, vτ , v̂

hM
τ ) =

|vτ,t(lA)− v̂τ (lA)|
1

n−1

∑θ
t=2 |vτ,t − vτ,t−1|

, (25)

which evaluates the difference between the actual and the
predicted tangential velocity from the previous time step

(vt(lA) and v̂τ (lA), respectively) at current arc length lA.
Additionally it is scaled by the average of the actual change
in the velocity of the vehicle. Due to the effect of the
denominator, the resulting distance measure dF1

depends on
the dynamic of the vehicle or the noise of the measurement.
In this way, the metric penalizes a prediction error less if the
actual velocity strongly varies or more if not.

Note that the applied metric is similar to the Mean
Absolute Scaled Error (MASE, see [19]), except the last
averaging over time. This part is neglected, since the DST
is used to consider the time evolution of the error.

Following Eqn. (17), the evidential weight of a feature F
needs to be limited to [0, 1]. Thus, the distance measure has
to mapped on this interval which forms the first BBA:

mF1 =
⊕{

mρ
F1

(hM ) = e−λ dF1 |hM ∈ H
}

(26)

discounted by the likelihood of RLS (ρ := P (RLS)), which
the hypothesis hM starts from. Additionally, the parameter
λ controls the sensitivity of the feature depending on the
distance measure. For λ ≈ 2 we obtained the best trade-off
between sensitivity and robustness.

2) BBA of Maneuver Criticality: In case of a brake
maneuver the predicted velocity must decrease along the
estimated path. This holds true also for turn maneuvers on
highly curved roads, if the current velocity is too fast for
a comfortable lateral acceleration. As defined in section IV-
B.2, the criticality of such a maneuver can be determined by
the parameter β := bkin/b̂.

For a left or right turn, b̂ denotes the maximum decelera-
tion v̇, estimated by Eq. (14). Predicting a brake maneuver
at a certain stop line the parameter b̂ is set to the so-called
maximum comfortable deceleration b̂comf , which can be
defined by the user.

The feature associated with this maneuver criticality β is
formulated as the rejection of the considered hypothesis:

mF2
:=

{
mρ
F2

(Ω \ hM ) = 1, if β > 1

mρ
F2

(Ω) = 1, otherwise
(27)

3) BBA of Velocity Criteria: In the context of urban
intersections, the upper limit of the predicted velocity profile
is defined by the going straight hypothesis. Accordingly,
the lower limit of the profile corresponds to the predicted
velocity of the braking maneuver. In such cases, where the
observed vehicle is accelerating stronger as predicted, the
measured value of the actual velocity is higher or lower as
these borders. This can be interpreted as confirmation for the
going straight or braking maneuver. The BBA of this feature
is formulated as follows:

mF3
:=


mρ
F3

(hstraight) = 1, if vτ ≥ v̂
hstraight
τ

mρ
F3

(hbrake) = 1, if vτ ≤ v̂hbrakeτ

mρ
F3

(Ω) = 1, otherwise
(28)

Further descriptions of semantic features to formulate
additional BBAs can be found in [1].
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Fig. 6. Velocity profiles in tangential direction of the corresponding RLS
for going straight (blue), braking (red) and turning left / right maneuver
(green). The position of the particular stop line is indicated by dashed line.

VI. EVALUATION

To evaluate the presented approach, we analyze 157 ma-
neuver recorded at an intersection in Ulm, Germany. Fig. 2
shows the layout of this intersection with the corresponding
DAG. The maneuvers are performed by 5 different drivers
by approaching from all three sides and includes 33 going
straight, 52 braking and 72 turning maneuvers. The velocity
profiles along the tangential direction of a corresponding
RLS are given in Fig. 6. In order to achieve comparability
between the recorded trajectories, each maneuver is deter-
mined in relation to the distance to the stop line of the
particular side.

A. Assessing the Maneuver Hypotheses

To determine the classification power of our approach,
four exemplary maneuvers are discussed in the following,
illustrated in Fig. 7, 8 and 9. Within the upper graphs of these
figures the black line displays the observed velocity profile of
the vehicle. The predicted trajectories regarding the different
behavior hypotheses are indicated by the dotted lines. As in
Fig. 6, the colors refers to the predicted maneuver; blue for
going straight, red for braking and green (resp. magenta) for
turning maneuvers. The lower graphs show the corresponding
beliefs to the individual hypothesis. Here, the thick colored
lines denotes the pignistic probability (c.f. 24), which are
limited by the belief and probability values (transparent area).

1) Driving Straight: In the going straight example, shown
in Fig. 7, the object vehicle approaches the intersecting from
RLS 3 and leaves it from RLS 12. Up to a distance of
20m to the stop line, the vehicle slows moderately and the
belief in the turning hypothesis dominates. At a distance
less then 20m, the vehicle is too fast for a comfortable
turning maneuver and the belief in the straight maneuver
is increasing. Since the other maneuvers are still possible
the uncertainty about the actual maneuver remains big in
these area. Concurrently, the braking maneuver becomes
more plausible. But because no BBA is directly supporting
it, the belief in this maneuver equals zero.

2) Braking: Fig. 8 represents a braking maneuver exam-
ple where the vehicle is approaching on RLS 1. Before the
vehicle stops to a halt, the velocity slows less in the range
of 20 to 10m in front of the stop line. As a consequence,

Fig. 7. Driving Straight: vehicle was approaching the intersection on
RLS 3 and was leaving it on RLS 12

Fig. 8. Braking: vehicle stops in front of the stop line of RLS 1

the belief in the braking maneuver becomes less and the
plausibility of the other behavior hypotheses increases.

3) Turning: Two representative examples of turn maneu-
vers are shown in Fig. 9. In the first example the vehicle
approaches the intersection with almost constant velocity,
so the belief switches between going straight and turning
maneuver. At a distance of 15m, the vehicle slows to the
predicted turn velocity and the plausibility of this hypothesis
becomes 1. Since all other hypotheses are still possible, the
belief in making a turn maneuver is less than 0.7. In the
second example the road layout offers only two alternative
turning maneuver, one to the left (green) and one to the right
(magenta). Since both velocity profiles are quite similar, the
probability of both hypotheses are similar as well and the
obtained results of the DST are very uncertain. This holds
true until a distance of about 2m to the stop line, when the
turning right hypothesis becomes true.

B. Classification Results

The classification performance regarding the set of
recorded maneuvers is evaluated by the Area Under the
Curve (AUC) of the Receiver Operating Characteristic (ROC)
[20]. Here, the ROC curve is determined by evaluating the
pignistic probability of the DST regarding the three behav-
ioral hypothesis in an one class vs. all other classes manner.
Figure 10 displays how the AUC of each ROC improves
when the observed vehicle gets closer to the reference line.
Note that beside the classification power the main advantage
of the DST lies in the ability to model the imprecision of a
situation by the distance between belief and plausibility.



(a) Turning Left: vehicle approaches on RLS 3 and turns off to the left on
RLS 11

(b) Turning Right: Approaching from RLS 2, the road layout offers two
maneuvers, one to the left (green) and one to the right (magenta).

Fig. 9. Turning: two examples of a turning maneuver

VII. CONCLUSION

In this paper, a new situation analysis concept has been
proposed which treats the two categories of the uncertainties
in a traffic situation separately. This includes a associative
and predictive situation model (SitM), which provides a
contextual description of the current traffic scene as well as a
probabilistic prediction method to formulate various hypothe-
ses regarding the evolvement of the situation. Furthermore,
we introduced an evidence based situation interpretation
(SitI) to assess the several behavior hypotheses as well as to
determine the inherent uncertainty. Especially in ambiguous
situations, this concept provides the ADAS function more
information for appropriate reactions to the scene. This
is achieved by the ability to model the imprecision of a
situation by the distance between belief and plausibility.
The capability in behavior recognition of the concept was
demonstrated by evaluating of 157 maneuvers at an urban
intersection. Beside map data, the proposed concept is not
relying on training data and so it is not limited to previous
known traffic scenarios.

Future work will focus on interactions between a highly
automated vehicle and traffic participants in its vicinity.
Especially on narrow roads with oncoming traffic or at the
entrance to a roundabout interacting behavior is essential for
a smooth traffic flow.
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