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Abstract— Head detection and orientation estimation are a
vital component in the intention recognition of pedestrians.
In this paper we propose a novel framework to detect highly
occluded pedestrians and estimate their head orientation. De-
tection is performed for pedestrian’s heads only. For this we
employ a part-based classifier with HOG/SVM combinations.
Head orientations are estimated using discrete orientation
classifiers and LBP features. Results are improved by leveraging
orientation estimation for head and torso as well as motion
information. The orientation estimation is integrated over time
using a Hidden Markov Model. From the discrete model
we obtain a contiunous head orientation. We evaluate our
approach on image sequences with ground truth orientation
measurements. To our best knowledge we outperform state of
the art results.

I. INTRODUCTION

In the past twenty years the number of people injured
in traffic accidents has decreased drastically. However the
number of injured vulnerable road users (VRUs), such as
pedestrians and cyclists, have not seen the same decline [1].
This leads to the conclusion that today’s passive safety mea-
sures can be sufficiently improved if active safety systems
are added. Thus, active safety systems need to be tailored to
reduce injuries of vulnerable road users.

The key to this goal is an accurate perception of the
vehicle’s environment with special interest to the VRU’s
behavior. It has been shown that one of the most revealing
clues about a person’s intention is the head pose, specifically
gaze direction [2]. Also, in urban environments VRUs often
appear heavily occluded, thus making it hard to detect the
entire body posture while a head can often still be seen in
case of common occlusions such as parked cars.

So far, only few studies have addressed the problem of
head detection and gaze direction estimation while most
focus on the complete body orientation. One can see that
this may not be sufficient since information such as a person
looking over his shoulder before crossing a street cannot be
extracted from a mere body orientation.

This paper addresses the problem of head orientation
estimation from high resolution video analysis. We propose
a novel framework to estimate a person’s body and head
orientation from single frames and integrate the orientation
estimation over time from multiple frames. The gerneral
outline of our method is depicted in figure 1. In each
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Fig. 1: Hierarchical construction of the processing chain.
At each time step we perform detection, discrete orientation
classification and then orientation estimation in continuous
domain. Detection and orientations are tracked over time.

individual time step a person’s head is detected within the
image. Based on this detection four orientation specific clas-
sifiers are applied. In the last step, a continuous orientation
estimate is generated from the discrete classifications. Over
time, dectections and orientation estimates are tracked. The
remainder of the paper is structured as follows. In section
II, we give a short overview over pedestrian detection and
orientation estimation in computer vision. In section III
we introduce a novel real time capable approach to detect
pedestrians heads with their respective orientations. We then
evaluate our approach in experiments in section IV and
conclude the work in section V.

II. RELATED WORK

In this section gives a brief overview over relevant related
work. Since this paper addresses the two problems of detec-
tion and orientation estimation, this section is divided into
two parts. In section II-A state of the art detection schemes
are presented while section II-B focuses on the estimation
of body and head orienation.

A. Detection

In recent years pedestrian detection has received great
attention throughout the computer vision community, espe-
cially in the area of advanced drivers assistance systems. We
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will give a brief overview over advances pedestrian detection.
For a more detailed study, see e.g. [3].

The core concept of most state of the art real time
detection is based on the work of Dalal and Triggs [4] who
proposed to use a combination of Histogram of Orientated
Gradient (HOG) descriptors in combination with a Support
Vector Machine (SVM) as a classifier.

To improve classification results, Felzenszwalb et al. con-
struct a part-based model from HOG features [5][6]. To
detect objects, they apply a root detector at low resolution
and then detect parts of the object at double the root
resolution while allowing for some deformation of the parts
with respect to the root location.

Other than HOG, Viola et al. have proposed detection
based on boosted cascades using Haar features as classifier
input [7]. Also, local receptive fields have been used together
with artificial neural networks in order to combine feature
extraction and classification [8].

While most approaches detect pedestrians solely in a
single modality such as intensity images or optical flow using
one single descriptor-classifier combination, Enzweiler et al.
utilize multiple modalities to compose a mixture of experts
system [9]. The proposed system consists of a weighted mix-
ture of different feature and classifier combinations applied
to intensity images, optical flow and depth obtained from
stereo imaging.

Especially in urban environments, pedestrians often appear
part-wise occluded by other objects, e.g. by cars or other
pedestrians. To cope with occlusions, Girshick et al. extend
the detector from [6] to explicitly detect occluded parts
within the model.

Especially in high-resolution imaging on which we will
not focus in this paper, face recognition is used to detect
persons within the image [10]. However, this only applies
for faces seen from the front or at maximum in side view.
Therefore, this limitation is not sufficient for traffic applica-
tions.

B. Orientation Estimation

When it comes to orientation estimation of pedestrians,
two different problems have been addressed. The first deals
with the estimation of the orientation of a complete persons
pose, the second focuses on the orientation of the head. For
head orientation estimation, we only focus on medium and
low resolution imaging as applicable to vehicle environment
perception, unlike for driver monitoring such as [11][12].

For the orientation of the complete pedestrian pose,
Gandhi et al. use a HOG/SVM stage to classify between
eight discrete orientation classes [13]. They also use a
Hidden Markov Model (HMM) to stabilize orientation es-
timations over time.

The part-based detection model proposed by Felzenszwalb
[6] can be extended to fix the latent variables within the
model to orientation specific models [14]. Thus, responses of
the different models within the detection stage automatically
yield an assumption of the orientation of a pedestrian in
discrete steps.

Enzweiler et al. use a similar approach but try to estimate
a continuous orientation from the classifier outputs [15]. For
this, they again use discrete orientation steps to train their
view dependent detectors. The outputs of these classifiers are
used as weights for a Gaussian mixture.

Zou et al. propose a color based orientation detection
scheme [16]. They first track a person’s head as an elliptic
contour and estimate the orientation by fitting a color model
for discrete head orientation classes to the observed features.
A continuous orientation angle is obtained from weighting
the classes’ matching scores.

Chen et al. try to extract both head and body orientations
as well as motion direction obtained from tracking. They then
use a coupling between the three orientations to stabilize
head and body orientations as well as a particle filter to
track the orientations over time [17][18]. Benfold et al.
use a similar approach to learn the head orientation in an
unsupervised fashion where they train Random Forests from
a Conditional Random Field to estimate the orientation based
on appearance as well as motion tracking [19]. Recently,
Flohr et al. have propesed a particle filter to jointly estimate
head and body orientation [20].

III. HEAD DETECTION AND ORIENTATION ESTIMATION

Unlike [14][15], we do not estimate the body and head
orientation from multiple detector outputs. Instead, we use a
classical hierarchical structure which first detects VRUs and
then estimates orientations based on these detections (see fig.
1). In the following, the detection stage is explained in sec-
tion III-A before we introduce our orientation estimation in
section III-B. In section III-C integration of the single frame
orientation estimation over multiple frames is introduced.

A. Detection

As the focus especially lies on pedestrians in urban envi-
ronments the detection stage should be able to cope with
even heavily occluded pedestrians. Since most occlusions
such as parked cars, bushes, etc., only occlude pedestrians to
a limited height, we assume that a pedestrian can be detected
by just detecting the head.

The detection is based on the HOG/SVM method proposed
by Dalal and Triggs [4] as well as the part-based detection
scheme proposed by Felzenszwalb et al. [6]. In order to meet
real time constraints, a cascade based classification is used
as depicted in fig 1. The cascade is made up from two stages.

The first stage consists of a simple HOG/SVM classifier
using a single head model at low resolution. This detector
resembles the one proposed by Dalal and Triggs.

The first stage detector is trained on manually annotated
data [21]. The data set consists of roughly 10,000 head
images as positives training samples and randomly chosen
windows from sequences that do not contain any pedestrians
as negative training samples. With our initial detector we
perform an exhaustive search for false positives on complete
images without any pedestrians. From this, we retrain our
final first stage detector. Using an independent test set, the
detection threshold is set to a value so that we reduce the



number of false positive detections greatly while keeping as
many true positive detections as possible.

The second stage uses a part based model to which is
trained only from detections of first stage. While complete
pedestrians can vary greatly in pose and appearance, heads
only vary little in appearance, e.g. depending on view, hair
styles, etc.. However, we found that a part-based detector
outperforms a multi-model detector.

The first stage detector is run on negative sequences to
extract as many false positives as possible as training data
for the second stage. The new training set for the second
stage then containins all positive training examples as well
as all false positives from the first stage.

We compute the entropy H(Ω) of the binned image
gradients for both orientation and magnitude for the complete
training set Ω as well as for the training set after perfect
since manually annotated decision with ω for positive and ω̄
for negative samples. The mean information gain IG(ω) per
block is given by blockwise averaging from the pixelwise
orientation bin and magnitude features ψ. For the sake of
legibility, the pixel coordinates in the following formulas are
omitted.

H(Ω) = −
∑
ψ∈Ω

P (ψ) ∗ ld (P (ψ)) (1)

IG(ω) = H(Ω)− P (ω)H(Ω|ω)− P (ω̄)H(Ω|ω̄) (2)

Figure 2 shows the pixelwise information gain of the
positive samples compared to the negative training samples
of the first stage and compared to the false positives after
the first stage. In [5] parts were assigned to areas with high
positive weights of the root filter. From fig. 2 it can be seen
that this might not be the best choice here since true positives
and false positives already have a high similarity in regions of
high positive weights of the root filter. Note that the entropy
of randomly chosen negative samples is almost uniformly
distributed over the image while the entropy of false positives
shows a strong circular structure similar to a head.

To overcome this problem we focus on parts holding rele-
vant information. We assign three part windows of identical
size so that the information density per window is roughly
the same and as large as possible. Identical part windows are
used since the most computationally demanding task within
the classification process is the computation of the descriptor
vector.

After assigning sizes and positions of the parts, the cor-
responding training data is extracted for every part from the
training set and train the individual models.

In matching we apply the method proposed by Felzen-
szwalb et al. [5] by computing maps Mi for expected root
positions from the part filter responses where i = 1, . . . , N
are the respective part indices. To construct the map the part
detectors are run on different positions within the bounding
box of the first detector stage. From the map of matching
scores we compute the map for the expected head center
according to (3) where the value for each map entry Mi(x, y)
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(a) Entropy of randomly chosen negatives and respective information gain.
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(b) Entropy of false positives and respective information gain.

Fig. 2: Pixelwise entropy and information gain between
positive and different negative samples.

is the matching score of the detector di at translated location
(xy, yd) minus the deformation cost defined by (4).

The deformation cost is modeled as an axis-aligned ellipse
displaced from the detection point (xd, yd) by the translation
between the part position and the root center (xci , yci). From
the superposition of all parts non-maximum suppression is
applied to find the expected center of the head within the
bounding box of the first detector stage. We utilize this
information to recenter the bounding box and rerun the first
stage detector on the recentered bounding box. The final
output of the detector is the sum of all part matching scores
plus the matching score of the recentered first stage detector
dR.

Mi (x, y) = max
xd,yd

(di (xd, yd)− wi (x̃, ỹ)) (3)

wi (x̃, ỹ) =
√
αix̃2 + βiỹ2 (4)

d(x, y) = dR +
∑
i

Mi(x, y) (5)

where (x̃, ỹ) = (xd − xci − x, yd − yci − y).
After training of first stage and part classifier models the

parameters (αi, βi) of the uncertainty ellipses in (4) are
trained using L2-regularized logistic regression according to

e (α, β) = Ω− tanh (d (α, β))) , (6)
J (α, β) = eT e+ c

(
α2 + β2

)
, (7)

(α, β) = argmin (J (α, β)) . (8)

In (6), Ω again denotes a vector of the manually annotated
labels {ω, ω̄} of all training data while d (α, β) denotes
the vector of the detector score computed for all training
samples according to (5). The parameter c in (7) weights the
regularization in the final cost function and is a parameter to
be assigned during training.



Fig. 3: Positive training images with the four views back,
left, right and front as well negative training samples.

B. Orientation Estimation

Four discrete orientation classes are used for orientation
estimation, i.e. a person facing towards the camera, facing
away from it and facing left or right. For every orientation
calss a classifier is trained to estimate the posterior class
probability.

Local Binary Patterns (LBP) serve as features rather than
HOG features. The reason for this lies in the contrast
normalization within the HOG computation. Due to block-
wise normalization in the HOG features even uniform areas
appear structured [22]. This makes it extremely difficult to
distinguish front and back side of a head from HOG features.
To cope with small shifts as well as noise, we construct
block-wise histograms of LBP values and concatenate the
blocks to one descriptor vector Ψ.

The state vector is defined as the three orientations of
head, torso and motion X = (ΘH ,ΘT ,ΘM )T . The goal is
to estimate the joint probability distribution for all possible
states. Given the three orientations to be estimated and
four orientation classes each we can construct 64 possible
state vectors. Due to anatomic limitations all states where
head and torso orientations differ by 180◦ can directly be
excluded.

The classifiers for the four different orientation classes are
trained using logistic regression. We use logistic regression
as the output of each classifier can be interpreted as a
posterior probability P (Θ|Ψ). Other classification methods
such as artificial neural networks could also be possible.
However, we choose logistic regression over neural networks
for runtime reasons.

From manually annotated data the distribution
P (ΘH ,ΘT ,ΘM ) is learned as a prior for orientation
estimation. Figure 4 shows the distribution of orientation
differences between the neighboring state variables. In
the training data motion orientation and torso orientation
never differ by 180◦. With this information the manifold of
possible states is reduced to 36.

Due to the use of different detector windows for head
and torso orientation classification, the output of the
classifiers are statistically independent. Thus the poste-
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Fig. 4: Difference between individual state variables within
same instances.

rior P (ΘH ,ΘT ,ΘM |ΨH ,ΨT ,ΨM ) can be computed from
P (ΘH |ΨH)P (ΘT |ΨT )P (ΘM |ΨM ). In case the probabili-
ties cannot be observed, e.g. no torso was detected, a uniform
distribution is assumed. In the special case of single frame
orientation estimation where there is no motion estimation,
the motion orientation in the state vector degenerates to the
complete body orientation as addressed in [15].

To obtain the head orientation, we marginalize over all
possible states and compute the expectancy of the orientation.
With this step, a continuous orientation estimate can be
generated from the discrete measurements. From the joint
probability distribution we are also able to obtain an as-
sumption over the orientation of the body pose from the
measurements of head and torso orientation.

C. Detection and Orientation Tracking

On top of single shot orientation estimation we integrate
multiple measurements from video streams into the orienta-
tion. In the first step, KLT tracking is applied to tje detection
bounding boxes [23]. From the estimated motion in image
coordinates, motion in world coordinates is computed from
camera calibration and an assumption of a standard head
size. For this we make use of the fact that human head sizes
only vary little compared to for example body sizes [24].

We model the transition of the probability distribution as
a Hidden Markov Model of first order with learned state
transition probabilities. Given a specific frame rate of our
camera we can exclude certain state transitions from further
consideration, e.g. a person does not turn his head by 180◦

inbetween two consecutive frames.
In our model we only estimate the probabilities of discrete

states. Therefore a state transition matrix A is employed,
containing probabilities learned from manually annotated
data as already explained for the priors. In every time step
we estimate the prior probability distribution of the state Xt,
P−t (Xt|Xt−1) from the previous distribution and the state
transition probabilities.



Fig. 5: Images from the test scenes. The blue box depict
the detection, the green section depicts the estimated head
orientation.

The estimation from the posterior estimates is
updated from the classifiers P (Xt|Xt−1,Ψ) with
Ψ = (ΨH ,ΨT ,ΨM ) with

~P−t (Xt|Xt−1) = A ~Pt−1(Xt−1), (9)
~Pt(Xt|Xt−1,Ψ) = Ht(Ψ) ~P−t (Xt|Xt−1) (10)

where Ht(Ψ) is the measurement matrix constructed from
the classifier outputs.

IV. EXPERIMENTS

A. Data Set

The test data set is a self constructed dataset and consists
of eight different scenes shot at different locations [25].
Manually annotated heads in the images serve as a ground
truth. In total, the test set features roughly 3,000 frames with
more than 2,000 annotated heads in the images.

For evaluation purposes, test persons were equipped with
a GPS tracking device as well as a inertia measurement unit
(IMU) to measure the head pan angle. Figure 5 shows two
samples images from the test set. Note that the test persons
are both wearing a baseball cap which was used to mount
the IMU. However, the training data mostly features head
images of people not wearing caps.

Since the IMU measurements only give the angle relative
to the starting point, several discrete orientations were la-
beled in the image sequences to have a global orientation
reference. Also, the labels were used to compensate for the
drift of the IMU measurements.

So far, none of the datasets used in related work has been
published so that a comparison with other methods can only
be done approximately.

B. Results

At first, the detection results are evaluated which are
the foundation for any further processing. For the detection
experiments a ground plane assumption is used to limit the
search space for the detector. Sliding window detection is
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Fig. 6: Precision vs. recall for detection after the first stage
(magenta), after the second stage (blue)

performed on an image pyramid of the region of interes. The
search stride for the first stage is a quarter of the window
size while in the second stage it is an eighth of the window
size.

Figure 6 shows the precision-recall curve of the detection
after both stages of the cascade as well as after tracking.
It can be seen that the use of the part-based cascade sig-
nificantly boosts the detector performance from an average
precision of 33% for the single stage to 78% after the second
cascade stage. Still, the detector remains capable of real time
application on a standard 2.6GHz quad-core laptop. Note
that after the first stage we have already assigned a decision
threshold for the previous stage, i.e. the magenta curve
corresponds to the precision-recall curve of the HOG/SVM
classification from [4] whereas the blue curve corresponds to
the precision-recall of the second stage at one fixed decision
value for the first stage. By setting a decision threshold for
the first stage we also assign an upper bound for the recall
of the cascade to the recall of the first stage. For evaluation
of the orientation estimation only detections are used that
can be associated to an annotated head in the image. Figure
7 shows the orientation estimate (blue) and the ground truth
data obtained from the IMU (green) for one sequence. In this
sequence, the test person rotated on the spot first clockwise
and then switched the direction to counter clockwise rotation.
It can be seen from the curve that the orientation estimate
is close to the ground truth measurement and also is able to
cope with the direction change instantaneously. We evaluated
the orientation estimation over all detections for which
an IMU orientation measurement was avialable. The error
distribution can be seen in figure 8. The histogram shows
a strong peak at zero degrees orientation error while errors
at around 180◦ are almost non present. In total we reach
an average absolute error of 19◦. To our best knowledge,
this is the lowest error to be achieved in head orientation
estimation. However, no exact comparison is possible as no
unified dataset exists.
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Fig. 7: Orientation Estimate (blue) and ground truth (green)
for a complete sequence.
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V. CONCLUSIONS

In this paper we have proposed a novel framework to
detect and estimate the orientation of heads of pedestrians
in traffic scenarios.

For this we have utilized a part based HOG/SVM cascade
for detection. Our findings in the detection stage suggest the
need for features orthogonal to HOG features to surpass cur-
rent detection algorithms. Thus future work should focus on
the development of real time applicable feature enhancement.

For the orientation estimation we have used a L2-
regularized logistic regression model together with Bayesian
filtering of discrete orientation classes. We have shown that
our approach is capable of an accurate continuous orientation
estimation.

Further improvement could be reached when eight rather
than four orientation classes are used for the orientation
classification. However, the results with four orientation
classes already show a significant improvement over other
proposed methods using eight classes.
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