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Abstract— Current highly automated and self-driving ve-
hicles heavily depend on detailed maps since they free the
system from many otherwise complex onboard processing tasks.
However, depending on the environment and the fineness of the
map, the validity span of maps is often short and a periodic
remapping of large areas with sensor-packed mapping vehicles
is beyond any feasibility. Crowd base mapping approaches using
low cost sensors appear more practicable.
Herein we propose a general method to align several survey
trajectories of the same area which is fundamental for any
life-long mapping. Our algorithm requires previously acquired
pose differences as input. These differences induce a pose graph
which is aligned yielding a minimum least-squares residual.
Therefore, our method is independent from the underlying
sensor technology.
For evaluation purposes, we align pose graphs from simulated
pose differences and compare it against the ground truth.
Furthermore, stereo cameras are used to obtain pose difference
estimates by common visual odometry methods. We present
quantitative results of the robustness and accuracy of our
method based on these pose differences. The results are com-
pared against a high precision GPS receiver. Our approach
clearly outperforms this costly reference sensor.

I. INTRODUCTION

Highly automated and self-driving vehicles will reach the
mass market within the next decade. Many current systems
heavily depend on detailed map data structures [1], [2], [3],
[4]. The map based vehicle automation seems to be the most
promising approach at the moment since storing relevant
information within maps is extremely appealing and frees
one from many otherwise complex onboard processing tasks.
Moreover, recent re-localization approaches [1], [2], [4], [5]
are in fact map dependent.
A static world assumption is in the nature of maps which
is, however, violated in nearly every realistic scenario. The
finer the details of the maps are, the shorter is their validity
span. Periodically remapping of e.g. city-scale or larger areas
with sensor-packed mapping vehicles is obviously beyond
any feasibility. In contrast, crowd based mapping approaches
using low-cost series sensors close to serial production
appear more practicable.
Aligning several independent survey trajectories of the same
area is a key step of crowd based mapping methods. Com-
puting this alignment with great precision is fundamental for
any life-long mapping.
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Fig. 1. Re-projection of extracted ground marking labels (red points) into
different drives in an urban scenario. The image in the first row shows the
drive from where the features are extracted from (ground truth). The image
in the second row shows the re-projection of these features (red points)
using the pose information of the resulting pose graph from our method. In
comparison, the bottom image shows the re-projection of the same features
with poses from a high precision GPS. Our method clearly outperforms
DGPS.

Herein we present a novel algorithm to align several trajec-
tories from different drives of the same area. The input to
our method is a set of pose differences which establishes
relations between poses within one trajectory and, addition-
ally, between poses of different trajectories. The resulting
pose graph forms a nonlinear optimization problem where
all poses within are finally optimized yielding a minimum
least-squares residual.
Our method is in fact independent from the underlying pose

difference estimation method. Thus, any suitable sensor setup
could be used. Moreover, our algorithm easily scales to vast
environment as all optimizations are performed only on poses
and circumvents the drastic limitations in scalability known
from full bundle adjustment.
In order to complete the whole process and for evaluation
purposes, we solely utilize stereo cameras and initially pair
all images of a multitude of image recordings showing
the same place. Thereafter, common visual odometry meth-
ods are used to estimate pair-wise pose differences. These
estimates forms the input to the pose graph optimization
problem.
We present a Monte Carlo simulation which demonstrates the
potential of drift reduction of a multi trajectory alignment.



Thereafter we show results from real world experiments
using stereo vision which demonstrate the robustness and
high accuracy of our method. Therefore, salient 3D structures
are projected from one drive into all interconnected ones
merely by using pose information of the optimized pose
graph. We compare these to a high precision GPS receiver
(see Fig. 1). Our approach clearly outperforms this costly
reference sensor in urban environments; many times by a
significant margin.
Section II reviews related work. A general formulation of
our algorithm is presented in Section III followed by a
brief explanation of how pose differences can be estimated
from stereo cameras. An experimental evaluation based on
simulated and on real world data is given in Section IV.
Finally, a summary of our contribution is presented in Section
V.

II. RELATED WORK

The topics within this work are related to mapping in gen-
eral [6], [7], [2], [5], [1], [8] and Simultaneous Localization
and Mapping (SLAM) [9], [10], [11].
Mapping an unknown area and localize the ego position
in this map at the same time is the main idea of SLAM.
This approach has developed considerably in the past years
and the preferred methodology changed from Kalman Filters
to bundle adjustment [9], [11]. However, the computational
complexity of SLAM scales poorly with the size of the
map and becomes infeasible for large scale areas. Therefore,
recent approaches decouple the mapping and localization
problem [1], [2]. A map is precomputed by measurements
from a survey drive. Thereafter a map relative relocalization
with a sufficient accuracy is possible.
Mapping with methods of bundle adjustment constitutes
an optimization problem where residuals of any type can
be minimized. This allows the addition of pose difference
measurements into the optimization problem [11].
Lategahn et al. [12] proposed a method to compute a map
consisting of point features and 3D poses. These poses are
obtained from an alignment of visual odometry and GPS
measurements. Thereafter landmarks are added relatively to
the precomputed poses in a second step. Schreiber et al.
[8] presented a 2D mapping approach where local lane
features are concatenated to a global representation. The
concatenation bases on poses from a single survey drive.
A continuous map update over the entire life span is not
addressed. An iteratively addition of recent trajectories could
keep these maps up to date.
A pioneering work on pose graphs was proposed from Lu
and and Milios [10] where many horizontal range scans
are aligned to each other in order to obtain a consistent
world model. The pose graph was aligned on pose relations
obtained from IMU measurements and pairwise ICP scan
matchings. These matchings establishes loops closures and,
therefore, improve the consistency of the world model sig-
nificantly. In a broader sense our approach also close loops
even though a particular loop was mapped at no time.
Olson et al. [6] presented a stochastic gradient descent

Fig. 2. Example pose graph with 5 poses (nodes) and and 5 pose differences
(edges). A spanning tree is constructed e.g., by keeping all edges except of
wether ∆34, ∆35 or ∆45.

method to optimize pose graphs. An advantage of this
approach is the robustness against wrong initial guesses.
Grisetti et al. [7] improved the convergence speed of this
method significantly through a tree based parameterization.
Most of the related work concentrates on optimizing single
trajectories. We found no currently existing work which
explicitly align independent survey drives. Hence, our novel
method provides an opportunity to an further improvement
and to extend all these pose graph based approaches towards
a life-long mapping by aligning several drives on different
days and conditions.

III. COMPUTING THE POSE GRAPH

The first part (Section III-A) of this Section describes
the general problem and explains how poses from several
independent survey trajectories can be aligned to each other
by a given set of estimates of pose differences. We assume
that such a set is preexisting at this point since our algorithm
abstracts from the underlying source of these estimates.
However, we present one particular stereo vision based
method to estimate pose differences in order to complete
our process chain in the second part (Section III-B) of this
section.

A. Pose Alignment

The input to our algorithm is a finite set of tuples(
∆̂ij ,Ωij

)
where i 6= j and i, j ∈ {1, . . . , N}. Thereby

∆̂ij denotes an estimate of the true pose difference

∆ij = Pj 	 Pi,

where 	 : SE(3) × SE(3) −→ SE(3) denotes the pose
difference operator which computes the difference from pose
Pi to pose Pj . Furthermore, Ωij ∈ R6×6 denotes a positive
definite symmetric matrix which represents a weighting for
the corresponding estimate ∆̂ij . This input set induces a set
of interconnected poses Pi.
The optimal set of pose deltas can be computed easily by
integrating motion:

P ∗
k =

k∑
i=1

∆̂i,i+1 ⊕ P1, k ∈ {2, . . . , N} (1)

for an arbitrary start pose P1 once every Pi is related to
merely less than two estimates ∆̂ij . The ⊕ denotes the



Fig. 3. Illustration of the drift error. The green poses denotes the ground
truth whereas the blue ones denotes the estimated trajectory. Same indeces
of the estimate and ground truth means related poses. The norm of the
euclidean distance between pose 2 and 5 is assumed as approximately d in
this example.

pose concatenation operator here. Equation (1) is known as
odometry and forms the optimal set of poses in this case
since the solution is unique. It is worth to mention that
the weightings Ωij have no influence in equation (1) which
means that worse estimates ∆̂ij with a low weighting have
the same influence to the solution as good ones.
This is contrasted by the general case where the solution
is overdetermined. Therefore, our approach uses a least
squares optimization method to find an optimal solution.
A 3D transformation is fully determined with 6 parameters
which means that an unambiguously reversible depiction
δ = φ(P ) ∈ R6, P ∈ SE(3) exists. Furthermore, the
minimal representation of the identity pose I ∈ SE(3) is
φ(I) = 0.
Therefore, given all pose difference estimates, the set of
optimal poses P ∗

i can be obtained through

arg min
P2,...,Pn

n∑
ij

φ (Ψij)
T

Ωijφ (Ψij) , (2)

with Ψij =
(
Pi ⊕ ∆̂ij

)−1

⊕ Pj . This can be seen easily
because for the true poses and differences holds

(Pi ⊕∆ij)
−1 ⊕ Pj =

(Pi ⊕ (Pj 	 Pi))
−1 ⊕ Pj =

P−1
j ⊕ Pj = I.

The pose P1 is fixed to an arbitrary pose without the loss of
generality.
Equation (2) constitutes a non-linear optimization problem

due to the implicit 3D transformations and the conversion
to a minimal representation. Therefore, the computation of
the set of optimal poses is treated as a graph optimization
problem, where every node represents a pose and every edge
a pose difference estimate between two related nodes (see
Fig. 2). This structure is called pose graph and enables
the usage of common graph based optimization methods
[11] to find a solution for problem (2). Furthermore, this
representation reveals that a fully connected graph is assumed
in order to obtain reasonable optimization results.
However, non-linear least squares methods require an appro-
priate initialization of the parameters to avoid local minima
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Fig. 4. Evolution of the mean drift error for an increasing number of aligned
drives. Number of Monte Carlo iterations: 50, d = 50 meters, σ = 1 px,
Probability of outlier occurrence: 0.5.

solutions. We compute an arbitrary spanning tree of the pose
graph and integrate the poses over the corresponding deltas
along all pathes of the tree for this purpose (see Fig. 2). Since
a fully connected graph is assumed at least one spanning tree
exists.

B. Vision based Pose Difference Estimation

Pose difference estimates can be obtained by several
methods depending on the application and the environment.
The estimation of ego-motion is part of many approaches
and can be obtained by several sensors, e.g., cameras, GPS,
IMU, or laserscanners. We obtain ego-motion from stereo
visual odometry (SVO) [13], [14], [15] and treat it as pose
difference estimates between two consecutive poses of a
single trajectory within this work.
The first step of SVO is to compute circle matches [13]
between the four images of two consecutive stereo image
pairs. This requires a detection and description of salient
points in all images followed by a descriptor comparison
from which the final matches result. Thereafter two pixels
of each match from the previous image pair are utilized to
reconstruct a corresponding 3D landmark position. Finally,
the 3D landmarks are re-mapped into the 2D space by
the camera calibration with respect to a particular camera
pose. The difference between the pixel positions of the
matches in the current image pair and the pixel positions
of the corresponding re-mapped landmarks is called back-
projection error and is minimized by non-linear optimization
methods which yields the pose of the camera rig at the time
the current image pair was recorded.
In fact, a lot of workaround is required at every step
of SVO to yield robust and accurate pose differences in
practice [13]. The most basic assumption to SVO is that all
images show the same scene. Otherwise no matches can be
found. However, when the pose difference between the two
consecutive camera rig poses is small enough this assumption
is fulfilled implicitly.
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Fig. 5. Evolution of the mean drift error by an increasing number of
aligned drives under bad simulation conditions. Number of simulation loops
for each number of aligned drives: 50, Segment length d = 50 meters,
Standard deviation of the Gaussian Pixel noise: 3 px, Probability of outlier
occurrence: 0.7.

It remain the estimation of differences between poses of
independent survey trajectories in order to align them. We
also use SVO for this issue. This requires finding similar
camera rig poses in the independent survey trajectories. This
can be provided by a low cost GPS receiver or a loop closure
detection [16]. SVO can be used straight forward once two
corresponding image pairs of different drives are found.
Furthermore, covariance matrices for all pose difference
estimates are obtained through a direct error propagation
from prior defined covariances for all feature points. The
inverse matrix of the propagated uncertainty is used as the
weighting in equation (2).

IV. EXPERIMENTS

The experiments in the remainder of this Section mainly
base on the visual odometry ego-motion estimation method.
Some simulation experiments are presented in Section IV-A
followed by a demonstration of the accuracy and robustness
of our method in a real application in section in IV-B.

A. Simulation

The basic idea of the simulation is to generate distorted
feature matches from a known ground truth. These simulated
feature matches have the same structure as the matches ob-
tained from the feature matching on real images. Thereafter
pose differences based on these matches are estimated by
the subsequent SVO processing steps and the attendant pose
graph is aligned. This graph is compared against the known
ground truth.
First of all, a ground truth is rendered along a particular
reference trajectory. A fixed number of 3D landmarks are
randomly placed along this trajectory. Furthermore, multi-
ple survey trajectories are simulated by applying stochastic
modifications to the poses of the reference trajectory. All
trajectories and landmarks form the ground truth.

Fig. 6. Schema of the re-projection evaluation. Ground markings are
detected and reconstructed in 3D using dense stereo information. The
reconstructed landmarks are re-projected in the images of the other drives
through the poses of the optimized pose graph.

Thereafter a virtual stereo camera pair is placed at all poses
of all trajectories and the 3D landmarks within the aperture
angle of the camera are projected. Occlusion effects are ne-
glected at this point. The projected points represents the pixel
of a circle match [13]. A Gaussian noise term is added to
every pixel and, additionally, a uniformly-distributed random
subset of all matches is heavily distorted to simulate outliers.
Thereby, the number and distribution of the features in the
virtual images is similar to our real experiments in urban
scenarios.
The distorted virtual matches constitute the input for the
remaining SVO computation steps from which the pose
differences within the simulation are estimated. Thereafter
the pose graph is initialized and aligned with our algorithm
as described in Section III-A.
Finally. the quality of the estimated poses is evaluated against
the known ground truth in terms of a trajectory drift error
[17]. The drift error e between the ground truth and the
estimated trajectory is computed by

e =
1

d ·N

N∑
ij

∣∣∣∣∆t
ij 	∆e

ij

∣∣∣∣ , (3)

where ||·|| denotes the norm of the Euclidean distance. Fur-
thermore, ∆t

ij denotes the pose difference between the i-th
and j-th pose of the ground truth and ∆e

ij the corresponding
pose difference between the aligned poses of the pose graph.
The i-th and j-th pose is thereby chosen so that the Euclidean
distance between the poses is approximately d meters. The
final drift error is computed by shifting a window of length d
over the entire trajectory and averaging over all single errors
which is illustrated in Fig. 3.
We perform this simulation in a Monte-Carlo scheme with
different numbers of survey trajectories and varying simula-
tion conditions. This means that a fixed number of survey
trajectories and virtual matches are generated, the pose graph
is aligned and evaluated against the ground truth. This step
is repeated many times and the drift errors are averaged over
all loops.
Fig. 4 shows the evolution of the drift error for an increasing
number of aligned drives with zero-mean Gaussian noise
with a standard deviation σ = 1 px and an outlier rate



Fig. 7. Comparison between our method (left column) and a high precision GPS measurement unit (right column). The lane markings are extracted from
the first row images and reprojected into the images of the other drives (second and third row). The images show clearly the high accuracy of our estimated
poses whereas the globally referenced GPS poses show high errors due multipath propagation.

of 50%. The length of the trajectories is approximately
1 km and the window length for the error evaluation is
d = 50 m. The absolute drift percentage is quite small even
with one drive because of the benign simulation conditions.
However, the trend shows a converging decrease by aligning
an increased number of drives.
Another simulation result is shown in Fig. 5 where the
standard deviation of the pixel noise is σ = 3 px and the
outlier rate is 70%. Furthermore, before the pose graph was
aligned, several pose difference estimates from a randomly
chosen subset of the aligned drives are post-distorted by
a concatenation with a random noise pose whereas the
weightings for these estimates remained unchanged. This
results in high absolute drift errors. However, the drift can be
decreased significantly whenever at least one relatively good
survey trajectory is added. The result shows that a worse
single trajectory estimate, e.g. because of bad weather or
inappropriate lightning conditions can be improved clearly
by an alignment with a better estimated trajectory.

B. Real World Experiments

First we present our experimental setup. Thereafter quan-
titative results of the accuracy and robustness of our method
are shown.
Our vehicle is equipped with a stereo camera pair with a base
width of 30 cm. The cameras field of view is approximately
80◦. Image resolution is 1263 × 389 pixels after rectification.
The image recording frequency is 10 Hz. Furthermore, the
driven trajectory has a length of round 2 km passing through
an inner city village and partly cross country. Every survey
drive produces nearly 2000 stereo image pairs. Every image

pair is related to one pose. We record several survey drives
with our trial vehicle in order to evaluate our algorithm on
real data.
Pose differences within one drive are estimated between two
consecutive camera poses. Furthermore, we use a loop clo-
sure detection [16] to find similar images between indepen-
dent drives. One camera pose is interconnected with at most
one camera pose from another drive thereby. Pose difference
estimates where the propagated uncertainty is higher than a
upper border are leaved out at the final alignment.
For evaluation purposes, we detect edges of ground markings
automatically in the images of one of the aligned drives. The
detected pixels are reconstructed in 3D by using dense stereo
information. These 3D reconstructed salient structures are
then re-projected in the images from all other drives since
we know the spatial relations of the cameras through our
pose graph alignment and the camera calibration (see Fig.
6).
The left image in the first row of Fig. 7 is from the drive were
the ground markings are extracted from. The left images in
the second and the third row show the re-projected ground
markings. The markings are projected exactly there where
they expect to be. Along the entire trajectories nearly all
reconstructed and re-projected markings are placed at their
expected position which shows the high accuracy of the
aligned pose graph.
Furthermore, we recorded high precision GPS data during
all survey drives for a quantitative comparison. The same
ground markings are re-projected with the recorded GPS
poses which is possible since they are global referenced.
Again, the right image in the top row of Fig. 7 shows the



back-projected labels from the drive where they extracted
from. The right images in the second and third row show
the projection results (blue points) from the global referenced
poses of our high precision GPS receiver. In contrast to the
poses from the aligned pose graph, the re-projection with
GPS poses show clearly poorer results which is observed
over the entire trajectory. The resulting poses from our
method outperforms the high precision GPS poses obviously.
These results reveal that methods e.g, path planning which
require a high re-localization accuracy quickly encounter
their limits in urban scenarios when GPS is utilized. In
contrast, our method shows precise and robust results in these
areas and enables an opportunity for accurate and sustainable
life-long mapping.
An unsatisfactory result is shown in Fig. 8. The reason for
this is the surrounding environment which is poor in structure
over a longer part of the trajectory. This is reflected in poor
pose difference estimates since our applied SVO method
requires structured area to work well. However, the poor
results at this part of the trajectory are predictable by the
propagated covariances. We observed a worsening of the
covariance matrices in these areas.

V. CONCLUSIONS AND FUTURE WORK

Within this work, we presented a method to align several
independent trajectories of the same area. A general method
to optimize a set of related poses by a given set of pose
differences were presented. Common non-linear graph based
optimization methods were utilized for that purpose. In order
to complete our process chain, a stereo vision method were
used to estimate pose differences.
Furthermore, results from a simulation were presented which
show the potential of drift reduction. This was extended by
quantitative results from real vision based data which shows
the accuracy and robustness of the method in urban areas. A
comparison against high precision DGPS poses shows that
our approach clearly outperforms this costly sensor in these
areas.
The vision based approach reaches its limits whenever the
trajectory passes long distances of rarely structured areas.
Further improvements of the vision based frontend and
combining several different sensors by our method open up
possibilities for fruitful approaches which could overcome
these flaws.
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