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Abstract— Coherent road maps are a prerequisite for au-
tonomous navigation. In case of an unknown environment, grid
map and SLAM techniques are widely used. This paper takes
a novel approach to vision based mapping of road markings by
registration of local occupancy gridmaps for map stitching. We
show that with reasonably accurate ego motion measurements,
seamless global maps can be constructed from local grid maps.
The approach is evaluated on real world data obtained from
an autonomous model racing car.

I. INTRODUCTION

In autonomous navigation, the use of maps of the environ-
ment plays a significant role for localization. Yet, maps in
sufficient accuracy are not widely available. However, robots
operating in unknown environments as well as autonomous
vehicles are equipped with increasingly accurate sensors to
perceive their surrounding, enabling them to create a map on
the fly. The problem of imperfect ego motion estimation com-
bined with imperfect environment perception has given rise
to the well known simultaneous localization and mapping
(SLAM) approach. In SLAM frameworks, the autonomous
agent constructs the map it wishes to localize itself on by
maximizing the joint probability of map and ego position.

SLAM approaches have been tackled in two different
implementations, online and offline SLAM. In the online
version, all sensor readings of both ego motion and envi-
ronment perception are integrated into map and localization
on the fly. However, errors once made can rarely be corrected
in hindsight.

In contrast to that, in offline SLAM all the data is
collected during an exploratory drive. Upon arrival, a map
is constructed of the recently discovered environment, thus
enabling the use of global optimization. However, up to the
point where full map processing is executed, all data has to
be stored.

Both cases of SLAM are strongly dependent on distinct
features of the environment. For mapping of road marking,
this condition is not always met due to the high degree of
ambiguity of features.

In this work we introduce a novel approach to visual
offline mapping of road markings. A brief overview can be
found in Figure 1. Our work is based on the assumption
that today’s odometry measurements are fairly accurate so
that errors are locally bounded. Under this assumption, we
construct local maps making use of the well understood
occupancy grid map. During a drive through the unknown
environment, we collect a multitude of these local maps
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(a) Collection of local maps and their poses in online processing.

(b) Offline optimization for consistent map stitching.

Fig. 1: Steps performed in the algorithm.

together with their individual poses T relative to their
predecessors. Upon arrival at our starting position, a global
optimization is run on all map poses to allow optimal
registration between the maps. This way a globally consistent
map can be constructed in hindsight while the amount of
data in storage can be reduced. The work was executed in
the context of the Carolo-Cup, a student competition on
autonomous model race cars, hosted by the University of
Braunschweig [1].

The remainder of this paper is structured as follows. In
section II we give a brief overview over common mapping
techniques including occupancy mapping and registration.
Our approach of combining grid mapping and global op-
timization is introduced in section III and we evaluate the
results of this approach in section IV. The paper is concluded
in section V.

II. RELATED WORK

In this section we give a brief overview over some existing
approaches in mapping, both local and global, as well as
on registration of images and point clouds which is closely
related to the problem of map stitching.

A. Occupancy Grids

Local mapping is often performed in so called occupancy
grid maps [2]. In general, occupancy grid maps are a
discretization of the surrounding of an autonomous agent
into cells. It is assumed that all cells are independent of
each other. This assumption allows relatively simple map
maintenance as every cell in itself can be represented as a
Bayesian estimator for an occupancy probability. For map



updates, all measurements are assigned to map cells. The
corresponding cells are updated by the use of an inverse
sensor model which relates a measurement to the occupancy
probability. For most applications of grid mapping, the poses
of the vehicle are assumed to be known perfectly.

B. Simultaneous Localization and Mapping

When the motion of the agent is subject to uncertainty,
simultaneous localization and mapping (SLAM) is performed.
A good overview can be found in [3] and [4]. In this
approach, a map is created and updated by maximizing the
posterior probability of motion and map, i.e. motion and map
are estimated at the same time from sensor measurements.
Different approaches exist to handle the SLAM problem,
depending on map representation and update. In one of the
most used solutions, the mapping is represented by a Kalman
filter where landmark positions and vehicle pose are tracked
in the same state vector, giving rise to the EKF SLAM [5].

In graphical SLAM, the landmarks and vehicle poses are
represented as a graph which is optimized in hindsight [6].
In FastSLAM, map and robot pose are maintained in form of
a particle filter where each particle represents a pose together
with a map consisting of Kalman Filter based landmark
representations[7].

FastSLAM can also be applied together with occupancy
grid maps [8]. In this case, the map is stored in form of an
occupancy grid rather than individual landmarks.

A special case is the Atlas SLAM in which submaps are
created from scan matching [9]. These submaps are later
registered with respect to each other to obtain a globally
consistent map.

C. Registration

The term registration refers to the problem of finding
the rotation and translation of one dataset so that it is in
congruence with a template. A well known application for
this are panoramic images which are stitched from many
smaller images.

The registration is computed easily if corresponding points
in dataset and template are known, e.g. by optimization [10]
or singular value decomposition.

However, correspondences are rarely known exactly. Thus,
the main problem of registration remains in the correspon-
dence search. In computer vision, interest points are matched
using local descriptors [11] [12]. Robustness is gained by
using RANSAC approaches to descriptor matching [13].

Another well known algorithm is the iterative closest point
algorithm (ICP) in which the correspondences are iteratively
optimized by matching points of a dataset to their nearest
neighbor within the template [14]. However, this algorithm
strongly depends on a good initial registration.

III. GRID BASED ATLAS SLAM

This paper takes a different approach to offline SLAM. As
introduced in [9], similar to an atlas, the entire map is divided
into small submaps that are put in relation to each other over
a pose graph as depicted in Figure 2. In our representation,
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Fig. 2: Problem construction. Blue solid circles denote opti-
mized maps, dashed circles denote predicted locations from
odometry measurements. Poses are coupled with transfor-
mations shown as red arrows. Green arrows denote the error
measures to be minimized.

the nodes of the graph represent maps with their relative
pose shown in red arrows to their predecessor while edges
represent the overlay matching of the individual maps as
well as the deviation from the pose obtained from odometry
shown in green.

In our implementation, two steps are executed, namely
local mapping and global map alignment. The first, the
acquisition of submaps, is based on occupancy grid maps
and can be performed online. A map Mi consists of a tuple
of a discretized occupancy grid map Θi and the map’s pose
relative to the previous map Ti together with the pose’s
covariance matrix Σodoi . The pose is in the homogeneous
form of

Ti =

[
Ri ~ti
0 1

]
(1)

where Ri is a 2-D rotation matrix and ~ti is a 2-D translation
vector.

The second step, the global optimization, is performed
upon arrival at the starting location. The optimization goal is
to find a set of poses TN for N maps so that the registration
error between all overlapping maps and the deviation of
the optimized poses from the original odometry poses is
minimal.

In the following, the two steps are explained in detail.

A. Local Mapping

The local mapping uses the concept of occupancy grid
maps. In their original formulation, these maps were used as
a discretized representation of the environment for obstacles
that would block the way for autonomous agents. However,
the concept itself as a Bayesian filter map is quite general
and can be applied to mapping of arbitrary environmental
properties (e.g. [15]). Since our algorithm is tailored to
fulfill the purpose of road mapping, we map road markings
extracted from onboard camera images. We utilize occupancy
grid mapping due to easy feature maintenance even in the
presence of noisy observations.

In the following, the necessary steps of motion estimation
as well as feature extraction are explained.



1) Motion Estimation: Motion estimation is performed
using an onboard sensor setup consisting of two wheel
encoders attached to left and right rear wheels, a 3-axis
gyroscope as well as a 3-axis accelerometer. The measure-
ments obtained from the sensors are fused in an Extended
Kalman Filter framework with an extended single track
motion model.

The discrete motion equation from a previous pose defined
by (xt−1, yt−1, θt−1)T can be computed by the momentary
curve radius rt and angular velocity ωt according toxtyt
θt

 =

xt−1yt−1
θt−1

+

−rtsin(θt−1) + rtsin(θt−1 + ωt∆t)
rtcos(θt−1)− rtcos(θt−1 + ωt∆t)

ωt∆t

 .

(2)
2) Feature Extraction and Accumulation: In general, all

kinds of features can be used for grid mapping. Most
common is the mapping of obstacles sensed with 3D sensor
systems. In the context of our field of application however,
we focus on the mapping of road markings from camera
images. For this, we extract features that hint to road
markings and accumulate those in a standard gridmap using
the Bayesian formulation as introduced in [2].

Features are extracted in multiple steps (see Figure 3). In
the first step, we extract a region of interest where we expect
to find the road markings, e.g. the lower third of the image.
From extrinsic calibration, we compute the homography to
project the image to birds eye view. Since the region of
interest is selected to be relatively small and our robot’s
chassis is near rigid, we neglect roll and pitch angles for
transformation.

Due to the transformation in top view, the perspective
distortion of road markings in the image is corrected and
a matched filter for the size of the markings can be applied.
We selected a 2-D difference of Gaussian (DoG) as a filter,
as the filter response is close to the top hat filter but features
additional noise attenuation.

The final update of the map is performed using a binarized
version of the filtered image. The image is transformed to
map coordinates as depicted by the green trapezoid in Figure
4. Additionally, every pixel value pi ∈ {0, 1} is modified
according to

p̃i = αpi − β (3)

where α, β are positive constants depending on the expected
reliability of the binarized image. This way, in logOdds
representation high filter responses will yield a positive
update and vice versa. For the final map update, the modified
image is added to the map.

Whenever the field of view (FOV) of the camera would lie
outside of the current map a new map is created. Its initial
pose is set so that the vehicle’s orientation is aligned to the
map’s x-axis and the vehicle’s position within the map is at
the left border and at half the width of the map (see Figure
4).

(a) Input image cropped to region of
interest.

(b) Applied homography for bird’s
eye view.

(c) Filter response map. (d) Binarized feature map.

Fig. 3: Process steps in feature extraction.
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Fig. 4: Grid initialization and update with FOV.

B. Global Alignment

After local mapping of the surrounding, a global associa-
tion and optimization step is performed. As we use local grid
maps, the association and pose optimization comes down
to a registration problem with unknown correspondences.
However, if we assume a fairly accurate initial pose estima-
tion, we can easily apply active correspondence matching.
In order to do that, we try to find a set of poses for all
nodes, individually given by Ti that minimizes the error w.r.t.
odometry measurements T̂i and registration error from the
map content.

For this we iteratively repeat map data association and
pose optimization similar to the ICP algorithm. The pro-
cedure of data association is explained in Section III-B.1
followed by the optimization in Section III-B.2.

1) Data Association: Data association has to be done in
multiple levels. For once, expected overlap of maps has to
be found. In a second step, the content of overlapping maps
has so be associated for registration. A common approach is
key point matching using different classes of detectors and
descriptors. However, as we are dealing with road markings
and thus with few distinct features but a high degree of
ambiguity, we apply point cloud matching for registration.

To obtain point clouds from grid maps, we extract all map
points from the grid maps that belong to the set of road
markings with a probability value above some predefined
threshold.

Then all consecutive map poses are computed so that the
relative poses between any two maps i, j can be constructed
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Fig. 5: Correspondence search for maps.

according to

Ti,j = TjTj−1 · · ·Ti+1Ti. (4)

In the next step, we compute the convex hull for all
maps for map overlap assessment. Two maps are expected
to overlap if their convex hulls overlap. However, due to
pose uncertainty, we widen the hulls by some distance
proportional to the expected uncertainty of the relative map
pose to obtain the correspondence search region. That is,
from the odometry filtering, we can extract the localization
covariance and compute the estimated standard deviation of
the two maps’ relative pose estimation. We then widen the
convex hull in dependence of the pose’s standard deviation.
Map overlap is then computed from the intersection of the
search region of one map with all other search regions. By
this means, an adjacency matrix is constructed. In Figure
5, one example is depicted. The point clouds of two maps
are shown in dots while the convex hull is displayed as the
dashed lines. After hull widening, the solid lines represent
the overlap area. The red points are the ones considered for
point matching.

The adjacency matrix is used to extract point correspon-
dences between the two point clouds of overlapping maps.
We apply an approach similar to the ICP algorithm [14],
however we include prior knowledge from local point cloud
descriptors. That is, for each point within the overlapping
region of two maps, we compute a principal component
analysis of the local surrounding. The covariance matrix for
a point pi is given by

P =
{
pj | ‖pj − pi‖2 < ε

}
(5)

Σi = ΣGrid +
1

|P |
∑
j∈P

(pj − pi)(pj − pi)T (6)

where ΣGrid denotes the inherent uncertainty of every grid
cell that arises from discretization. We then only match points
from different maps with similar eigenvectors. The matching
for the example overlap from Figure 5 is depicted in Figure
6. The green and blue point clouds represent the two maps,
the red lines depict the established correspondences. Note
that even tough the finish line of the green map is closest
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Fig. 6: Point correspondence with local orientation criterion.

to the middle stripe of the blue map, the correspondences
between the finish lines are matched correctly.

2) Optimization: Once the correspondences have been
found, global optimization is run on the set of maps. The
optimization criterion is the concatenated error of all map
matches and all odometry errors.

Let’s assume we have constructed the adjacency matrix
from the overlapping point cloud hulls according to III-
B.1 and map i and j are found to be overlapping. Then
the matching error is a concatenation of all M matching
correspondence errors in dependence of the relative map pose
Ti,j with

~ei,j = (Ti,j~pi,1 − ~qj,1, · · · , Ti,j~pi,M − ~qj,M )
T (7)

where pi are points of map i and qj are points of map j,
both in homogeneous coordinates.

From the correspondence description, the covariance ma-
trices of local point neighborhoods are known. For every
point matching, the covariance matrix of a match is computed
as the sum of the covariance matrices of the individual points.

Σi,j = Σi + Σj (8)

Apart from the matching error, the error with respect to
the odometry can be considered in optimization. The error
from odometry per map is given by

~eodo,i =
(
α̂i − αi, ~̂ti − ~ti

)T
(9)

where αi is the rotation angle extracted from the rotation
matrix in Ti. From the Kalman filtering the covariance of a
map’s pose Σodo,i can be estimated.

The optimization criterion J(TN ) then is the Mahalanobis
distance of all odometry errors and all matching errors with

J(TN ) = ~eT Σ−1~e (10)

where ~e is the concatenation of all error vectors given as

~e = (~e0,1, ~eodo,1, . . . , ~ei,N )T (11)



Fig. 7: Reference image of test track.

and Σ with the block diagonal form of

Σ =


Σ0,1 0 · · · 0

0 Σodo,1
. . .

...
...

. . . . . . 0
0 · · · 0 Σi,N

 (12)

Note that not only maps with subsequent indices may
contribute to the matching error and covariance but also maps
of loop closure inbetween.

The use of the Mahalanobis distance also allows to
fuse errors from both rotation and translation as the error
measure is transformed from different units to multiples of
the variance. Also, the used representation of points with
information on their surrounding allows the optimization to
be less sensitive to invariant features such as lines which only
yield reliable translatory measurements perpendicular to the
line orientation.

The optimal set of map poses T̃N is found using the
Levenberg-Marquardt algorithm so that

T̃N = arg min
TN

(
J
(
TN
))
. (13)

For computational efficiency the error is computed in the
form of

J(TN ) = ~eTLTL~e (14)

so that numeric differentials can be computed easily. Since
the covariance matrix of the concatenated error vector is of
block diagonal form, the Cholesky decomposition LTL =
Σ−1 can be computed from the Cholesky decomposition of
the individual blocks, i.e. the decomposition of the inverse
covariance matrices of matching and odometry errors.

IV. EXPERIMENTS

The work was conducted in the context of the Carolo-
Cup [1] in which student teams compete with self built
autonomous model race cars. Thus, the track to be mapped
is a small replica of the actual race track with white lane
markings on a black surface as depicted in Figure 7. The
track features two loop closures, i.e. the crossing and the
finish line.
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Fig. 8: Error of local maps.

A. Experimental Setup

The picture from Figure 7 served as a ground truth. It
was taken with an ordinary digital camera and undistorted
and transformed using a set of points measured with a laser
range finder.

The model car is a 1:10 model car equipped with
wheel encoders, accelerometer and gyroscope as well as
a 0.3MPix camera. Processing is executed on a standard
Intel Core i3-4010U processor.

The algorithm was evaluated on multiple drives. We
experienced that the odometry was extremely accurate and
thus the results did not sufficiently show the strength of
the approach. In order to create a more challenging starting
position, we introduced additive Gaussian noise with non-
zero mean to the angular velocity, as it might be caused for
example by unequal wheel diameters on left and right rear
wheels.

B. Local Map Accuracy

The first step is to evaluate the accuracy of the local
submaps. For this purpose, the middle lane marking was
manually annotated in the ground truth image. We used end
points of the individual lines of the marking to interpolate
their midpoints. The same was done for the submaps.

For evaluation, we aligned the first stripe of every submap
and computed the mean Euclidean distance between all
following stripes. The average error per map is displayed
in Figure 8. As it can be seen, the local error stays below
the boundary of roughly 7cm. It can be noted that the local
maps with the highest average error (no. 2, 10, 16) were
those with the longest distance traveled within that map. This
finding coincides with the expectation of increasing error
over distance.

C. Global Accuracy

After the registration of the maps, the global error is
evaluated. The complete map was aligned using the first
five stripes using a minimum least square alignment. The
midpoints of the stripes of the middle lane marking were
used to evaluate the mean Euclidean distance.

The results of the global map are depicted in Figure 9. For
reference, we included the global error of the unoptimized
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Fig. 10: Map overlay.

map. It can be seen that the error is drastically reduced in
the case of the optimized map. Especially in the case of loop
closure at midpoint index 70, the error drops close to zero.
However, the error in the first loop closure stays higher.

This is best explained by looking at the overlay of ground
truth and map mid points in Figure 10. Green dots denote
the stripe mid points of the ground truth while blue dots
represent the map stripe mid points. While the dots coincide
in the region of the finish line, the distance traveled is
overestimated in the first curve. With the detection of the
loop closure in the upper part of the map and its optimization,
only the local error within that circle can be corrected.
However, the offset up to the crossing remains undetected.

In a final comparison, the global map before and after
optimization is depicted in Figure 11. In Figure 11a, the
non overlapping submaps in cases of loop closures are
clearly visible from double road markings. However, in
the optimized case in Figure 11b, these errors have been
corrected and a consistent map has been built.

V. CONCLUSION

In this paper we have shown a relatively easy way of
extending standard grid mapping to a SLAM framework.
For this we introduced a submap based SLAM approach
with registration and pose optimization for global alignment.
The results of our work were evaluated on real world data
obtained from a model race car. We argue that the proposed
framework is especially suitable for applications with a high
degree of ambiguity in local features such as road markings.
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Fig. 11: Consistent map.

The outcome of our work is also a reasonable foundation
for more elaborate perception problems such as extraction of
semantic information from grid maps as the submaps allow
for graph solvers to be applied to connected components.
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