
Real-Time Detection and Tracking of Multiple
Humans from High Bird’s-Eye Views in the

Visual and Infrared Spectrum
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Abstract. We propose a real-time system to detect and track multiple
humans from high bird’s-eye views. First, we present a fast pipeline to
detect humans observed from large distances by efficiently fusing infor-
mation from a visual and infrared spectrum camera. The main contri-
bution of our work is a new tracking approach. Its novelty lies in online
learning of an objectness model which is used for updating a Kalman
filter. We show that an adaptive objectness model outperforms a fixed
model. Our system achieves a mean tracking loop time of 0.8 ms per hu-
man on a 2 GHz CPU which makes real time tracking of multiple humans
possible.

1 Introduction

Research on fully autonomous Unmanned Aerial Vehicles (UAVs) became very
popular with the development of powerful but lightweight computers and sen-
sors. Besides the enormous popularity of multi-copters, fixed-wing UAVs are
also becoming steadily more interesting mainly due to their large flight range.
In a classical scenario they are used to first localize victims and then send their
GPS locations to a rescue team on the ground. In this context, autonomous hu-
man tracking from fixed-wing UAVs faces several challenges. The main challenge
is the flight altitude of around 50-150 m. High resolution imagery is needed to
provide enough detail for accurately detecting humans. Searching small objects
in large images is computationally expensive which makes the human search
with real-time constraint challenging, especially on UAVs with limited compu-
tational power. For that reason, we use a long wave thermal camera (FLIR Tau
2 19 mm). In many scenes humans significantly differ in temperature from most
of the background. This can be used to reduce the detection search space and
thereby increase efficiency of the human detection. The main drawback of our
thermal camera is the relatively low resolution of 640 × 512. We use a visual
spectrum camera with a high resolution of 1600 × 1200 alongside the thermal
camera to get more detail.
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2 Related work

Object tracking is one of the big topics of computer vision and many different ap-
proaches have been developed in the last decades for which [1] gives an excellent
overview. Just recently, different research groups started to use an objectness
measure in trackers [2, 3]. The concept of objectness is proposed by [4] and es-
sentially aims at deciding whether an image patch contains an object or not
before searching for specific object classes. Cheng et al. [5] developed an efficient
algorithm for calculating an objectness measure, denoted by BING objectness,
and thereby enabled the use of objectness in real time applications. Objectness
is shown to increase accuracy when used as an additional score for tracking [2,
3]. Liang et al. [3] initialize a tracker with an adaptive objectness model which
is learned by an adaptive SVM [6] in the frame of the first detection. The model
combines generic objectness with object specific information. The integration
of the adaptive objectness model into state-of-the-art trackers is reported to
outperform the original trackers in most cases [3]. Our tracker approach is also
based on an adaptive objectness model. The difference to [3] lies in an ongoing
online learning process to gradually transform the generic objectness model to a
discriminative object specific model. The online learning framework is based on
the Passive-Aggressive algorithm introduced in [7]. The objectness detection is
integrated into a Kalman filter [8, 9]. For human detection we make use of the
popular Histogram of Orientated Gradients (HOG) features [10].

3 Approach

In the following, we describe the approach used for human detection and track-
ing.

3.1 Detection pipeline

Human detection from heights of 50-150 m brings along many challenges. Hu-
mans only occupy few pixels of the image which makes a detailed search nec-
essary and thereby makes the detection particularly computationally expensive.
To speed up the search for humans we use the long wave infrared spectrum as
additional information. Fig. 1 shows an example where humans clearly stand out
from the background. Compared to the corresponding visual spectrum image the
infrared image shows significantly less texture. This allows us to use a simple
but fast blob detector in the infrared image. At each blob we define centered
bounding boxes of different sizes. These are the candidates which are given to a
HOG detector. The linear SVM is trained on 2400 positive and 24000 negative
human samples extracted from four infrared datasets [11–14]. The HOG detec-
tor is designed to classify patches with heights of 6-36 pixels. Compared to the
original HOG detector [10] the humans are significantly smaller so we had to
find new suitable parameters as described in Sec. 4.1.
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(a) (b)
Fig. 1. (a) Crop of infrared image showing humans with high contrast from background.
(b) Corresponding crop of visual spectrum image.

To increase accuracy, we also use the high resolution visual spectrum image.
The challenge in fusing information from multiple cameras is to find correspond-
ing areas. Standard appearance based matching algorithms [15] can only be
applied if the appearance in the images is similar. This cannot be guaranteed
when using a visual and an infrared spectrum camera. Some parts of an object
might show high contrast in the infrared spectrum whereas they may not be dis-
tinguishable from the background in the visual spectrum. Moreover, an object in
the visual spectrum often shows significant texture which cannot be perceived
in the infrared spectrum. To circumvent the problem of lacking similarity in
appearance we use the assumption that the distance to the object is large com-
pared to the baseline of the cameras. For the theoretical case that the cameras
have coincident optical centers and their principle axes are aligned the matching
problem is trivially solved by finding pixels with the same projection ray. For a
vertically aligned stereo pair with parallel principle axes and no distortion, the
pixel error errpix introduced by a non-vanishing baseline b can be calculated as

errpix =
f

lpix
· b
d
, (1)

where f is the focal length, lpix denotes the size of a pixel and d is the depth of
the targeted 3D point P as illustrated in Fig. 2. f and lpix belong to the camera
the error is attributed to. From this we can calculate the minimal depth dmin
of a 3D point to make a sub-pixel error w.r.t the infrared camera (fir = 19 mm,
lpix,ir = 17µm, b = 30 mm)

dmin =
f

lpix
· b ≈ 34 m (2)

Since we target human detection at longer ranges, the error due to baseline and
scene depth variations can be neglected.

For the candidates which were classified as humans in the infrared spectrum
we calculate the corresponding bounding boxes in the visual spectrum image.
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Fig. 2. Stereo camera pair with optical centers C and C′. The principle axes are par-
allel. With the known projection p of the 3D point P , the corresponding projection p′

in the other camera is approximated by assuming a vanishing baseline. The resulting
error is denoted as err.

To compensate errors resulting from a weak stereo calibration (calibration of
infrared cameras is comparably hard because of blurry imagery [16]) we extend
the number of candidates in the visual spectrum image by sampling around the
correspondences. As a final stage of our pipeline, we classify these candidates by
another HOG detector which was trained on 3000 humans from bird’s-eye views
and 25000 negative samples.

3.2 Tracker

We perform the tracking of humans on the infrared images because in many
scenes humans are more salient in the infrared than in the visual spectrum.
Furthermore, we know the position of a detected person more accurately in the
infrared than in the visual spectrum due to the weak camera calibration.

The key idea of our tracker approach is to use the BING algorithm [5] to
rapidly generate a small number of candidates for redetecting the person in the
new frame. The BING algorithm essentially is a linear SVM which approximates
the SVM model and feature vector by sums of binary vectors to achieve high
efficiency. A feature vector is constructed by calculating the absolute gradient
field of the target region, resizing the field to 8×8 and interpreting the result as
a 64 D vector. Because of the resizing to 8× 8 usually the model is underfitting
when trained on a specific object class and therefore leads to limited usability as
a single object class classifier on a large region. Therefore, we apply the BING
algorithm only in a local area around the last tracker position as shown in Fig.
3(a).

Originally, the BING algorithm is used with a fixed objectness model gener-
ated by training on multiple object classes which is useful for detecting general
objects. For tracking, the object is the same and might only change appear-
ance in small ranges. Therefore, we want to learn object specific information
and include it into the model. The goal of the learning process is to bias the
model towards the object without completely loosing the generic objectness in-
formation which is valuable to prevent drift. We use a soft margin version of the
Passive-Aggressive (PA) algorithm [7] to adjust the model while tracking. We
define three different types of training data. Negative training data is generated
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generic

training order(a) (b)
Fig. 3. (a) BING candidates (gray bounding boxes) in local area (white box). The
highest scoring candidate (dark bounding box) is well fitting the tracked person. (b)
Training order with one object specific positive, three negatives and the generic ob-
jectness model.

by randomly sampling the neighborhood. An object specific positive sample is
a candidate which is identified as the tracked object based on appearance and
motion. We define the third type of sample as generic positive. The original ob-
jectness model serves as a generic positive sample. Training is only performed
when an object specific positive sample is identified. We sample three negatives
and train on the same object specific positive after each negative sample. After
these six training rounds we train on the generic objectness model as illustrated
in Fig. 3(b). This procedure ensures a balanced ratio of positives to negatives.

The identification of a good candidate is essential for the learning proce-
dure. Since errors in the identification cannot be eliminated in practice we use a
low learning rate to be more robust to false positives. Furthermore, continuous
training on the generic objectness model partly compensates false updates. As
mentioned before, we use an appearance model and a motion model for the iden-
tification of a positive candidate. To capture the appearance of the object we
simply store positive identified patches in a FIFO storage with a capacity of five
patches. To check if a candidate agrees with the stored appearance we use the
L2-norm of the difference of the candidate to each stored patch and check if the
smallest norm is lower than a dynamic threshold. The threshold decreases with
the number of successive positive identified candidates and thereby expresses
the trust in the appearance model as well as in the BING model. If multiple
candidates are classified as positive then we use the distance to the predicted
position from the constant velocity motion model to choose a candidate. We
take this uncertainty into account by weighting the learning rate of the learning
algorithm by the inverse of the number of identified candidates. We have cho-
sen this relatively simple method to compare appearance of patches since many
sophisticated methods use descriptors that are not reliable on textureless and
small objects as in our case. If the objects show more detail, the identifier step
can be easily replaced with other methods while keeping the learning process
the same.
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To fuse information of the BING detector, motion model and human detec-
tion pipeline we use a Kalman filter in which the BING detector represents one
update step which is weighted with the trust in the model. The BING detection
is only used to update position whereas the size is updated by the detection
pipeline. This speeds up the BING detection since the search is limited to a
single size.

4 Experimental Results

For the testing of the detection pipeline and the tracker we collected a new
dataset with our stereo camera pair. The videos show city scenes with a camera
angle of around 45 ◦ to the horizontal so that most of the humans’ front view
profiles are still visible. Humans have distances in the range of 30 m-80 m to the
cameras whereas the mean distance is around 50 m. This results in human heights
in the infrared images of 6-36 pixels whereas the mean is around 16 pixels. In the
visual spectrum humans have roughly double the pixel heights as shown in Fig. 4.
Humans smaller than 12 infrared pixels often have low contrast in the infrared
image and also lose the typical human shape in both the infrared and visual
spectrum images. Besides the small sizes of the humans, partial occlusions and
groups of humans make the dataset challenging. Furthermore, the stereo camera
pair is moved and rotated which makes the tracking significantly harder.

(a) (b) (c)
Fig. 4. Examples of humans in our dataset. (a) Humans of heights > 30 infrared pixels.
(b) Human of height 15 infrared pixels. (c) Human of height < 10 infrared pixels.

4.1 Detection pipeline

For the evaluation of the detection pipeline we split the detector cascade in
its three stages, which are the blob detector, the HOG detector in the infrared
spectrum (HOG is) and the HOG detector in the visual spectrum (HOG vs). We
inspect the performance of the system step by step starting with only the blob
detector, then adding the HOG is stage and finally using the whole pipeline. As
a performance measure we plot miss rates over false positives per image (FPPI).
The evaluation is only performed on the area which is represented in both images
where Fig. 5 shows the fused images.
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Fig. 5. Image fusion of infrared and visual spectrum image. A pixel mapping based
on the assumption of coincident camera centers is used. Images are undistorted and
rectified.

Blob detector The main goal of the blob detector is to reduce the number of
candidates for the computationally expensive classifiers in the next stages. We set
the limit of blob detections to 200 to guarantee an upper bound on the runtime.
On the other hand, the blob detector has to find most of the persons so that
they reach the strong classifiers in the second and third stage. In other words,
the miss rate should be small. The performance of the blob detector is shown in
Fig. 6. We increased the thresholding spacing to make the blob detector more
tolerant to intensity changes inside a blob. Therefore, increasing the threshold
spacing results in detecting more low quality blobs. As we can see from Fig. 6,
the performance rapidly increases for a FPPI range of 1-30 and levels out at
FPPI of 40 and a miss rate of 0.2. From the high miss rates at low FPPI we
see that only few humans in the infrared really appear as a homogeneous blob.
Most of the humans show temperature differences e.g. warm head and legs and
relative cold upper body. Some of the humans (≈ 20 %) cannot be detected by
the blob detector since they show very little contrast to the background if at all.
The differences in blob quality can be seen in Fig. 1 and Fig. 4. To find most of
the humans and guarantee fast runtimes, we use the blob detector configuration
which results in a miss rate of 20 % with a FPPI of 40. The high number of false
positives shows that a simple blob detector in the infrared spectrum is not a
good human detector.

Infrared HOG detector The HOG is shall reduce the number of false posi-
tives significantly. We aim at FPPI < 0.1 or preferably at FPPI < 0.01 for the
final detector since each false positive detection initializes a wrong tracker. In
the worst case the wrong trackers cannot be deleted quickly which results in
accumulation of wrong trackers. Hence, low FPPI is an essential prerequisite for
a high tracker performance. We achieved best results with the following HOG
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Fig. 6. Experimental performance results on our dataset. The detector shows signifi-
cant decrease in FPPI over a wide range with each stage (see three curves). The com-
bination of detector and tracker reduces the miss rate by 10% at same FPPI compared
to the detector pipeline alone (see cross).

descriptor configuration: patch size = 16× 32, block size = 8× 8, block shift =
2, cell size = 4 × 4 and bin number = 9. Two retraining rounds on hard false
positives gave an improvement in miss rate of 5 % at FPPI = 0.1. Our best per-
forming HOG is for FPPI of 0.01-0.1 is shown in Fig. 6. The graph shows that
adding the HOG is stage to the blob detector significantly improves performance
in the low FPPI range which cannot even be reached by the blob detector. At
FPPI = 0.01 and FPPI = 0.1 the miss rate is 0.87 and 0.80, respectively. The
performance is in the same range as in state-of-the-art pedestrian detection of
heights 30-80 pixels on visual spectrum images [17].

Visual spectrum HOG detector The final HOG detection in the visual
spectrum is expected to further reduce the FPPI at the same miss rate since
some objects like warm windows or wheels might appear similar to humans in
the infrared image whereas in the visual spectrum these objects clearly appear
as non-humans. Since our stereo pair is not synchronized and the calibration is
weak we sample multiple candidates in the visual spectrum image around the
mapped detection from the infrared image. As presented in Fig. 7, the number
of samples and the spacing influences the overall performance. If the sampling
cannot compensate for the mapping errors the HOG vs stage does not give any
improvement. If the samples compensate for the mapping errors the performance
is increased significantly by the HOG vs stage. The best performance of the
complete detection pipeline at FPPI = 0.01 and FPPI = 0.1 is reached for the
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Fig. 7. Experimental performance results of the detector pipeline for different sampling
settings in the visual spectrum. The pixel spacing is given in visual spectrum image
pixels. The sampling highly influences the effectiveness of the HOG detector in the
visual spectrum. With 49 samples most of the mapping errors are compensated and a
reduction of up to 10% in miss rate is achieved by the classifier in the visual spectrum.

setting of the HOG is with FPPI = 0.22/miss rate = 0.76 and FPPI = 0.45/miss
rate = 0.68, respectively. Fig. 6 shows that with image fusion an improvement
of almost 10% in miss rate in the relevant FPPI range can be achieved.

4.2 Tracker

As explained in Sec. 3.2 the key idea of the tracker is the adaptive BING model
which is adjusted while tracking. We want to verify that learning object specific
information is beneficial for tracking and outperforms a fixed model. To evaluate
the performance of the BING detector independently from the rest of the tracker
we perform the following experiment. First we use the original objectness model
and run the BING algorithm in local areas around the annotated person posi-
tions. We take the five best candidates and check for overlaps with the ground
truth human bounding box of more than 80 %. The candidate with the highest
overlap is used to calculate an intuitive performance score

sa,∆t =

{
6−ra,∆t

5 if highest overlap > 80%
0 else

(3)

where a denotes the annotation, ∆t is the time passed since the first frame of the
annotation and r ∈ [1, 5] denotes the ranking based on the classification score
of the BING detector for the candidate with the highest overlap of more than
80 %. For example, if the candidate with the second highest classification score
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(r = 2) has the highest overlap with the annotation and the overlap is over 80 %
then the performance score is 4/5. If none of the five candidates has an overlap
of more than 80 % then the performance score is set to zero. The performance
over all annotations is measured with the normed cumulative score

S∆t =

∑
a sa,∆t
n∆t

, (4)

where n∆t is the number of humans annotated at ∆t. To evaluate the BING
detector with an online learned model we use the same scoring system but relearn
the model with the highest overlapping candidate if the overlap is more than
80 %. This simulates a learning procedure with a robust identification step. The
results for our infrared dataset are shown in Fig. 8(a). We notice that after a

0 5 10 15 20 25
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0.6

0.8

1

adaptivefixed
(a)Δt in seconds

SΔt

(b)
Fig. 8. (a) Performance of BING detector in the infrared spectrum with fixed and
adaptive model measured with the cumulative score (see equation 4). The adaptive
model outperforms the fixed model after few seconds. (b) Example of adaptive model
(top) and fixed model (bottom) for the same tracked object (middle). The 64D model
vectors (SVM weights) are represented as 8 × 8 patches. Bright means high and dark
means low value.

few training rounds the BING detector with an adaptive model outperforms the
detector with a fixed model. The score curves show a mean difference of 0.3
which means that on average the BING detector with adaptive model needs 3
candidates less to find the tracked object than the detector with the fixed generic
model. Fig. 8(b) gives an example of a fixed and a learned model for a tracked
human. The human clearly appears as a big blob at the top and a smaller blob
at the bottom. The original BING objectness model assumes an object to have
a single closed boundary which is not suitable for this example. The adaptive
model shows the two blob characteristic and their size difference and thereby
outperforms the fixed model.

For the evaluation of our complete detection-tracking framework we use a
detection pipeline with FPPI = 0.10 and miss rate = 0.72. The complete system
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significantly outperforms the detection pipeline with a miss rate = 0.50 and
FPPI = 0.62 as shown in Fig. 6. For the same miss rate the detector has a FPPI
of 5.0 which is 8 times more than the FPPI of the complete system.

4.3 Runtime

Table 1 shows runtime results for the detector and tracker. The experiments were
run on a 2.0 GHz CPU. The detector pipeline is the time consuming part of the

stage mean runtime in ms

blob detector 16.3
HOG is 22.0
HOG vs 2.3

complete detection pipeline 40.6

BING detection 0.17
PA learning 0.08
identification 0.46

other 0.10
complete tracker loop 0.81

Table 1. Experimental runtime results of detector (top row) and tracker (bottom row).
Detection runtime is 50 times longer than tracker loop time.

system. The HOG is stage has to classify significantly more candidates than the
HOG vs stage which explains the difference in runtime. Usually, the detection
pipeline is not used on every frame to save computational power. The efficient
reduction of candidates by the BING detector results in very fast tracker loop
times which enables tracking of many humans simultaneously.

5 Conclusion and Future Work

We introduced a simple fusion technique for infrared and visual spectrum im-
agery which we use in our detection pipeline. We showed from experimental
results that our detection pipeline significantly improves performance by using
classifiers in both the infrared and visual spectrum. For tracking humans in the
infrared spectrum we proposed a novel tracking approach that is based on an
adaptive objectness detector which is learned while tracking. Our experiment
shows that learning biases the objectness model to a specific object and thereby
leads to more meaningful candidate ranking. In future work, we want to fuse
objectness proposals in both the infrared and visual spectrum to arrive at an
even more reliable ranking. Furthermore, we want to combine objectness with
other more sophisticated online learning algorithms and explore other methods
for the identification of the tracked object. We also plan to evaluate our system
on UAV datasets to determine the performance of human detection and tracking
at higher altitudes and camera speeds.
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