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Abstract— Although many algorithms have been proposed
for the camera-based detection of road features (such as road
markings, curbstones and road borders), truly contextual or
relational information between the detections is rarely used.
This is all the more surprising, since a lot of potential remains
unused, regarding outlier rejection or compensating detection
failures, multiple detections, misclassification or fragmentation.
The aim of this paper is to present an approach that is suitable
for such a task in both online and offline applications as a post-
processing step after the actual detection and classification step.
This is achieved by adapting a perception-based line-clustering
algorithm that groups the pre-classified road features based
on their relations and assigns them a final class. The grouped
features are then fused to form continuous lines instead of
individual dashes or fragmented lines. The evaluation on a
10 km drive in both rural and urban environment, as well as
an online test on a short highway driving sequence shows that
this approach is very well capable to increase the performance
of road feature detection at a low computational cost.

I. INTRODUCTION

The detection and classification of road features is a
substantial part of modern driver assistance systems for quite
some time. Since it also provides a significant contribution to
behaviour generation and localisation for autonomous vehi-
cles [1], high robustness and reliability is of great importance
and needs to be further increased on existing road feature
detection algorithms. We think that this can be archived
by considering context-based information about the relative
position of the road features.

Road feature in this context means elements that are
meant to guide the driver along his lane. These include road
markings (e.g. lane markings, stop lines or symbols such as
arrows), curbstones, guardrails or road borders.

As the detection of road features has been an issue since
the early days of driver assistance systems, a large number of
classification algorithms can be found in literature regarding
road markings, such as [2], [3], [4] or our own proposal [5].
A similar picture emerges with curbstones [6], guardrails
[7] and road borders [8]. Most of the algorithms have
been designed and evaluated for use on highways or rural
roads and it is highly doubtable that they will perform well
in scenarios as shown in Fig. 1 without using contextual
information.

The number of publications in which contextual informa-
tion is employed is very limited. As one of the few examples,

Fig. 1: A challenging road scenario even for modern marking
detection algorithms and results from our proposed algo-
rithm.

Mathibela et al. [9] use conditional random fields (CRF) to
make use of the relative position of the markings in clas-
sification. In their approach, classification results improved
in particular for complex scenarios like intersections by up
to 20%. The main goal of this approach was to improve
classification of the individual markings. It is, however, not
designed to generate continuous lines from individual seg-
ments, which is needed for most motion planning algorithms
such as lane keeping.

The work of Hur et al. [10] is an example where contextual
information was used for continuous multi-lane detection,
based on CRF as well. Despite a comparatively simple
detection, without classification, this resulted in remarkable



recognition rates, which shows the potential of this approach.
The use of CRF for an approach that combines forming

of continuous lines with classification for generic situations,
however, enormously raises the level of complexity due to
the high number of possible combinations that have to be
evaluated for inference in the underlying graph and the high
number of training data required for learning the parameters
in the graph.

This is a field, where Perception-based clustering algo-
rithms have already been established as an alternative. In Ye
et al. [11] such an algorithm is used to cluster connected
sections in handwritten notes. Similar methods can be found
for technical drawings [12], where they are used to obtain
a higher semantic understanding of the elements contained.
Another example of the early use of grouping algorithms
is the contribution of Jonk et al. [13], in which simple line
segments of an edge detection algorithm were combined with
a clustering algorithm to form contiguous lines.

A theoretical overview for grouping algorithms provides
the work of Engbers et al. [14] that served as a base for
the algorithm presented here. It considers grouping ”as the
task to find groups of similar elements from a set S, where
S is a finite set of basic elements {s1, s2, . . . , sn} derived
from an image.” According to this, the difference between
grouping and clustering is that in grouping algorithms one
element can be part of several groups. Grouping is therefore
a generalisation of clustering. Furthermore, Engbers et al.
provide fundamental design considerations regarding group-
ing algorithms based on current insights into perception, as
a continuation of the common Gestalt laws. We will discuss
these in Section II with regard to the applicability on road
features.

Later in this section we will discuss further details of the
proposed algorithm. The suitability of our algorithm is then
analysed in Section III with real data on a representative track
and evaluated on a short section of a German highway with
respect to its online fitness. In Section IV we will summarise
the results and provide an outlook on our future work.

II. ALGORITHM OVERVIEW

A. Design considerations

As a starting point of our method, it is assumed that
recognized road features are represented as linestrings with a
global position, where every element is assigned a probability
distribution over every possible type of marking. This could
be the result of a classifier, as in the approach presented by
us [5], but there are also simpler heuristics possible.

The basic idea of the proposed approach is to assign
an explicit class to the pre-classified elements by grouping
them with similar neighbouring elements, while taking into
account their classification likelihoods and their relative
location. As result, we want to obtain one continuous line
that connects all lines within a group while approximating
them as closely as possible.

It is assumed that the input data is subject to errors in the
detection or classification step. Typically, these errors include
the following:

• Inaccurate classification
• Multiple detections (e.g. through detections over multi-

ple frames)
• Conflicting detections (e.g. different classification re-

sults for the same feature over multiple frames)
• Fragmentation of features in smaller segments
• Missing detections
• Detection of individual dashes instead of the whole

dashed line
The features located in the immediate vicinity of roads

have been created specifically for human drivers in order
to be easily detectable and interpretable to avoid accidents
as consequences of misinterpretation of the road ahead.
Therefore, algorithms, such as that of Engbers at al., are
particularly suitable because they are based on the principles
of human perception.

In this context it is important to mention that grouping
algorithms generally do not guarantee an optimal solution.
The main reason is that the term cannot be clearly defined
because multiple equivalent interpretations of the same scene
are possible, depending on the context, scale and perspective.
It specifically applies to hierarchical grouping algorithms that
the grouping of two elements may be in conflict with another
element and that conflict cannot be resolved in the further
course of the algorithm. To obtain an optimal result here
would mean pursuing both possible interpretations whenever
a conflict occurs to see which path of possible decisions
yields the best result.

However, this would lead to an explosion of complexity
and thus computation time. For this reason we limit ourselves
to pursue only the - at that time - most promising solution
in the occurrence of conflicts.

B. Algorithm
We designed our approach as an extension of the algorithm

outlined by Engbers et al. [14]. As mentioned in Section II-
A, we assume we are given a set S of n detections as input,
where for every detection si ∈ S a probability pc(si) for a
class c ∈ C is assigned (where C is the set of all possible
classes), so that

∑
c∈C

pc(si) = 1 and 0 ≤ pc ≤ 1. We

also define a distance-probability function for every class
dc(s1, s2) that assigns a geometrical probability for the two
elements to be grouped (see Section II-D), with 0 ≤ dc ≤ 1.

If it is assumed that S contains outliers, an outlier class
is useful in C. This class is ignored in the grouping stage.

Therefore, we can calculate a grouping measure for a given
pair of detections s1, s2 and a class c as follows:

pgroup(s1, s2, c) := pc(s1) · pc(s2) · dc(s1, s2)

The structure of the algorithm is then as shown in Algo-
rithm 1.

The use of a threshold to stop the grouping is advisable
because of the greedy nature of the algorithm. Otherwise all
elements of the same class will be grouped unless there is
a conflict between them. In practice, chosing a good value
was very simple as the gap in pgroup between elements worth
grouping and not worth grouping is usally very wide.



// initialization
for every pair s1, s2 in S, and every c in C do

calculate pgroup(s1, s2, c) and store it in a list L of
descending order;

end
initialize the list of groups G with
G = {{s1}, {s2}, . . . , {sn}};
// grouping
while L is not empty do

remove the first value from L and find the
(s1, s2, c)-tuple assigned to it;

if the value falls below a threshold t then
break;

end
if (s1, s2) can be grouped without conflicts, and are

not part of the same group in G then
merge the two groups in G that contain s1 and
s2;

set pc(s1) = pc(s2) = 1 (and to zero for all
other classes);

update L with new pgroup for all elements
connected to s1, s2;

end
end

Algorithm 1: Enhanced grouping algorithm

We will now discuss important algorithm details in the
following sections.

C. Conflict detection

An essential element in the algorithm is conflict detection.
These conflicts cannot be easily captured by the distance
measure, because they are affected by other elements in the
vicinity. Conflicts can occur at any time during the grouping
process, therefore, they must be continuously checked. We
identified and used the following conflict conditions when
trying to group two elements s1 and s2:

• s1 or s2 is to be grouped with a different group than an
element s3 on the (almost) same position,

• s2 is already in a group, and its direct neighbours have
a much lower grouping probability with s1 (and vice
versa).

The rationale behind the first condition is that if two
detections are on the same spot but have been classified
differently, this is most likely a misclassification. In this case,
we prefer the detection that was grouped first, because it
apparently fits better into the context.

The reason for the second condition is that lines on the
road may split (e.g. on highway exit points or crossings).
In this case, pgroup between two elements after a split will
be much smaller than between the element before the split
respectively. Without this condition, both lines after the split
would become part of the same group, which is highly
undesirable.

(a)

(b)

Fig. 2: Distance function for the dashed line class (a) and
straight line class (b). The origin is on the left border in the
middle. White points stand for positions of real lines in our
dataset.

A further conflict check is required to avoid that two
elements selected for grouping are in groups with different
classes associated to them. However, this is already guaran-
teed by the update step of the algorithm.

D. Distance function

The distance function expresses on which position an
element is to be expected from the perspective of another
element, given a certain class. The design of these functions
(one for each class) is crucial for the grouping results, as it
influences how much one class will be preferred against all
others. It becomes even more important if the grouping step
needs to compensate unreliable classification results from the
classifier.

For our case, we defined three types of neighbourhood
functions based on the type of road features:
• Point features (e.g. Arrow detections): We assume point

features are singular detections without any repeating
pattern. In this case, we only want to cluster detections
around this point.

• Straight lines: Due to errors in the detection process,
lines can be fragmented into smaller segments. Here,
we expect other lines directly in front of the line, but
not at the sides.

• Dashed lines: These appear in fixed patterns on the
road in ratios of 1:2, 1:1 or 2:1 between dash and
gap lengths. Because we assume that dashes can be
missing in between, the neighbourhood function needs
local maxima for higher ratios as well.

Figure 2 shows the distance functions for dashed and
straight lines. For point features (not depicted) the distribu-
tion becomes a simple Gaussian distribution based euclidean
distance. Note how the distribution for dashed lines has
repeated maxima that are sharper close to the origin and
become more diffuse in the distance to capture inaccuracies
in calculating the line length. Positions of real detections in
our dataset are shown as light dots in the image. Especially
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Fig. 3: Finding the best connection through the dashes shown
in the left image. Rejected connections in the graph are
marked in green, final path in red.

the distribution for dashed lines in Figure 2a corresponds
very well to real locations.

Because lines on the road are generally not straight, we
use an approach similar to the approach proposed by Jonk et
al. [13] that is based on the delta angle ∆φ between the two
elements: Instead of evaluating the distance function in the
direction of one of the two lines, we evaluate the distance
function along a line at 1

2∆φ, because we can expect the next
element along this line if the lines form a circle. To avoid
that lines are clustered at a high delta angle, we multiply the
result with a von Mises distribution p(∆φ).

E. Post-processing

After the grouping is completed, the final classes and the
groups of the elements are known, but we need to calculate
the final lines from the groups. To first determine the correct
sequence of the line elements, we build a neighbourhood
graph containing all points of the linestrings as vertices
and the connection between them as edges. Additionally,
we connect the endpoints of every linestring with all other
endpoints in the vicinity. Finally, we calculate the minimum
spanning tree (MST) from this graph. The resulting line is
then the longest remaining path in the MST.

This method ensures that the final line is not a direct
connection between the two most distant endpoints, but
instead connects most of the line points without major jumps
and without self-intersections.

The process is shown in Figure 3. The resulting path (in
red) might still contain sharp edges, e.g. if we have two
detections on the same space. Because of that we simplify the
resulting line using the Douglas-Peucker algorithm [15] and
finally smooth and supersample the line using non-uniform
rational B-splines (NURBS).

III. EVALUATION

A. Set-up and method

The described algorithm is evaluatad on two different
scenarios. The first scenario is composed of an 11 km test
drive in the east of Karlsruhe, Germany. The test drive
was recorded three times and a ground truth was manually
labelled containing all visible markings along the track. The
drive contains a variety of different scenarios (see Figure 4).

Images were recorded using our research vehicle ”An-
nieWay” with a stereo set-up to the rear of the vehicle and
at a resolution of 1200 px×597 px at a frame rate of 10 Hz.

The second evaluation is done online along a German
highway to evaluate the results of the algorithm with a more

12 km Test Course in Karlsruhe 
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Fig. 4: Test drive used for evaluation

standard online line detector. The hardware setup consisted
of a grey-scale monocular camera (2.8 Mpx) recording im-
ages with a frequency of 15 Hz.

The algorithm itself was implemented in C++ (single-
threaded). The distance functions were parametrized based
on the German legal instructions for road markings [16].

B. Offline evaluation on test drive

The marking detection algorithm used for offline eval-
uation requires top-view images. These are obtained by
warping the input images to top-view perspective using
stereo reconstruction and merging them with each other
based on their relative position. Positions are calculated
using a visual SLAM approach [17]. Markings are detected
using an algorithm proposed by us [5]. For comparison with
the ground truth, we sample points along manually labelled
reference lines and compute the distance to the next detection
of this class. If this is larger than 20 cm, we consider that
as a false negative, otherwise as a true positive. The false
positives are calculated by sampling along a detected line
and calculating the distance to the next ground truth label.

For point features, like arrows, the centroid distance be-
tween detection and ground truth is used instead.

To measure the improvement compared to the raw detec-
tions where the classification result is actually a probability
distribution over all classes, we use the most probable classi-
fication result as reference. Because the detector only detects
single dashes instead of whole lanes, we created a second
ground truth containing only dashes for better comparability.

The results of the grouping algorithm are shown in Table I
for all the markings detected over one of the three drives and
for grouping the detections over all three in one large step.
The execution time on an Intel Mobile i7 CPU at 2.5 GHz
was 3.34 s for the single drive and 35.05 s for all three.

The results show that our algorithm is able to greatly
increase the recognition rate over all line types. The longest
resulting line is tracked over its full length of 1.1 km (and
similarly for other lines). The improvement with the 25 cm
lines is lower because they are usually shorter so that the use
of contextual information confers a smaller advantage.

In the results from our original detector, straight lines are
often detected as fragments and erroneously classified as
dashes. Our algorithm corrects this mistake because these
lines appear in a random pattern instead of fixed ratios. This
greatly increases the precision for dashed lines and the recall
for straight lines.



Recall Precision
Class Exist Detected One drive Three drives Detected One Three

Dashed line 12 cm 8050 m 92% 93% 98% 45% 76% 73%
Dashed line 25 cm 2348 m 81% 80% 90% 77% 82% 67%
Straight line 12 cm 7028 m 57% 70% 82% 96% 93% 80%
Straight line 25 cm 2343 m 61% 73% 76% 77% 80% 82%

Stop line 168 m 77% 78% 77% 81% 82% 68%
Pedestrian crossing 688 m 64% 64% 83% 84% 83% 85%

Total 20625 m 71% 80% 88% 61% 82% 76%
Zebra crossing 3 100% 100% 100% 43% 75% 75%

Zig-zag 10 80% 70% 80% 67% 78% 80%
Arrows 131 73% 73% 80% 97% 97% 94%

Tempo Limits (30) 2 100% 100% 100% 100% 100% 100%
Total 146 73% 72% 83% 91% 94% 92%

TABLE I: Results of the grouping algorithm for one drive and for three drives compared to the raw detections from the
markings detector. Arrows and pedestrian crossings are summarized from multiple subclasses for better legibility.

However, the point features listed on the lower half of
Table I profit not so much from grouping in the single drive.
This is expectable because every element is detected only
once and contextual information is not of use here. This
changes when detections are clustered over multiple drives,
because now we can group multiple detections on the same
position which is helpful to reject outliers.

While the recall rate increases for multiple drives in
general, the precision was lower, mostly because of the
higher risk of random outliers but also because the position of
the three drives calculated by the SLAM approach diverges
by over 1 m for the last 20% of the track, so that the positions
of the markings no longer match.

Some images from the results of our algorithm are shown
in Fig. 5 and 6. Dashed lines from the algorithm are shown
as blue (thick or thin) dashes (dash length is not related to
the real dash length), stop lines in red, pedestrian and zebra
crossings in green and symbols with their respective symbol.

The real stop lines are not visible under the red lines but
were always classified correctly except for one false positive
in Image 5c, at the start of a pedestrian crossing.

The images show that our algorithm performs very well
even in complex scenarios like crossings where many differ-
ent line types meet and even intersect at a small distance.
Circles or curves as in roundabouts are not a problem.

However, one problem we found difficult to handle was
that our algorithm grouped some lines that end right before
an intersection or pedestrian crossing and then continue some
30 m after it. In these cases two interpretations of the same
scene are possible: Two separate lines or one continued line
that crosses the intersection. Our ground truth data only
contains the first interpretation yielding a disproportionately
lower precision value.

Most false positives originate in false detections from the
detector if those detections appear in a pattern that fits well
to one of the distance functions. One issue here is tram
rails on the road like in Fig. 6a, because once they are
erroneously detected by the detector, the grouping algorithm
is unable to distinguish them from regular road markings. A
similar problem arises when curbstones are detected as road
markings as well (see Fig. 6b).

C. On-line evaluation on highway

To showcase the application of our presented algorithm for
online processing of detected lane markings, we evaluate its
performance for a simplified scenario on a German highway.
Clusters of lane markings are firstly extracted from the image
sequence using a common lane marking extraction algorithm.
The detected lines are transformed into top-view perspective
and class probabilities are assigned for each marking cluster
by applying simple fuzzy rules. Finally, the transformed
clusters are accumulated according to the vehicle motion
obtained by visual odometry [18].

For evaluation purpose, we selected a test track of ap-
proximately 2 km length on a German highway. The size of
the accumulation window is 2 s, or 30 frames respectively.
Firstly, we analysed the runtime for 1000 time steps in
total on an Intel Mobile i7 CPU. As a result, on average,
141 marking clusters are passed to the grouping algorithm
which took approximately 37 ms per time step to compute
the grouping result.

In total, 86.9% of all labelled lane markings are correctly
classified as thin/thick, dashed/straight lines, while the per-
centage of incorrectly classified and missing lane markings
is 7.6% and 5.5% respectively. Considering runtime and
classification performance, the grouping algorithm is highly
suitable for online algorithms, e.g. for lane-level accurate
localisation of an autonomously driving vehicle on highways
since two or more lane markings groups are correctly clas-
sified in approximately 94% of the time.

IV. CONCLUSION AND FUTURE WORK

In this paper, we presented a method for improving the
detection of road features based on their relative position.
The evaluation shows that the proposed algorithm is well
suited for increasing the performance of a road feature
detection algorithm at a low computational cost. We found
the proposed algorithm to be very robust even in complex
environments – like intersections – where many conflicting
interpretations of the detected markings are possible. We
were also able to show that or algorithm is able to run
not only off-line for mapping purposes, but also on-line to
increase the reliability of an on-line lane marking detector
while at the same time providing fully connected dashed
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Fig. 5: Examples for good results of the grouping algorithm.

(a) (b)

Fig. 6: Problematic regions: (a) Rails, (b) Random detections
on curbstones

lines instead of individual dashes and rejecting outliers and
multiple detections of the same marking.

Our approach achieved an overall increase in the detection
rate from 71% to 80% for line markings. The precision
increased even more by over 35% overall. This shows that
the approach is very well suited to improve the reliability of
road feature detection.

The approach is also able to handle detections of several
recorded tracks of the same route. In our evaluation we
were able to reach a further improvement from 71% to
88% for line markings and similar for point-typed markings.
However, the algorithm performance decreases from a certain
number of drives on the same route, because the increasing
probability of random detections in the proximity of an
outlier can lead to random groupings that worsen the result.
This effect is partly responsible for the drop in precision in
the multi-drive results.

A better way to further improve the performance would
be to detect much more different features than only road
markings, like curbstones or – in our case – even rails.
Because the algorithm accepts only one valid detection in
a certain range, this can serve to reject outlier, e.g. false

marking detections on curbstones, in a more intelligent way.
A further possible improvement could be achieved by

considering the relations between different classes, too, by
providing distance functions not only for two detections of
the same class, but for any combination of classes. That way,
contextual information of the kind ”Dashed lines often ap-
pear in parallel with staight lines” could be modelled. We did
not investigate this in our paper, because such an approach
extremely increases complexity and thus computation time.
Still, the results of Mathibela et. al [9] indicate that such
an approach can further increase the detection results when
only little other contextual information is available.
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