
c©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

DOI: https://doi.org/10.1109/ITSC.2016.7795766

Robot Operating System: A Modular Software Framework
for Automated Driving

André-Marcel Hellmund, Sascha Wirges, Ömer Şahin Taş, Claudio Bandera, Niels Ole Salscheider
FZI Research Center for Information Technology, 76131 Karlsruhe, Germany

[hellmund,wirges,tas,bandera,salscheider]@fzi.de

Abstract— Automated vehicles are complex systems with a
high degree of interdependencies between its components. This
complexity sets increasing demands for the underlying software
framework. This paper firstly analyzes the requirements for
software frameworks. Afterwards an overview on existing
software frameworks, that have been used for automated
driving projects, is provided with an in-depth introduction
into an emerging open-source software framework, the Robot
Operating System (ROS). After discussing the main features,
advantages and disadvantages of ROS, the communication over-
head of ROS is analyzed quantitatively in various configurations
showing its applicability for systems with a high data load.

I. INTRODUCTION

Since the 1980s the research of automated vehicles has
made tremendous progress [1] such that this field meanwhile
has a thorough theoretic foundation for sensor processing,
environment modeling, state estimation, tracking and vehicle
control. The interest in automated and cooperative driving
research has been boosted by the DARPA Challenges [2],
[3] and the Grand Cooperative Driving Challenge [4], respec-
tively. Every new competition thereby sets higher demands
on the system complexity enforcing the development of
highly adaptable functional system architectures.

From an abstract point of view, an automated vehicle
can be considered as a cognitive agent and fundamentally
consists of a perception module, wherein the input, e.g.
images, GNSS positions or LIDAR scans, is used to derive
the cognitive decisions of the system, which finally deliver
actions, such as actuator commands or C2X messages (see
Figure 1). Leaving this top-level view of the system, the
internal functional system architecture has a high degree of
interdependencies between many functional components [5].
This complex and interdependent structure of the system
architecture imposes increasing requirements for the under-
lying software framework.

The intention of this paper is to shortly review existing
software frameworks for automated vehicles with an in-
depth introduction into one mature open-source software
framework, the Robot Operating System (ROS), that is well
established in the robotics community.

The paper is structured as follows: Section II introduces
the requirements on software frameworks for automated
driving. Section III summarizes two software frameworks
that found practice in automated driving, while Section IV
elaborately describes one software platform that is inten-
sively used by major automotive manufacturers, suppliers,

Environment

Cognitive
Decision

Perception Action

Cognitive System

Fig. 1. High-Level System Architecture for Automated Vehicles.

and research institutes. Section V performs a metric-based
evaluation of the communication overhead of the system
and Section VI finally concludes this paper and gives a
short outlook on improvements for the presented software
framework.

II. DESIGN REQUIREMENTS

Automated driving states special requirements towards the
design of Software Frameworks (SWFs). In this section, we
introduce requirements that are specifically important to our
team.

A. Modularity and Extensibility

Ideally, a SWF is divided into well-defined, independent
modules of small size [6]. Due to their functional indepen-
dence these modules can be tested and evaluated in isolation
with low effort. This results in a better maintainability and
enables the division of work in groups [7]. In order to achieve
modularity, one needs to define common interfaces, which
the user can use from a high level of abstraction. Given a
modular SWF with well-defined interfaces, functionality can
be extended and exchanged easily.

B. Performance

In real-time computing, tasks should be performed in
a deterministic fashion with user-acceptable timings. Hard
real-time SWFs guarantee that each computational response
is made at a certain rate with a maximum deviation, i.e. jitter,
around the expected response time. In a soft real-time SWF
only the average response time is guaranteed to be within
the defined time interval and jitter. In the case of SWFs for

https://doi.org/10.1109/ITSC.2016.7795766

automated driving at least soft real-time requirements should
be fulfilled.

C. Simulation and Debugging

The offline simulation of automated systems is an impor-
tant, however underestimated aspect in our community to
fine tune and debug systems. A software framework should
therefore offer a runtime environment and supporting tools to
simulate a vehicle at different abstraction levels, from high-
level perception down to low-level controlling.

D. Fault Tolerance and Security

The SWF should be able to recover from unexpected
failures during runtime, e.g. hardware- or software-related
outages. Especially when communicating over channels with
noise, jitter and latencies, the SWF should maintain proper
execution. To achieve fault tolerance, monitoring concepts,
e.g. a redundant voting logic, can be implemented. In ad-
dition to fault tolerance the architecture needs to secure
the communication towards unauthorized data access or
modification.

E. Usability and Support

The SWF’s user interface should be easy to use for groups
in research and development. Therefore, tools should be
provided that simplify user interaction, monitoring and data
visualization. It is especially important for non-experts to
get documentation, examples or tutorials on how to use the
software.

III. AUTOMOTIVE SOFTWARE FRAMEWORKS

Throughout the past decade, various software frameworks
emerged in the field of automated driving. The selection or
design of a software framework is a crucial step for many
research groups. In this section we introduce two well known
and widely used software frameworks for automated driving.

A. Real-time Database for Cognitive Vehicles

For the last ten years, the Real-time Database for Cog-
nitive Automobiles (KogMo-RTDB) was used as a data ex-
change provider within our team’s research vehicles [8].

Within the centralized KogMo-RTDB architecture data
objects can be published at a central place [9]. It provides
a unified interface to insert, update and delete objects. Al-
though KogMo-RTDB provides dynamic memory allocation
for data objects, memory needs to be allocated statically
within the objects. This can be cumbersome in situations
where object sizes vary, e.g. measurement data acquired
by laser scanning devices. Objects are kept within shared
memory for a certain amount of time and can be serialized
and written to storage. Within distributed systems, however,
KogMo-RTDB is not intended to communicate via network
protocols.

KogMo-RTDB is accompanied by tools to record and
playback data objects. Unfortunately, the project is currently
poorly maintained without a community of active open-
source developers.

B. Automotive Data and Time-Triggered Framework

The proprietary EB Assist Automotive Data and Time-
Triggered Framework (ADTF) is the mostly used develop-
ment and testing environment for Advanced Driver Assis-
tance Systems (ADASs) today [10], [11]. It is designed
as a real-time system with distributed process chains and
supports synchronous and asynchronous data processing.
Communication between individual process chains can be
realized in pipeline, event, or service-call based manner.
ADTF is extendible by custom modules, while additional
toolboxes such as device drivers or a MATLAB/Simulink
interface can be purchased. Like KogMo-RTDB, ADTF also
offers tools for recording and playback of data and hence
provides rudimentary capabilities to simulate and debug the
system offline. Because ADTF is a professionally licensed
product, ADTF is mostly used by industrial companies,
which is why the community around ADTF is unfortunately
limited.

The next section introduces the software framework that
is intensively used at our institute and by other international
teams [12], [13], [14] for developing ADASs and automated
driving functions.

IV. ROBOT OPERATING SYSTEM

The Robot Operating System (ROS) [15], [16] is an open-
source software framework supporting the development of
complex, but modular systems in a distributed computing
environment. While the core components of ROS are highly
generic, the primary focus of ROS and its ecosystem is
set to the development and research of robots. The perfor-
mance critical parts of the framework are written in C++,
but applications operating on top of the framework may
currently be written in C++, Python or Lisp.1. The following
sections introduce ROS technically, starting with its high-
level software architecture down to a low-level view on
how information is communicated in the system. After the
introduction of the system and application architecture, the
design requirements stated in Section II are analyzed by
describing various features of ROS.

A. System Architecture

The ROS framework is a multi-server distributed comput-
ing environment allowing software applications (referred to
as nodes or nodelets in the following) to communicate across
server boundaries and thereby acting as one software system
(Figure 2). One server in the ROS landscape is dedicated
as Master which is responsible for application registration
and execution as well as running the central parameter
storage (Parameter Server) and the message logger (Logging
Service). The satellite servers (Slaves) are connected to the
Master via the local network using the TCP or UDP protocol
and are in charge of running further applications to balance
the load of the system.

1Experimental bindings for other languages are also available.

ROS System

Master

 Node
 Manager

 Parameter
 Server

 Logging

Nodes

Slave
Nodes

Fig. 2. ROS System Architecture. The multi-server ROS system acts as
one integrated system for peripheral devices like sensors and actuators.

B. Application Architecture

Applications running in the ROS landscape are called
nodes or nodelets. The distinction between nodes and
nodelets is that each node is mapped to a dedicated operating
system (OS) process, while nodelets can be grouped inside
a single OS process allowing resource sharing between
nodelets. The ROS application architecture, independent of
the node and nodelet context2, is shown in Figure 3. Inside
the application, the production code is written in either
C++, Python or Lisp. The interaction with ROS and other
applications running in the system is performed through the
ROS interaction layer. The ROS interaction layer thereby
provides the following services among others:

• Uni-Directional, Asynchronous Message Exchange
• Bi-Direction, Synchronous Message Exchange
• Diagnostic Message Transmission
• Local and Global Parameter Handling
• Transitive Time-Based Coordinate Transformations
• Criticality-Based Message Logging

ROS Node

C++ LIBS

ROS Layer

OS Interface

Operating System

ROS Nodelet Manager

C++ LIBS

ROS Layer

OS Interface

C++ LIBS

ROS Layer

OS Interface

Fig. 3. ROS Application Architecture. A ROS node is mapped to a
single OS process, while ROS nodelets reside as threads inside a single
process called ROS Nodelet Manager. The communication between nodelets
is accelerated by intra-ROS communications as indicated by the link
between the ROS layers. Inter-process communication, e.g. across nodes,
is transmitted through the operating system network layers.

C. Modularity and Extensibility

Message Exchange ROS supports two types of message
exchanges: synchronous and asynchronous. Because syn-
chronous messages are less commonly used, we will
set the focus to asynchronous messages in this section.

2The term node will hereafter be used for nodes and nodelets.

Asynchronous messaging is implemented inside ROS
following the publish-subscribe design pattern as shown
in Figure 4. Therefore, a node generating information
defines a publisher and registers this publisher to the ROS
system, while a node requiring some information instantiates
and registers a subscriber. The registered publisher and
subscriber(s) are associated to each other by a unique topic
name.

Message Format The information to be sent and received
is declared in a ROS-specific data format (ROS Message
Format) that supports common primitive data types like
boolean flags, strings, integer and floating point numbers
as well as user-defined types composed of the primitive
types. To support the message exchange across language
boundaries, the declared messages are compiled into native
classes that allow direct modification of data members.
During transmission and reception of data, the compiled
classes are automatically serialized and deserialized by the
ROS system. Consequently, the sole interface to the data
from a programming perspective are the compiled classes.
Note, the serialization and deserialization of data messages
only occurs for inter-process communication, e.g. when two
nodes exchange data. If nodelets communicate with each
other, i.e. intra-process communication, the serialization
overhead is omitted (see Figure 3), which is why the usage
of nodelets is recommended for large data packets, e.g.
images or LIDAR scans.

Broker (ROS)

Node S
Topic: ABC

Topic: ABC Topic: XYZ

Node R1

Node R2

Node R3

Node R1

Node R2

Node R3

Fig. 4. Publish-Subscribe Design Pattern. The broker administers
the list of subscribed nodes per topic and distributes incoming messages
respectively.

Plug-and-Play Modularity When developing a new system,
the decision on the finally employed algorithms is typically
postponed until after the prototyping phase. To facilitate the
instantaneous replacement of subcomponents, a concise and
well established interface between components is required.
Inside ROS, this interface is imposed by the ROS Message
Format introduced above. Every node exactly adhering to
the input and output message formats of a component, e.g.
an image undistort component expects an image as input and
produces an image as output, may be plugged into the system
without modification.

D. Performance

Real-Time Capabilities ROS in its current system archi-
tecture is not real-time capable due to missing time
guarantees for node executions and priority-enforced
message transmission. According to the future roadmap,

real-time capabilities for inter-process and inter-machine
communication are planned for the next major release, ROS
2.03. To nevertheless get a real-time capable ROS system,
the currently claimed strategy proposes to deploy low-level
circuits that meet the real-time constraints, e.g. to equip the
vehicle with low-level, embedded and specialized hardware
to control the vehicle laterally and longitudinally.

Node Pipelining For certain tasks in automated vehicles,
computed output data at a constant, predefined rate is benefi-
cial. For example, in vision-based localization with input im-
ages recorded at 15Hz, the position updates shall generally be
available at 15Hz as well. A concept to achieve this despite
possibly longer in total processing times is node pipelining.
In node pipelining, one or multiple processing steps are split
into smaller chunks that fulfill the desired timing constraints.
Figure 5 shows a hypothetical and artificial process chain to
estimate the motion of an automated vehicle. To meet the
desired update frequency of the vehicle motion estimations,
the individual steps are split into separate nodes and chained
such that vehicle motion results are available at 15Hz with
a dead time equal to the depths of the processing pipeline.

Image
PreProc

15Hz

Feature
Extraction

Motion
Estimation

66ms 66ms 66ms 5Hz

Image
PreProc

15Hz

15Hz

Image
PreProc

Feature
Extraction

Motion
Estimation

Image
PreProc

Feature
Extraction

Pipelining

Fig. 5. Principle of Node Pipelining. The consecutive process steps
residing inside a single node are split into multiple nodes chained together.
Afterwards, an end result, e.g. a motion estimation, is available at full sensor
speed.

E. Simulation and Debugging

Offline-Processing To simulate and analyze subsystems and
to debug critical system errors, it is a fundamental capability
of ROS to record a selected subset of topic data transmitted
through the system. Figure 6 shows a simplified use case
for a visual localization component. In the specific case, the
input messages to the localization component are recorded
to an offline storage. This offline storage saves the message
timestamps as well as the message content for time-accurate
replay of the recorded messages. Note, depending on the

3More information about ROS 2.0 design decisions is available at
http://design.ros2.org/.

Offline System

Online System

Offline – Storage (Rosbag)

Visual
Odometry

Feature
Extraction

Feature
Overlay

Localization

D

B A

D

E

E

Localization

C

Fig. 6. Offline Processing. The message D and E are stored for later
processing in a storage container while the system is running online.
Each captured message is stored with a respective timestamp to replay the
messages in a time-accurate manner. During offline processing, the messages
D and E are transmitted back into the system to solely test the localization
component.

hardware equipment, especially network bandwidths and
storage throughput, all topic messages may be recorded
online while the vehicle is driving to analyze critical driving
scenarios and decisions, e.g. for trajectory planning and
controlling, offline.

Simulation For simulation, the modular messaging structure
of ROS allows to interchange the source of incoming data.
Thereby nodes can easily be tested on recorded data, as
explained above, or even on simulated data. If user input
is needed within the simulation, the tool rviz4 provides a set
of interactive markers that can be used for positioning and
orienting obstacles, for example.

For more advanced, whole system simulations or even
regression testing, ROS integrates seamlessly with Gazebo.
Gazebo is a powerful 3D simulation engine with complete
dynamic and kinematic physics [17]. Through a very exten-
sible plugin system, it supports realistic sensor simulation
including noise for a wide range of predefined sensors.
Custom sensor models can be added through the Gazebo
API. Nowadays Gazebo itself is a standalone software, but
happens to use the same messaging interface that ROS is
build upon, since it originates from the same developers.
The ROS nodes under test are therefore connected through
the already known ROS messaging interface.

F. Fault Tolerance and Security

System Diagnostics and Monitoring During the devel-
opment and runtime of a complex system, it is elementary
for engineers and users of the system to have an immediate
overview of the health of the system, e.g. that all sensors
are connected and are sending data into the system, that

4rviz is 3D visualization tool shipped with ROS, see Usability and Support
for further details.

all components compute the required data at the predefined
rates, etc. To encourage engineers to add diagnostics
for their components, ROS provides an easy to use and
integrated infrastructure for sending diagnostic messages to
a central diagnostic manager that displays the system health
in a traffic light color scheme to immediately pinpoint
critical components or if data integrity is at risk.

Lock Stepping ROS does not have specific features to inher-
ently implement fault tolerance in the sense of lock stepping
systems, however the modular architecture as well as the
standardized interface description facilitate the development
of lock stepping and voting systems to increase the reliability
of the system.

G. Usability and Support

Coordinate Systems and Transformations Inherent to
multi-sensor systems is the definition of multiple coordinate
systems, e.g. camera, vehicle or global coordinate system,
and the frequent need to transform data from one coor-
dinate system into another one. To reduce hard-to-debug
transformation bugs, ROS provides a time-based transfor-
mation service that keeps track of extrinsic transformations
between coordinate systems tagged by a timestamp stating
the transformation’s validity. To support transitive and bi-
directional transformation management, the published trans-
formations are stored in a graph data structure for fast access.
To associate message data with coordinate systems, most
messages embed the coordinate system name into its payload
by using a standardized ROS message header. Figure 7 shows
a sample transformation tree with typically found coordinate
systems in automated vehicles.

UTM Vehicle

𝐓𝐔𝐕 Camera

LIDAR

𝐓𝐂𝐋

Fig. 7. Transformation Graph. The individual extrinsic transformations
between coordinate systems as affine 3D matrices are stored in a time-
based graph. The position of the vehicle for example is time-variant such
that multiple transformations TUV are stored. If the transformation is time-
invariant, a static transformation is stored, e.g. TV C between the vehicle
and the mounted camera. Given the explicit transformations (thin arrows),
implicit transformations, e.g. TCL may be computed on-the-fly.

Multi-Rate Systems Almost all information in sensor-based
systems like automated vehicles is typically exchanged at
fixed rates, e.g. the maximum rates enforced by the sensors.
As an example, camera images are acquired at an update
rate of 15Hz, while GNSS position fixes are only available
at 1Hz or 5Hz. Data synchronization is hence an important

aspect, especially when fusing multiple sensor streams. To
simplify the data synchronization in multi-rate systems,
ROS provides synchronization primitives (Message Filters)
based on timestamps, either embedded into the messages or
captured during message transmission.

Visualization To provide user feedback and to perform high-
level system monitoring, an in-depth visualization of sensor
and derived data as well as internal states, e.g. vehicle
odometry, are mandatory. For visualization purpose, ROS
provides two highly extensible tools (rqt and rviz) that may
be tailored to the systems requirements. Visualization use
cases include intra via:

• Image Display
• 3D Plotting (Point Clouds)
• Primitive Markers (Lines, Squares, Ellipses, etc.)
• Vehicle State Data (Odometry)
• Satellite Image Tiles

V. EVALUATION

As outlined in Section IV, one of the main advantages
of the ROS framework is the communication back-end
that facilitates asynchronous data exchange between nodes.
Considering the performance of an overall system, the two
dominating aspects are the algorithmic computation time and
the communication overhead, e.g. latencies. The focus of this
evaluation is set to the communication-related metrics of the
ROS system, while the computation time of individual nodes
is left out of this discussion.

We evaluate the performance of the ROS system by setting
up an examplary vision-based processing pipeline, e.g. for
visual localization, in a live system as depicted in Figure 8.

Camera
Driver 10Hz

Feature
Extraction

Image
Converter

𝐓𝟏,𝐄

Image
Undistorter

𝐓𝟐,𝐒 𝐓𝟐,𝐄 𝐓𝟑,𝐒 𝐓𝟑,𝐄 𝐓𝟒,𝐒

2.8M 2.8M 1.0M

Fig. 8. Evaluation System. A camera image is retrieved by the camera
driver at 10Hz. Afterwards the image is converted into an 8-bit grayscale
image that is undistorted. At the last step, features are extracted from the
images, e.g. for visual localization of a vehicle. Ti,S and Ti,E represent
the measured start and finish times of node i.

The pipeline contains three stages, namely image conver-
sion, image undistortion and feature extraction. The amount
of data transmitted between the nodes is different as indicated
in Figure 8. In order to generate a realistic system load, four
Point Grey Flea3 with a resolution of 2.8 MP are connected
via Gigabit Ethernet to a server running Ubuntu 14.04. The
server is equipped with 12 CPU cores5 and 64 GB of main
memory. The connected cameras are triggered externally
with a predefined, fixed update frequency of 10 Hz.

The evaluation of the live system is centered around two
metrics: The communication-induced latency and the jitter

5Intel Hyper-Threading is enabled during the measurement runs.

of the configured processing pipeline. The communication
overhead is measured by recording wall clock times between
message transmission at node i and message reception at
node i+ 1. The measured times are based on the operating
system clocks with an accuracy in the nanosecond range.

In total, we conduct the time-based evaluation for 6
different system loads. Firstly we distinguish between nodes
and nodelets to showcase the benefit of intra-process commu-
nication without message serialization. Within each group,
we evaluate the latency and jitter for three cases: single
camera setup, 4 camera setup and 4 camera setup with
additional CPU load6 produced by a CPU stress tool.

A. Latencies

The communication latency is the time overhead caused by
the ROS interaction and OS communication layer to transmit
a message from one node to the other. In accordance with
Figure 8, the latency is measured by:

Li,i+1 = Ti+1,E − Ti,S (1)

Table I lists the average latencies L̄i,i+1 for all three com-
munication paths distinguished by nodes and nodelets. The
numbers are averaged over 1000 samples.

Scenario Nodes Nodelets
Times in [ms] L̄1,2 L̄2,3 L̄3,4 L̄1,2 L̄2,3 L̄3,4

1 cam 5.274 4.743 0.917 0.139 0.065 0.150
4 cams 3.843 4.571 1.914 0.138 0.074 0.144

4 cams + load 5.666 3.337 43.691 0.115 0.088 0.213

TABLE I
LATENCY EVALUATION.

The numbers show that the latency for larger data packets
is in the lower millisecond range if nodes are configured.
If the system deploys nodelets however, the transmission
latency is reduced down to the sub-millisecond range. The
second consequence with regard to nodelets is that the
latency remains rather stable even if the system is under
heavy load while the transmission times get unpredictable
in the node case, e.g. considering L̄3,4. Note, the high
numbers for L̄3,4 are obviously not the net overhead of the
transmission, but are caused by scheduling effects due to the
CPU stress tool. A more thorough analysis of scheduling
effects could be valuable here, but the emphasis in this
evaluation is mostly set on the comparison between nodes
and nodelets.

B. Jitter

The jitter of periodic signals describes the deviation of the
signal arrival time from perfectly aligned, periodic arrival
times as shown in Figure 9. For this evaluation, the jitter
is computed as the standard deviation of the measured
latencies:

σi,i+1 =

√√√√ 1

N

N∑
k=1

(Li,i+1 − L̄i,i+1)2 (2)

68 CPUs are kept busy at 100% during the measurements.

10Hz

𝚫𝐓

Fig. 9. Jitter of Periodic Signals. The dashed vertical lines indicate the
perfect signal arrival times, while the solid lines visualize the real arrival
times. The deviation of both arrival times is the jitter of the signal ∆T .

Table II lists the jitter σi,i+1 for all three communication
paths distinguished by nodes and nodelets.

Scenario Nodes Nodelets
Times in [ms] σ1,2 σ2,3 σ3,4 σ1,2 σ2,3 σ3,4

1 cam 0.671 0.382 0.091 0.024 0.013 0.098
4 cams 0.632 0.852 1.817 0.087 0.123 0.196

4 cams + load 1.774 3.294 27.180 0.151 0.242 0.432

TABLE II
JITTER EVALUATION.

The numbers confirm the conclusion from the latency
analysis that reasonable jitter values are expectable for the
nodelet configuration even under high load such that ROS
is capable to handle high data load scenarios in automated
vehicles.

C. Multi-Server Communication

As introduced in Section IV, a ROS system may be
operated across server boundaries with data transmitted via
the local network. Table III lists the transmission latencies
and the jitter according to Equations 1 and 2 for a simplified
variant of the setup in Figure 8. The second node in the
pipeline is relocated to a different server such that image
data is transmitted via the local network. We distinguish
two different scenarios: (1) raw image transmission and
(2) compressed image transmission using the JPEG format.
The numbers show that transmitting large payloads via the
network results in high transmission latencies, however the
latency may significantly be reduced in terms of increased
CPU consumption by compressing the data before the trans-
mission.

Scenario Raw Compressed
Times in [ms] L̄1,2 σ1,2 L̄1,2 σ1,2

1 cam 26.086 5.716 18.805 2.920
4 cams 87.097 4.500 17.137 4.500

TABLE III
LATENCY AND JITTER EVALUATION FOR INTER-SERVER

COMMUNICATION.

D. Software Framework Comparison

Given the introduced software frameworks ROS, Kogmo-
RTDB and ADTF, Table IV summarizes the capabilities
of each framework qualitatively from our perspective with
regard to the design and feature requirements in Section II.

Thereby, we evaluate the features that are available out-of-
the-box without further development needs. Each category
is classified from very good (++) via moderate (o) down to
hardly available (--).

Requirement ROS RTDB ADTF
Modularity ++ ++ ++
Extensibility ++ + +
Real-Time Performance - + ++
Simulation ++ o o
Debugging ++ + ++
Fault Tolerance o - +
Security - - o
Usability ++ o +
Support ++ -- +

TABLE IV
QUALITATIVE COMPARISON OF SOFTWARE FRAMEWORKS.

VI. CONCLUSIONS AND OUTLOOK

In this paper we introduced high-level requirements on
software frameworks for automated vehicles. That is, we
demand a framework to be modular and extendible, to have
a low-overhead, to support fault-tolerant development and
finally to provide a rich ecosystem of supporting tools. Af-
terwards we named existing software frameworks, Kogmo-
RTDB and ADTF, that have been used in the past for
demonstration purpose in research and industry. As the main
part, we presented the Robot Operating System as an open-
source software framework that our automated vehicles are
operated on. Using ROS, we have successfully finished
multiple demonstrations involving high data workloads with
multiple cameras and controlling a vehicle to follow an
offline recorded GNSS trajectory. Recently, we participated
in the second Grand Cooperating Driving Challenge (GCDC)
and successfully finished the competition as the second
best team. Our modular and extendible software framework
played an important role in adapting the system to short-
term modifications and thereby obtaining the very good end
results.

Finally, we evaluated the ROS overhead and analyzed the
latency and jitter of periodic data signals flowing through
the ROS system. While the configuration with nodes and
separate processes for each component provides limited
and partly unpredictable results, using nodelets for each
component results in highly reasonable timings.

The results have proven that ROS shows its strength in
developing applications for automated vehicles, especially
for prototyping purpose. On the contrary, our experience has
shown that the main flaw lies within the area of real time
performance and time guarantees for message transmission.
Additionally, inappropriate sizing of the multi-server land-
scape with data loads close to the limits of the network
bandwidth may result in silent package losses. The next main
version of ROS, version 2.0, however is supposed to address
those issues and provide a system closer to the status quo of
real-time processing and hence towards its more wide-spread
application in automated vehicles.

REFERENCES

[1] K. Bengler, K. Dietmayer, B. Färber, M. Maurer, C. Stiller, and
H. Winner, “Three decades of driver assistance systems: Review and
future perspectives,” IEEE Intell. Transp. Syst. Mag., vol. 6, no. 4, pp.
6–22, 2014.

[2] S. Thrun, M. Montemerlo, H. Dahlkamp, and Others, “Stanley : The
Robot that Won the DARPA Grand Challenge,” Journal of Field
Robotics, vol. 23, no. April, pp. 661–692, 2006.

[3] S. Kammel, J. Ziegler, B. Pitzer, M. Werling, T. Gindele, D. Jagzent,
J. Schröder, M. Thuy, M. Goebl, F. von Hundelshausen, and Others,
“Team AnnieWAY’s autonomous system for the 2007 DARPA Urban
Challenge,” Journal of Field Robotics, vol. 25, no. 9, pp. 615–639,
2008.

[4] A. Geiger, M. Lauer, F. Moosmann, B. Ranft, H. Rapp, C. Stiller, and
J. Ziegler, “Team AnnieWAY’s Entry to the 2011 Grand Cooperative
Driving Challenge,” in IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 13, no. 3, 2012, pp. 1008–1017.

[5] O. S. Tas, F. Kuhnt, J. M. Zöllner, and C. Stiller, “Functional System
Architectures towards Fully Automated Driving,” in IEEE Proc. Intell.
Veh. Symp., 2016.

[6] K. Jo, J. Kim, D. Kim, C. Jang, and M. Sunwoo, “Development of Au-
tonomous Car–Part I: distributed system architecture and development
process,” IEEE Trans. Ind. Electronics, vol. 61, no. 12, pp. 7131–7140,
2014.

[7] ——, “Development of Autonomous Car–Part II: A case study on the
implementation of an autonomous driving system based on distributed
architecture,” IEEE Trans. Ind. Electronics, vol. 62, no. 8, pp. 5119–
5132, 2015.

[8] M. Werling, M. Goebl, O. Pink, and C. Stiller, “A Hardware and
Software Framework for Cognitive Automobiles,” in IEEE Intelligent
Vehicles Symposium. IEEE, 2008, pp. 1080–1085.

[9] M. Goebl and G. Färber, “Interfaces for integrating cognitive func-
tions into Intelligent Vehicles,” IEEE Intelligent Vehicles Symposium,
Proceedings, pp. 1093–1100, 2008.

[10] J. Messner, “EB Assist ADTF Automotive Data and Time Triggered
Framework,” Tech. Rep., 2015.

[11] K. Hoffmeister, “Automated Driving - Necessary Infrastructure Shift,”
ATZ elektronik, vol. 1, pp. 42–47, 2016.

[12] M. Aeberhard, T. Kühbeck, B. Seidl, M. Friedl, J. Thomas,
and O. Scheickl, “Automated Driving with ROS at BMW,”
ROSCon 2015 Hamburg, Germany. [Retrieved: May 10,
2016]. [Online]. Available: http://roscon.ros.org/2015/presentations/
ROSCon-Automated-Driving.pdf

[13] L. C. Fernandes, J. R. Souza, G. Pessin, P. Y. Shinzato, D. Sales,
C. Mendes, M. Prado, R. Klaser, A. C. Magalhães, A. Hata et al.,
“Carina intelligent robotic car: Architectural design and applications,”
Journal of Systems Architecture, vol. 60, no. 4, pp. 372–392, 2014.

[14] D. Martin, F. Garcia, B. Musleh, D. Olmeda, G. Peláez, P. Marin,
A. Ponz, C. Rodriguez, A. Al-Kaff, A. de la Escalera, and Others,
“IVVI 2.0: An intelligent vehicle based on computational perception,”
Expert Systems with Applications, vol. 41, no. 17, pp. 7927–7944,
2014.

[15] W. Garage, “Robot Operating System (ROS),” 2012.
[16] M. Quigley, K. Conley, B. Gerkey, J. FAust, T. Foote, J. Leibs,

E. Berger, R. Wheeler, and A. Mg, “ROS: an open-source Robot
Operating System,” ICRA Workshop on Open-Source Software, vol. 3,
no. 3.2, p. 5, 2009.

[17] M. R. Zofka, S. Klemm, F. Kuhnt, T. Schamm, and J. M. Zöllner,
“Testing and Validating High Level Components for Automated Driv-
ing: Simulation Framework for Traffic Scenarios,” in IEEE Proc. Intell.
Veh. Symp., 2016.

http://roscon.ros.org/2015/presentations/ROSCon-Automated-Driving.pdf
http://roscon.ros.org/2015/presentations/ROSCon-Automated-Driving.pdf

	Introduction
	Design Requirements
	Modularity and Extensibility
	Performance
	Simulation and Debugging
	Fault Tolerance and Security
	Usability and Support

	Automotive Software Frameworks
	Real-time Database for Cognitive Vehicles
	Automotive Data and Time-Triggered Framework

	Robot Operating System
	System Architecture
	Application Architecture
	Modularity and Extensibility
	Performance
	Simulation and Debugging
	Fault Tolerance and Security
	Usability and Support

	Evaluation
	Latencies
	Jitter
	Multi-Server Communication
	Software Framework Comparison

	Conclusions and Outlook
	References

