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Abstract— Intelligent vehicles heavily rely on robust and
accurate self-localization. Global navigation satellite systems
(GNSS) are not reliable in urban environments due to mul-
tipath and shadowing effects. Vision-based localization offers a
promising alternative.
We present a high-precision six degrees of freedom self-
localization method using multiple cameras covering the sur-
rounding environment. First, a point feature map is created
using images from a previous pass of the area to map. There-
after, the map is used for high-precision localization in real-
time. While localization, a rough prior estimate of the current
pose is used to shrink the search space for feature matching
by projecting mapped landmarks into current images. Then,
stored observations of the projected landmarks are matched
to actual observations and the egopose is estimated by back-
projection error minimization. Thereby, our map structure
provides mapped landmarks efficiently towards localization
with multiple cameras. In real-world experiments we show that
our approach provides reliable localization results while passing
the mapped area in arbitrary orientation.

I. INTRODUCTION

Current intelligent transportation systems require robust
and accurate self-localization in a multitude of scenar-
ios. Common approaches couple inertial measurement units
(IMU) and GNSS reach centimeter accuracy merely in
open sky environments. Despite promising approaches using
spinning laser scanners [16], recent vision-based approaches
([1], [5], [20]) show highly accurate results. Using cameras
is particularly suitable for intelligent vehicles since they are
cheap and easy to integrate. However, a major drawback
of these approaches is the requirement to drive accurately
on the mapped track to provide reliable localization results.
Localization fails due to small deviations of the vehicle’s
orientation or even while driving slightly beside the track.
A point feature based approach [1] is fused with a lane-
marking based localization [12] and an IMU to estimate the
egopose during the memorial Bertha-Benz drive [3]. Here,
two supplementary approaches are combined to provide reli-
able localization in inner-city scenarios as well as in poorly
structured areas. From a practical point of view, maintaining
two approaches and combining them cause additional effort.
More favorable would be to maintain merely one vision-
based localization system which performs in both scenarios.
Here, we present a high-precision vision-based localization
method covering six degrees of freedom using multiple cam-
eras, which span a surrounding field of view (FOV) in total.
We localize relatively to a map created fully automatically
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Fig. 1. Visualization of matches which support egopose estimate using four
cameras( image top left → front camera, image top right → left camera,
image bottom left→ right camera, image bottom right→ rear camera). The
color of a point encodes the camera seen the landmark while mapping. The
vehicle is driving towards mapping direction in the upper scenario whereas
in bottom the vehicle is driving in opposite direction. Obviously, landmarks
mapped in the front/left camera are matched in the rear/right camera and
vice versa. The number of inlier matches is similar and pose estimation has
same precision as in the upper scenario (∼ 5cm).

from images of a previously pass of the same track. Mapping
as well as localization do not require further measurements
from GPS, IMU, odometers or other sensors. For mapping,
salient image points are matched and tracked over time
in all cameras. Through bundle adjustment, the tracks are
utilized to reconstruct vehicle poses and 3D-landmarks.
One major contribution is the dynamic grid map, which
provides the mapped landmarks and their related features
and corresponding observation positions during localization.
This grid structure utilizes the properties of the surround
view benefitly towards localization with multiple cameras
and is independent of the size of the mapped area.
Our localization approach is based on the principles de-
scribed in [1]. First, a rough prior estimate of the egopose is
estimated using place recognition [10] and visual odometry
[17]. The prior estimate is used to select nearby landmarks
and match them to current image observations near to the
projection of the landmarks in image space. Finally, the ego-
pose is estimated by minimization of the back-projection
error of the matches. In difference to [1], our landmark
projection scheme enables to match mapped landmarks to
observations of each camera. Due to the surround view,
our map provides landmark observations from all directions
and therefore, we are able to localize independently of the



orientation of the vehicle. Thereby, our novel map structure
implicitly ensures that more relevant landmarks are preferred
and sampling of the landmarks is equally distributed in
orientation and distance independent of the surrounding envi-
ronment. By this, accuracy and robustness of the localization
is increased. Furthermore, using surround view increases the
availability of localization in poorly structured areas.
We show in real-world experiments that we are able to
localize precisely while passing the mapped track in arbitrary
orientation. Fig. 1 shows successfully matched landmarks
to features from four cameras. The color of the points
encodes the camera which saw the landmarks while mapping.
Obviously, the number of matches in the upper scenario is
similar to the bottom one, where the vehicle is driving in
opposite direction. Our experiments show that it is possible to
localize with similar success rate and accuracy while passing
the track in opposite mapping direction.

II. RELATED WORK

The presented work is strongly related to recent work
on vision-based Simultaneous Localization and Mapping
(SLAM) [4], [6], [11]. SLAM is about computing a map of
an unknown area while localizing simultaneously within this
map concurrently. Hereby, the egopose is jointly estimated
with all detected landmarks. Therefore, the complexity in-
creases during runtime. To bypass this issue and enable real-
time localization for automated driving in city scaled areas,
it has been established to estimate merely the egopose in a
previously acquired map [3].
Schreiber et al. [12] uses a lane-markings map for local-
ization. Stereo vision is used to compute virtual bird-view
images of the groundplane and lane-markings are extracted
from them. All detected lane-markings are referenced to
reconstructed poses from visual odometry. During localiza-
tion, current detected markings are matched to the map.
Using lane markings for localization provides an accurate
lateral position estimate, however, the longitudinal accuracy
is poor. Agrawal et al. uses stereo vision coupled with a low
cost GPS receiver in [18]. Rougher outdoor scenarios have
been addressed by the same group in [19]. Motion estimates
from visual odometry are fused with gps measurements to
avoid drift. In inner-city scenarios where GPS produces
highly inaccurate measurements and fails frequently, a re-
liable localization can not be made available. In [1], [10]
different versions of topologic localization approaches are
presented. The topologic map stores image signatures to
corresponding vehicle poses. The best fitting map pose is
estimated in real-time by comparing map signatures with the
signature of the current image while localization. However,
these approaches merely give a rough estimate of the global
position. Lategahn et al. [1] uses a topologic localization to
initialize egopose estimation through image point features,
which are associated to landmarks from a previously gen-
erated map. The egopose is estimated precisely by minizing
back-projection error of the landmark-image point correspon-
dences. In order to reconstruct a correctly scaled trajectory,
stereo vision is used while mapping whereas a single camera

Fig. 2. Each camera is geometrically referenced through a 3D-
transformation ti to a rig coordinate system.

is used for localization.
The presented work extends the methods described in [1]
towards the use of multiple cameras for localization and
mapping. Due to their map structure and matching scheme,
it is necessary to drive accurately on the track to localize
successfully. Furthermore, the mapped landmarks are used
without considering their quality and distribution in the map.
Our novel map structure and localization approach based on
the same principle methods overcome these flaws and utilizes
the surround view measurements efficiently, which enables
localization while passing the mapped area in arbitrary
vehicle orientation.

III. PREREQUISITES

Before mapping and localization is explained in detail, we
briefly describe the sensor setup, measurement process and
vision front end.

A. Camera Setup

We assume a vehicle with several solidly mounted gray-
scale cameras. There are no constraints on the number,
position, orientation and type of the cameras. However, it
is advantageously to cover a large range of sensing around
the vehicle for localization purposes and additionally, having
overlapping FOVs for mapping. All cameras are jointly
triggered with a particular frequency. Hence, images of all
cameras have equal timestamps. Finally, a jointly calibration
of all cameras is assumed which provides an affine transfor-
mation t ∈ R6 for each camera referring to a rig coordinate
system (see Fig. 2). Furthermore, the calibration provides a
function

πi(l) = z, (1)

which maps a landmark l ∈ R3 from real-world to a point
z ∈ R2 in the image plane of the i-th camera [15].

B. Vision Frontend

For mapping as well as for localization, a corner-/blob-
detector [17] is used to extract key points from the recorded
images and a local image patch descriptor is used to describe
each key point. While mapping, key points are matched
between subsequent images from each camera and between
images from suitable different cameras at the same times-
tamp, which requires that the corresponding cameras have
overlapping FOVs. All correspondences are tracked over
time. During localization, point features from the current



Fig. 3. Top: Problem (3) is divided into multiple spatial overlapping
windows (colored areas). Landmarks (stars) are observed from different
cameras and vehicle poses. Bottom: The derived pose differences (colored
arrows) from the windowed bundle adjustment jointly form a pose adjust-
ment problem along the entire track. The color of an arrow indicates the
related adjustment window.

image are matched to observations which are stored together
with corresponding 3D-landmarks in the map. In both cases,
a reliable feature matching is required, e.g. the used de-
scriptor should not be sensitive to image distortions due
to viewpoint and illumination changes. We use the DIRD-
descriptor [2] since it is robust against illumination changes
which is particularly important for localization purposes.
We match those key points of which the L1-norm of the
feature vector difference is minimal. Furthermore, a threshold
and a uniqueness check is performed on the matching costs
to decide whether a match is correct. To fulfill real-time
constraints and to decrease the error matching rate, the search
space in the image is spatially constrained through regions
of interest (ROIs) and epipolar geometry [9]. Furthermore,
matching is efficiently performed using Single-Instruction-
Multiple-Data(SIMD) instructions.

IV. MAPPING

To create the map, we assume that the area to map is
passed once and images of this track are recorded. The set
of images recorded from all cameras at a particular time
define a single vehicle pose p ∈ R6, whereby a pose is an
affine transformation referring to the origin of the map. Each
landmark l in the map is induced by a set Z = {z1, . . . , zn}
of matched key points. Equation (1) defines the relationship

πi((p
−1 ⊗ ti) · l) = z (2)

between a landmark l, a corresponding key point z and a
vehicle pose p from which the observation was generated. In
(2), the map referred landmark is firstly transformed into the
camera coordinate system and then projected into the image
plane. Thereby, the ⊗ : R6×R6 → R6-operator concatenates
two affine transformations and the · : R6×R3 → R3-operator
transforms a 3D-point.
Estimating the map

arg min
P,L

∥∥∥∥∥∥
N∑
i=1

∑
zj,k∈Zi

πk((p−1
j
⊗ tk) · li)− zj,k

∥∥∥∥∥∥
2

(3)

Fig. 4. (a) The landmarks (stars) are stored together with their correspond-
ing features and observation poses in grid cells (gray tiles). A landmark is
stored in all cells where one of their observation poses (blue cameras) is
located inside. Several observations of a landmark are stored together when
they are located in the same cell. (b) All landmarks stored in one cell are
divided into disjoint sections of a two-dimensional polar grid depending on
the landmarks’ positions.

corresponds to find all landmark positions L = {l1, . . . , lN}
and vehicle poses P =

{
p
1
, . . . , p

M

}
that best explain the

measurements T = {Z1, . . . , ZN}. Thereby, landmark li ∈ L
corresponds to keypoint set Zi ∈ T . The indices j and k of
keypoint zj,k ∈ Zi refer to the k-th camera and vehicle pose
pj from which zj,k was measured.
Equation (3) is a nonlinear least squares problem, which
could be solved using the Levenberg-Marquardt algorithm
[7]. To compute the map in reasonable time, we use a
sparse matrix solver [14], which efficiently exploits the block
diagonal structure of the linearized information matrix of
(3). Furthermore, a suitable loss function [14] is applied
to residual evaluation to become robust against sporadically
outlier measurements. To initialize (3), we are using visual
odometry.
Mapping city-scaled areas is the most common case for
automated driving. Here, the complexity of problem (3) ex-
ceeds computation and memory bounds on average desktop
computers. To assure bounded complexity, we divide the map
into spatially overlapping windows and solve (3) for each
window. Then, sequential pose differences ∆j→j+1 = p−1

j
⊗

p
j+1

are extracted from each window. The set D of extracted
pose differences from all windows induces a posegraph ad-
justment problem [8], which scales in the number of vehicle
pose differences |D| instead in the number of landmarks |T |.
Since |D| � |T |, it is feasible to optimize posegraphs of very
large areas. Fig. 3 illustrates this approach. Thereafter, the
optimized vehicle poses P̂ are kept fixed and each landmark
l ∈ L can be triangulated separately.

A. Map Structure

For robust feature matching during localization (see sec-
tion V), it is required to provide landmarks from the map
whose related observations are nearby to the current vehicle
pose in real-time. For this purpose, each landmark li ∈ L
is stored together with its corresponding set of observations
Oi =

{
(f

1
, o1), . . . , (f

n
, on)

}
in a planar grid since we

assume that the vehicle is moving in a plane approximately.
Here, f

k
denotes the feature vector of one of the observations

of li and ok the corresponding pose of the camera in the
map. Each cell can be loaded from disk separately and



stores landmark-observation-feature tuples (li, (fk, ok) ∈
Oi) whose observation pose ok is located inside. (see Fig. 4
(a)). The cell dimension is a user-defined parameter.
All landmarks within one cell are further divided into disjoint
sections of a two-dimensional polar grid depending on the
position of the landmark (see Fig. 4 (b)). The angular and
distance resolution of the polar grid are user-defined parame-
ters. Hence, each polar section comprises M ≥ 0 landmarks
in general. Furthermore, within each section the landmarks
can be sorted depending on a particular importance measure,
e.g. the number of related mapping observations. While
localization, the sections are processed sequentially. If m ≤
M landmarks of a section are matched successfully to an
observation, all untouched M − m other landmarks are
skipped and the next polar section is treated. The parameter
m is user-defined. Thus, even if the landmarks in the
map are not equally distributed due to an inhomogenous
environment, the polar grid structure ensures that the land-
marks are provided almost evenly distributed. Additionally,
landmarks with higher importance are implicitly preferred,
which improves accuracy and robustness of the localization.
Furthermore, the localization is independent of the number of
landmarks stored in the map and, therefore, computational
complexity is bounded and adjustable through m and the
resolution of the polar grid.

V. LOCALIZATION

Next, the localization method is described. We do not
assume that the camera setup is the same as used while
mapping. However, it is advantageous to use a similar setup
to facilitate feature matching. Our localization approach
comprises two major steps. The first step is to compute
a rough prediction q

p
∈ R6 of the current egopose. This

prior estimate is used to select nearby landmark cells from
the feature grid (see section IV). The landmarks from the
selected cells are then processed in the order as described
in section IV-A. Each candidate landmark is projected into
current images of all cameras using (2) and q

p
. When a

projection is valid, a ROI in the image space around the
projection is determined. The observation feature of the land-
mark, which was mapped nearest to q

p
is then compared to

image features within the ROI. This search space restriction
robustifies and speeds up feature matching. This is illustrated
in Fig. 5. It is conceivable to determine the size of the ROIs
dependent on the uncertainty of q

p
, however, we set the

size constant to a user defined parameter since we found no
considerable influence of uncertainty adapting ROIs during
our experiments. Due to this projection scheme, it is possible
to match candidate landmarks to key points in the images of
all cameras. Finally, the resulting high-precision egopose

q̂ = arg min
q

∥∥∥∥∥
L∑

i=1

πk((q−1 ⊗ tk) · li)− zi

∥∥∥∥∥
2

(4)

is estimated with thus determined landmark-key point
matches {(l1, z1), . . . , (lL, zL)}, whereby k determines the
camera from which zi originated. Problem (4) is solved

Fig. 5. Visual odometry is used determine a rough prediction q
p,t

for
the current localization step. The green landmark from a nearby cell of the
landmark grid map is projected into one of the images. The feature of the
landmark which is nearest to q

p,t
is matched to current key points (blue

points) within the ROI (green box) around the projection of the landmark.
The yellow landmark is not matched since it could not be projected into
one of the images. The ellipses depict uncertainty of the final estimate
q̂
t−1

of the previous successfully localization step, and the rough prediction
q
p,t

= q̂
t−1
⊗∆t−1→t respectively.

using the Levenberg-Marquardt algorithm. Furthermore, (4)
is applied within a RANSAC scheme [21] to become robust
against outlier matches. The optimization is initialized with
q
p
.

It remains to explain how we determine q
p
. For this, topo-

logical localization [1] is used at the very first localization
step, whereby the topologic map is created from the mapping
drive images and their corresponding map poses (see section
IV). After the first successful localization step, a motion
estimate ∆t→t+1 ∈ R6 from visual odometry is used to
predict q

p,t+1
= q̂

t
⊗∆t→t+1 for the following localization

step t+ 1 (see Fig. 5).

VI. EXPERIMENTS
Our vehicle is equipped with five gray-value cameras. All

cameras are jointly triggered with a frequency of 10 Hz for
mapping and localization. The placement of the cameras at
the vehicle is similar to Fig. 2. The two cameras in front
and the rear camera have a FOV of approximately 110◦.
They are mounted behind the windshield whereas the two
cameras to the sides have wide angle lenses with a FOV of
approximately 175◦ and are mounted at the front mudguard.
The average image resolution of all images is 1500 × 500
pixels after undistortion.
To demonstrate the capabilities of our surround view local-
ization, we mapped different test tracks on a traffic-reduced
area. Most parts of the mapped area are structured poorly.
We evaluate our localization while passing these tracks in
different directions several days after mapping. For our first
experiment, we mapped a meander-shaped trajectory (red
curve in Fig. 6). The map consists of 324 poses and 572278
landmarks whose back projection residual is less than 3
pixels, each. We match features consecutively in each camera
and between images of the two front cameras. All matches
are further tracked jointly. For windowed bundle adjustment,
we divide the map into windows with a length of 20 poses
and let overlap 5 poses at the begin and end of each window.
The cell dimension of the grid is 1m × 1m. The angular
and distance resolution of the polar grid of each cell is 1.5◦



and 0.3m, respectively. While localization, we step to the
next polar region after obtaining m = 1 successful match
or matching 10 landmarks unsuccessfully from the current
region.
To show that we are able to provide reliable localization
results while passing the mapped track from arbitrary di-
rections, we localized in real-time (10Hz) while driving a
meander-shaped trajectory orthogonally to the map (purple
curve in Fig. 6) and, furthermore, while driving randomly
(black curve in Fig. 6) within the mapped area. We localized
successfully within the yellow highlighted areas in Fig. 6.
Thereby, a single localization step is successful when the
absolute number of inlier matches of the RANSAC and the
inlier-matches-ratio exceed certain thresholds and the recent
history of localization estimates is sufficiently smooth. To
our knowledge, it is highly unlikely that a consecutive se-
quence of single-shot localization estimates which fulfill such
criteria is rendered from benign coincidences. Furthermore,
we compared the recorded images with a visualization of
the localization estimates on the map to get a qualitative
feedback of the correctness. Fig. 6 shows clearly that we are
able to localize whenever the vehicle is close to the mapped
track independent of its orientation. While driving off the
track, we integrate motion increments from visual odometry.
Fig. 7 shows quantitative results of the localization drives.
The upper chart shows the localization ratio, the number of
successfully localized steps divided by the overall number
of steps. The middle and the lower chart show the average
accuracy in position and rotation of all successful localization
steps. To determine the accuracy of the localization, we fit
smooth vehicle model trajectories to the estimated localiza-
tion poses. The fits incorporate data from a vehicle odometer,
which provides reliable measurements of the angular rate
and the driven speed of the vehicle. For evaluation, the
single shot localization estimates are compared to the fitted
data. The right two bars in all charts of Fig. 7 show the
localization results of the orthogonally meander pass (M)
and the random drive (R). The localization ratio is low since
the vehicle is driving off the mapped track most of the time.
The rotiational- and positional accuracy of these runs (see
Fig.7 ) are below 1◦ and 0.3m, respectively.
Fig. 6 shows the mapped track (blue) of our second experi-
ment. The arrows show the driving direction while mapping.
The map is computed equally to the meander-shaped map
and consists of 597 vehicle poses and 1128237 landmarks.
Fig. 6 illustrates the low drift of the map since the track
fits excellently to the topview images from OpenStreetMap.
The loop is closed accurately without incorporating GPS
data or loop closure constraints during mapping. In this
experiment, we compare the localization performance while
passing the mapped track (blue curve in Fig. 6) in forward
(F)- and backward (B) direction and while driving in both
directions approximately 2m beside the track (FO, BO) to
resemble driving on next unmapped lane. The left four bars
in Fig. 7 show quantitative results of these experiments. The
localization ratio of all passes is > 0.9. Furthermore, there
are no significant differences in the accuracy between all

Fig. 6. Aerial image of our experimental area. The mapped positions of the
first experiment are shown in blue. The arrows show the driving direction
while mapping and the circle show the starting point. The loop is closed
accurately without including GPS data or loop closure constraints which
show the low drift error qualitatively. The meander-shaped red trajectory
shows the mapped track on a free area for the second experiment. The purple
and black curve show the localized positions of two localization runs. We
successfully localize whenever the map track is passed orthogonally.

passes. The rotiational- and positional uncertainties of all
runs are < 0.2◦ and < 0.07m, respectively. The experiments
show that we are able to localize with the same precision
while driving in opposite mapping direction and while driv-
ing ∼ 2m beside the track in both directions.
It is noticeable from Fig. 7 that the localization accuracies
of the latter experiments are significantly better. While local-
izing the random (R) and orthogonally meander-shaped pass
(M) in the meander map, landmarks mapped in the front- and
rear images are matched to observations to the side cameras
and vice versa. However, during our latter experiments we
drove mainly in direct and opposite mapping direction.
Here, landmarks mapped in the rear-/left cameras are mainly
matched to observations from the front-/right cameras and
vice versa. Since the mounting height, orientation and the
type of lenses of the side cameras are significantly different
to the front and rear cameras, the absolute number of cor-
rectly matched landmarks is reduced. Hence, the localization
uncertainty is increased. At this point, a descriptor which
is more robust to such image transformations or a more
convenient camera setup could overcome this flaw.

VII. CONCLUSION

Within this work, we presented a localization method
based on a pre-built map using several cameras mounted at
the vehicle. No additional sensors are required for mapping
and localization. We show how our grid-based map pro-
vides the mapped features efficiently towards feature-based
localization using a surround view setup. The presented map
structure implicitly prefers more relevant landmarks and en-
sures a benefitial selection of landmarks around the vehicle.



Due to the landmark projection it is possible to match a
landmark to an image observation of every camera. Hence,
we are able to localize even if the vehicle’s orientation is
arbitrary different to direction of the map.
We reinforce the capabilities of our approach in real-world
experiments and showed that we are able to localize high-
precisely and independent of the driving direction. We fur-
ther show that it is possible to provide reliable egopose
estimates while passing the mapped track orthogonally and
while driving beside the track. The presented localization
method overcomes the limitations of existing vision-based
approaches, which require driving similar to the mapped
track to localize reliably.
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Fig. 7. Average results of the localization experiments. The four left bars in
each chart show localization results while driving along the blue map track
in Fig. 6. While driving in mapping direction on (F) and beside the track
(FO) we got similar localization ratios and accuracies as driving in opposite
direction on (B) and beside the map track (BO). The right bars show the
results of the second localization experiment while driving an orthogonally
meander-shaped track (M) and randomly within the mapped area. Here the
localization ratio is significantly reduced since we are off the mapping track
at most timestamps. The accuracies are worse since the landmarks mapped
in the front and rear cameras are matched to features in the side cameras
and vice versa.
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