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Abstract—Driver assistance systems and automated driving
are known to strongly benefit from digital maps. Keeping map
attributes up-to-date is a challenge especially for the current
manual measuring approach. In this work we present methods
to extract information about intersections and traffic lights
through a crowdsourcing approach. We use position and dynamic
data from a fleet of test vehicles with close-to-market sensors.
A statistical hypothesis test is proposed to identify groups of
driving directions at an entry of an intersection which have
synchronous traffic light signaling. This information is used to
improve the detection of the relevant traffic light signal in case
that there is a different signaling for the driving directions.
Based on a test dataset we classified whether the signaling is
synchronous or not with an accuracy of 93.8 percent. To assess
the usefulness of our mapping scheme, we have investigated its
contribution to a camera-based traffic light recognition system.
An evaluation of the use of additional map information for the
traffic light detection was performed on a set of 344 logged
intersection crossings from this vehicle. We showed that there
is an improvement in the accuracy up to 5.2 percent dependent
on the test conditions.

I. INTRODUCTION

D IGITAL maps are one of the key components for future
driver assistance systems and for highly automated driv-

ing. In current series systems maps are already used, e.g. to
provide a foresight on upcoming speed limits and road slopes.
A foresight assistant calculates ideal points where the driver
should lift his foot off the accelerator pedal so that the car
slows down and reaches the speed limit with the appropriate
velocity. Visual hints to the driver at these points help to
improve fuel efficiency.

Intersections are among the most complex traffic areas.
Prior information from maps like the right of way and details
about traffic lights are used in urban highly automated driving
projects like [1]. However such map attributes are not included
in state of the art digital maps. For research projects the
attributes are generated in a manual or semi-automatic manner
with specially equipped measurement cars. In the same way
current digital maps for navigation are generated. These maps
get an update approximately every three months wherein only
parts of the map are updated. Map attributes have to be
reliable and up-to-date for the utilization in safety critical
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Fig. 1. Example of detected signals for a vehicle approaching an intersection.
In case of crossing the intersection straight there are two options for the
relevant signal. Streetview image: Google.

applications like highly automated driving. This generates
prohibitive effort especially with the state of the art approach
of manual mapping.

Besides the generation of up-to-date digital maps, another
remaining challenge in the research of driver assistance sys-
tems is the reliable detection of the relevant traffic light
signal. This task is particularly hard, when different traffic
lights govern the individual driving directions at intersections.
Functional requirements involving a detection range of at least
70 m where arrows on the lights are not yet resolved, pose
additional challenges.

This contribution focuses on automated mapping methods
for intersections. GPS traces complemented by dynamics data
from a fleet of test vehicles close to series production are
utilized to generate the map information. A database with
31 000 hours of test drives from 271 458 intersection crossings
was set up for development and evaluation. The paper is
based on previous work [2] where we introduced a method
to infer stop line positions at intersections with traffic lights.
Based on this we infer driving corridors, traffic light cycle
times and information about synchronous traffic light signaling
for pairs of possible turn maneuvers. The meaning of a
synchronous signaling is that all signal phases start and end at
the same time. We show the usefulness of this information



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 18, NO. 3, MARCH 2017 2

at the example of improving a camera based traffic light
recognition system mounted in a vehicle. Prototypic traffic
light recognition systems based on preceding research [3], [4],
[5], [6] are already available.

Figure 1 shows an example of detected signals at an
intersection entry. A camera based traffic light recognition
system is able to detect the color and position of every single
signal relative to the car. The decision which of the signals is
relevant is a challenging task. In case of the observed signal
pattern red-red-green in Figure 1 there are two options for
the relevant signal of a straight crossing. This situation can be
resolved by utilizing up-to-date map information about groups
of driving directions with synchronous signaling. Furthermore,
in case that intersections are close to each other and in the
range of the camera system, additional map information can
be used to find the relevant light in longitudinal direction.

The remaining parts of the paper are structured as follows.
After an overview of the related work in Section II, we
introduce a method to extract a representation of the geometry
and topology of intersections out of this data in Section III.
This special description of intersection structures is necessary
because current digital maps do not contain an appropriate
representation for intersection specific properties.

The basic idea behind the work is to compare green times of
the signaling from different driving directions at an intersec-
tion and to decide whether there are groups of driving direc-
tions with synchronous signaling. As the data only contains
position and velocity information from vehicles, we infer a
green signal state of traffic lights from the movement patterns
over learned stop lines which is described in Section IV.

Our data is sparse with regards to time, so green signal
observations from different driving directions at an intersection
entry at the same time are rare. Therefore we exploit the fact
that almost all traffic lights work with fixed cycle durations
which means that they repeat their program after a certain
time range. With the knowledge of the correct cycle duration
it is possible to convolve all green signal observations into
one cycle. The proposed method to extract the cycle duration
is introduced in Section V. The convolved green observations
make it possible to compare different driving directions in
order to infer signal groups, which is described in Section VI
and evaluated in Section VII.

The information about signal groups is utilized to support
the detection of the relevant traffic light signal if different sig-
nals are detected by a camera system. Considering the situation
in Figure 1, it is possible to infer the correct relevant signal
for going straight with map information about the grouping of
signals. The improvements on detecting the correct signal are
evaluated in Section VII.

II. RELATED WORK

Automatic mapping through crowd sourcing as a possibility
to reduce the effort for generating digital maps was already
investigated in [7], [8], [9], [10], [11], [12]. By utilizing
cars with a connection to the internet as probe vehicles it
is possible to automatically generate static and also dynamic
map information like

• lane geometries and boundaries,
• (dynamic) speed limit information,
• road works information,
• road topologies for tactical decisions,
• descriptions of intersections

and even more.
Another approach of utilizing GPS traces to create maps

through crowd sourcing is the OpenStreetMap (OSM) ini-
tiative [13]. OSM distributes freely available worldwide ge-
ographic map data. Through the contribution of a vast number
of volunteers, OSM is one of the most detailed maps available
today.

More recent work with regards to mining GPS traces
includes the automatic classification of right of ways at inter-
sections like in [10]. The authors present a rule-based approach
to detect driving directions at intersections regulated by stop
signs and traffic lights. They propose to use the information
for navigation purposes. Furthermore, a supervised learning
approach to classify traffic lights and stop signs with crowd
sourced data is presented in [11]. The generated information
about the location of intersections with traffic lights is relevant
for urban driver assistance systems. Digital maps already
contain partial information on the right of way. In our work
we use such information from state-of-the-art maps, e.g. the
location of intersections with traffic lights.

Besides the generation of map information there are also
different research projects about assistance systems at inter-
sections. One example is proposed in [14] where the vehicle
is able to detect cross traffic, traffic signs and traffic lights.
The driver gets a warning in case a conflict with other traffic
participants or a violation of traffic rules is predicted. The
system is also based on a digital map with detailed information
about traffic lights and intersection topologies. However the
map attributes are generated in a manual manner which is not
scalable for series systems.

In [15] the authors propose a system to automatically
map the three dimensional absolute positions of signalers
from traffic lights and their corresponding driving direction.
They utilize a special measurement car with a high precision
localization and a traffic light detection system. In the mapping
pipeline they also use humans to tweak the mapped data. After
the pipeline about 1 − 5 % of traffic lights are still missing
depending on the area and the traffic during the measurement.
The reason is that a single measurement drive is used to extract
the information. In this way it was possible to create a map
with about one thousand intersections and over 4 000 lights. A
camera based system utilizes the map to improve the detection
of the correct signal. The aim of the map is to increase the
detection range of the camera system while keeping false
positives low through location based filtering. Tests showed
that they reached a detection rate of almost 100 % up to 100 m
in front of the traffic light. The accuracy is still at about 90 %
at a range of 160 m and at about 75 % at 200 m. However the
paper does not propose a concept for selecting the relevant
signal in case of different signal groups. The method to create
the map requires manual work and measurement drives with
specially equipped cars. This makes the updating process in a
series system expensive and time consuming.
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III. REPRESENTATION OF AN INTERSECTION

In order to be able to apply the developed methods in-
dependently on different geometries, we introduce a generic
model for describing an intersection. The basic idea is that an
intersection has entries and exits where cars enter and leave the
area of an intersection. The possible combinations of entries
and exits result in intersection paths. The following steps for
generating a representation of an intersection are described in
this section:
• Extraction of intersection entries and exits,
• Logical combination of entries and exits to determine

possible paths through the intersection
• and generation of mean intersection paths.
Basis for the methods are intersection center points which

are extracted from OSM by clustering intersection nodes
with DBSCAN [16]. For every intersection we cut the GPS
traces of recorded test drives into single intersection crossings
within 70 m around the center. In the following the set of
GPS traces T encodes the trajectories of traversals across
the considered intersection. A trace ξi ∈ T consists of
a set of ni measurements m

(i)
j . Every single measurement

m
(i)
j of a trace with j = 1, ... , ni is a tuple of a two

dimensional position x
(i)
j ∈ R2, a velocity v

(i)
j ∈ R, a

heading ϕ
(i)
j ∈ [0, 2π) and an absolute time t

(i)
j ∈ R, so

ξi = {m(i)
j |m

(i)
j = (x

(i)
j , v

(i)
j , ϕ

(i)
j , t

(i)
j )}. The time difference

between two measurements is one second, so t(i)j+1−t
(i)
j = 1 s.

A. Extracting intersection entries and exits

The sets of entries E and exits A of an intersection are
defined as a tupel of a position x ∈ R2 and a direction
ϕ ∈ [0, 2π), so E = {e|e = (xe, ϕe)} and A is defined
respectively. To get entries and exits, the first measurements
m

(i)
1 respectively the last measurements m(i)

ni of the intersec-
tion crossings are extracted from every GPS trace ξi ∈ T .
After applying a clustering algorithm separately on all first
points of every trace and last points, the entry and exit
locations are defined as the resulting cluster centers. Due
to the huge spatial and temporal variations of noise in the
GPS localization, density-based clustering methods, like e.g.
DBSCAN [16] suffer from the challenge in the estimation of
their hyperparameters.

Therefore K-means clustering is applied whereat the num-
ber of entries and exits is determined based on the probability
distribution of the heading f1(ϕ) when entering or fni(ϕ)
when exiting the intersection. To cope with heading noise
the distribution is approximated through a kernel-density-
estimator. Considering the circular characteristics of the head-
ing, the number of the local maxima K = |{ϕk|f ′(ϕk) = 0}|
of the distribution corresponds to the number of entries re-
spectively exits. According to the determined number K of
clusters we apply K-means clustering to the data points with
the two dimensional position and the heading as features. To
account for the circular characteristics of the heading, this
feature is split into the sine and cosine values. A feature
vector f (i)E for the K-means clustering of entries E for example
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Fig. 2. Entries and exits of an example intersection. Entries are marked
with blue circles, exits are red. Additionally the corresponding entry and exit
points of the traces are marked in the same color whereas outliers are grey.
The GPS traces are cutted within 70m around the center. As the traces consist
of discrete measurements with a time difference of one second, the start and
end points of a trace might be closer to the center than 70m.

is extracted from the first measurements m(i)
1 of every trace

ξi ∈ T , so f
(i)
E = (x

(i)
1 , sin(ϕ

(i)
1 ), cos(ϕ

(i)
1 )). The feature

vector f
(i)
A for the clustering of exits A is extracted from the

last measurements m(i)
ni of the traces respectively.

To filter outliers we apply a principal component analysis
on the points of a resulting cluster and exclude points whose
Mahalanobis distance to the cluster center exceeds a threshold.
The position x and the orientation ϕ of each intersection
entry or exit is determined by the cluster means. Every point
in a cluster corresponds to a trace, since every trace can be
assigned to an entry and an exit or considered as an outlier
trace. Figure 2 shows the sets of entries E and exits A at an
example intersection. For every entry e ∈ E and every exit
a ∈ A the set of traces assigned to e or a is denoted as Te
and Ta respectively.

B. Mean intersection paths

Every pair (e, a) of an entry e ∈ E and an exit a ∈ A with
at least one common trace results in an intersection path ρea.
Therefore the index set I for a set of paths is given by

I = {(e, a)|Te ∩ Ta 6= ∅, e ∈ E , a ∈ A}. (1)

From the corresponding set of traces, a mean intersection
path is generated for every possible combination (e, a). A
mean path ρea of length n is defined as a sequence of points
〈p0, ...,pn〉, n ≥ 1 where p0 = e and pn = a. For a total
order of the points we define that the euclidean distance d(·, ·)
between two preceding points is lower than the distance to all
following points

d(pk,pk−1) ≤ d(pk,pk+l), (2)
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where 1 ≤ k ≤ n−1 and k+1 ≤ l ≤ n.
Through projecting a position value on a mean path ρea,

we get a longitudinal position offset along the mean path.
The root of the coordinate system is the projected intersection
center. The complexity of our developed methods for process-
ing position data decreases by reducing the dimensionality.
Additionally the projection does not impose any assumptions
on the geometry of intersections. This supports the design of
generic algorithms on the data.

We apply the mean shift clustering method [17] to all
position values xj ∈ Xea of the traces with the entry e and
exit a to generate mean paths. This method estimates the local
gradient of an arbitrary data distribution. The first step of the
approach is to calculate the mean x̄ on a subset of the two
dimensional position values Xea of all traces Tea = Ta ∩ Te
of a path ρea. The subset is created by applying a flat kernel
K(xj − c

(i)
1 ) on all positions xj ∈ Xea at an arbitrary center

point c(i)1 ∈ Xea. So the mean x̄(c
(i)
1 ) is given by

x̄(c
(i)
1 ) =

∑
xj∈Xea

xjK(xj − c
(i)
1 )∑

xj∈Xea
K(xj − c

(i)
1 )

(3)

with

K(y) =

{
1 if ‖y‖2 ≤ λ
0 if ‖y‖2 > λ

. (4)

The utilization of the flat kernel results in a mean where
only data points within a distance of λ ∈ R around c

(i)
1 are

considered. The vector x̄(c
(i)
1 )−c(i)1 approximates the gradient

of the distribution at c(i)1 . By applying the method iteratively
with c

(i)
j+1 = x̄(c

(i)
j ), the center reaches a local maximum

c
(i)
max of the density of the distribution. After a restart with

a different start value c
(i+1)
1 ∈ Xea, we get an additional

maximum c
(i+1)
max . The maxima are ordered according to equa-

tion (2). To remove outliers of the density maxima, we test
the feasibility of every local maximum based on the direction
change related to the previous maximum. Given the orientation
vectors oi−1 = c

(i)
max−c

(i−1)
max and oi = c

(i+1)
max −c

(i)
max, c(i)max is

considered as an outlier if arccos(oi−1 ·oi) > π
2 . A discretized

cubic interpolation of the remaining center points yields to the
mean path ρea(λ) = 〈p0, ...,pn〉 with the distance parameter
λ of the flat Kernel as parameter.

The advantages of this non-parametric method over para-
metric regression are that no assumption about the shape of
the path is necessary and λ is the only parameter that needs to
be determined. As the noise level of the position values varies
at different intersections, different values for λ are appropriate.
The λ parameter defines the width of the kernel which should
be low to get a good approximation of the real mean path.
However, given noisy data a low λ leads to outliers. The
formulation of an optimization problem helps to tackle this
trade-off. A suitable representation of the mean path is found
when the aggregated distance of all points to the path is
minimal. The lateral distance of a position value xj ∈ Xea
to a path is calculated with a given distance function

dist : R2 × P → R (5)

11.5015 11.5020 11.5025 11.5030
48.1114

48.1116

48.1118

48.1120

48.1122

48.1124

48.1126

Longitude / °

L
at
it
u
d
e
/

°

Fig. 3. Mean paths of the example intersection. The red cross represents the
intersection center extracted from OpenStreetMap.

which takes a point x ∈ R2 and a polyline ρea(λ) ∈ P as
inputs. Therefore, the optimal parameter λopt is calculated by

λopt = arg min
λ∈R

∑
xj∈Xea

dist(xj , ρea(λ)). (6)

We choose the minimal distance of a position value xj ∈
Xea to every point of the polyline ρea(λ) ∈ P as distance:

dist(xj , ρea(λ)) = min
yj∈ρea(λ)

‖xj − yj‖2. (7)

Position values which are further away from the first es-
timation of the mean path than the median of the distances
of all positions are filtered. A new mean path is generated
based on the remaining points to get an improved second
estimate. The resulting mean intersection paths through the
example intersection is shown in Figure 3. After projecting
the two-dimensional position coordinates onto the mean paths,
the approach presented in [2] is applied to estimate stop line
positions based on the spatio-temporal information in each
trace. In summary, an intersection is characterized by
• an intersection center,
• entries,
• exits,
• mean intersection paths,
• and stop line positions for every path.

The following work is based on this intersection description.

IV. INFERRING TRAFFIC LIGHT SIGNAL STATES FROM
FLEET DATA

In this section a method is proposed to extract a set of m
observations of a green signal state of a traffic light Gi =

{t(j)g , ..., t
(m)
g } from a trace ξi ∈ Tea, where t

(j)
g ∈ N are

defined as UNIX timestamps in seconds. The aim is to collect
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TABLE I
PARAMETERS OF THE WAITING QUEUE MODEL AT STOP LINES

Parameter TR1 TRf DS1 LS

Value 1.3 s 1.0 s 1.0m 6.5m

green observations Gea for every path ρea of an intersection
which are defined as the disjoint union

Gea =
⊔

i∈[1,n]
Gi (8)

of the observations of all traces ξi ∈ Tea assigned to the path
with n = |Tea|.

First we extract the time tS(ξi) of passing the stop line
from a trace ξi. Assuming that all drivers follow the traffic
regulations, we get a green signal observation for the time
of passing the stop line. The observation model distinguishes
traces without a stop from traces with a stop. The minimum
duration of a green signal phase is five seconds according
to the regulations for traffic lights RiLSA [18] in Germany.
Therefore we can observe a set of green signals Gi = {tS(ξi)−
4 s, tS(ξi) − 3 s, ..., tS(ξi)} for every trace ξi ∈ T nostop

ea of a
path without a stop.

Vehicles which stop close to the stop line pass it in less
than five seconds after the start of a green phase. Therefore
we introduce a separate observation model for vehicle traces
ξj ∈ T stop

ea with a stop before passing the stop line. The
aim of this model is to estimate the switch time from red
to green based on the start time after a stop. We use a waiting
queue model [19] with the distance dS(ξj) to the stop line
and the absolute start time tStart(ξj) after a stop as inputs.
The start time tStart(ξj) is extracted from the velocity profile.
The time range ∆tj from the signal transition until the start of
driving depends on the position of the observed vehicle in the
waiting queue as the reaction times of the drivers before sum
up. Thereby the reaction time TR1

of the first driver in the
row is larger on average compared to the reaction time TRf
of following drivers. The reason is that following drivers are
able to prepare the start. To compute the total reaction time,
we estimate the number of vehicles in the waiting queue in
front of the observed vehicle by utilizing a mean distance DS1

of the first vehicle and a mean total length LS from vehicle
front to the next vehicle front. The parameters of Table I are
estimations which follow investigations about driver behavior
at intersections with traffic lights [20]. With the estimated time
difference ∆tj from signal transition to the start of driving

∆tj = TR1 +
dS(ξj)−DS1

LS
· TRf

(9)

we get the estimated absolute start of the green phase tG(ξj)
as follows:

tG(ξj) = tStart(ξj)−∆tj . (10)

The set of green signal observations for every trace ξj ∈
T stop
ea with a stop is generated based on the start of green and

the time of passing the stop line Gj = {tG(ξj), ..., tS(ξj)}.

τ(T )

T

Fig. 4. The relative green start time τ(T ) within a cylce T of an examplary
traffic light signaling cycle.

V. CYCLE DURATION ESTIMATION OF TRAFFIC LIGHTS

As already mentioned in Section I, knowledge of the cycle
duration of traffic lights is a prerequisite for the extraction of
signal groups. The cycle duration T is the time between two
servings of each signal group. The start of a cycle is defined
by the multiple of the cycle duration beginning at a certain
reference time. In this work, the reference time is defined to
00:00 on January 1st 1970 which corresponds to the UTC
reference time, whereat the local current time is considered.
The relative time τ within a cycle T can be calculated through
a modulo operation on a time t relative to the reference time:

τ(T ) = mod(t, T ). (11)

The parameters are represented in Figure 4. According to
the RiLSA [18], possible values for a cylce time are defined
as integers between 30 s and 120 s, which yields a set of
cycle time hypotheses T ∈ N and T ∈ [30 s, 120 s]. By
estimating the correct cycle duration it is possible to transform
all absolute green signal observations into one cycle. This is
a prerequisite to estimate the green phase for the signaling of
different paths as our data is sparse in time.

A. Previous work on cycle duration estimation of traffic lights

Cycle duration estimation from vehicle traces has already
been investigated in some previous research projects. In [21]
the authors estimate the beginning of a green signal phase and
calculate the difference of consecutive estimations. The cycle
duration is estimated through solving an optimization problem
where the difference between the green start time intervals and
a multiple of the cycle duration is minimized. This approach
causes errors on wrong multiples of the correct cycle duration.

In [22] the authors assume that there are no temporal-
spatial conflicting traces of different intersection paths. For
every possible value of the cycle duration, a test is applied if
there exists at least one conflict. Every cycle duration which
produces conflicts is discarded. Therefore the approach is not
robust against measurement inaccuracies of the position and
time data.

Based on the results and findings of the approach presented
in this work, we had investigated three more approaches in
[23] to estimate the correct cycle duration of traffic lights.
The approaches use cyclic features of the traces like stopping
times or the pairwise correlation coefficient between the com-
plete spatial-temporal movement patterns. Another approach is
based on image processing methods where the spatial-temporal
movement patterns of all traces yield to a two dimensional
image for every estimated cycle duration. A region growing
algorithm finds regions of time and location without observed
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Fig. 5. Projection of green start times tG(ξj) on a unit circle through the
transformation into an angle αj(T ) for different cycle time estimates. The
variation of the angles is represented through the mean direction r(T ). The
mean direction is more distinctive for the correct cycle duration Tcyc = 90 s.

crossing data. The larger the regions, the more likely is the
correct estimation of the cycle duration as the spatial-temporal
patterns spread for incorrect cycle durations. The evaluation
results in [23] indicate that fusing different methods yields to
the best result but the methods are computationally expensive.

B. Cycle duration estimation approach: Circular Variance

In this work we propose an additional approach for estimat-
ing the cycle duration. The method is based on minimizing
the circular variance of estimated start times of the green
signal phase tG(ξj) with j = 1...k from k intersection traces
ξi ∈ T stop

ea with a stop according to Equation (10).
In circular statistics data is projected on a unit circle as an

angle α [24]. The estimated absolute green start times tG(ξj)

are transformed into relative times τj(T ) for every cycle time
hypothesis T according to Equation (11). Then the relative
times are converted to angles

αj(T ) = 2π
τj(T )

T
. (12)

The first step to determine the variance of circular data is
to calculate the mean direction

r(T ) =
1

n

n∑
j=1

rj(T ), with rj(T ) =

[
cos (αj(T ))
sin (αj(T ))

]
(13)

from n data points. Figure 5a shows the projected green start
times and the resulting mean direction for the correct cycle du-
ration T = 90 s based on data from real intersection crossings.
The transformed observations of the green start time αj(T )
are concentrated on a limited part of the circle. There are
some outliers mainly because of measurement inaccuracies or
changes of the signal program and cycle durations. Applying
the transformation with a wrong cycle duration as shown in
Figure 5b results in scattering observations over the complete
circle. The absolute value of the mean direction is significantly
lower in this case.
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Fig. 6. Circular Variance S(T ) dependent on discrete values of the cycle
duration T . The circular variance has a global minimum at the correct cycle
duration Tcyc = 90 s. The Hodges-Ajne test with a p-value of p = 0.001
shows that only the value for the correct cycle duration is significantly different
to a uniform distribution.

We use the resulting mean direction to estimate the circular
variance [24]

S(T ) = 1− ‖r(T )‖2 (14)

of the green start times. Figure 6 shows the dependence of
the circular variance on the cycle duration for real traces from
an intersection. Out of the data we determine the stop line
position [2] and applied the observation model to estimate
green start times. According to the RiLSA [18], the set of
allowed cycle durations is defined as {T ∈ N|30 s ≤ T ≤
120 s}. The circular variance has a global minimum at the
correct cycle duration Tcyc = 90 s. Hence the cycle duration
is estimated as

Tcyc = arg min
{T∈N|30 s≤T≤120 s}

S(T ). (15)

Some types of traffic lights adapt their cycle duration
throughout the day due to varying traffic volume. The detection
of these adaptions improves the result with regard to the deter-
mination of signal groups and therefore is currently ongoing
work. Green start times from other cycle durations cause more
noise in the following methods. Nevertheless it is possible
to find the most significant cycle duration even without the
knowledge of the adaptions by applying a significance test
on the global minimum of the circular variance. We utilize
the Hodges-Ajne test [25], a hypothesis test for circular
uniformity, with a p-value of p = 0.001. For the example
in Figure 6, the uniformity hypothesis is only rejected for the
correct cycle duration Tcyc = 90 s.

VI. EXTRACTING GROUPS OF DIRECTIONS WITH
SYNCHRONOUS SIGNALING

Knowledge of the correct cycle duration of a traffic light,
allows to map all observations into one cycle according to
Equation (11). With the observations, a multinomial distri-
bution which represents the probability P (τ |Ri) for a given
green observation to occur at the relative time τ , given a
driving direction Ri ∈ {left, straight, right} is estimated.
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Fig. 7. Signaling of different driving directions with Tcyc = 85 s.

To determine signal groups we compare these distributions
pairwise and classify them as synchronous or not.

For the development of the following methods an exem-
plary intersection was simulated with the microscopic traffic
simulation SUMO [26]. The advantage of the simulation is that
parameters like the number of intersection traces and the noise
of the measurements are easy to adapt. A single intersection
entrance is simulated whereat the signaling for turning left ist
not synchronous to going straight but the signaling for turning
right is synchronous to going straight.

Figure 7 shows the traffic light signaling of the simulation
for every driving direction. We simulate the traffic at the
intersection entry with a traffic flow of 350 vehicles per hour
for every driving direction. 50 intersection traces are selected
randomly and used for further processing steps. Relative green
signal observations are extracted from the traces based on
the simulated cycle duration of Tcyc = 85 s. There are 494
observations of a green signal on average for every driving
direction. 20 % of the simulated observations are chosen
randomly and spread uniformly over the time of one day, as
the measurements are noisy in the real data set. The result are
arbitrary observations of a green signal.

Figure 8 shows the distributions of relative green start times
of three driving directions for a simulated cycle duration of
Tcyc = 85 s. Comparing the distributions we determine if
different driving directions are regulated by a synchronous
signaling. In addition to a new distance measure for the
comparison which is introduced later, we calculate the known
distance measures ”Kullback-Leibler-Divergence” (KL) [27]
and ”Earth Mover’s Distance” (EMD) [28] as baseline ap-
proaches. The KL between the probability distributions of two
driving directions R1 and R2 is calculated by

KL (P (τ |R1) , P (τ |R2)) =
∑

t∈[1,Tcyc]

P (t|R1) · log
P (t|R1)

P (t|R2)
.

(16)
The EMD is determined by the iterative algorithm:

1: e0 = 0
2: et = P (t|R1) + et−1 − P (t|R2)
3: EMD (P (τ |R1) , P (τ |R2)) =

∑
t∈[1,Tcyc]

|et|.
Additionally we propose a new distance measure based on

Bayes’ rule which takes domain specific properties of the
distributions into account. The characteristics of a separated
signaling differ significantly. In the example in Figure 7 the
green signal phases overlap for 23 s. Only the start of the
green phase differs by five seconds. In reality, a difference of
the signaling for the two driving directions regarding the start
time or the end time or both is possible. Another possibility
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Fig. 8. Simulated multinomial distributions of green observations for different
driving directions of the simulated intersection entry with a cycle duration
Tcyc = 85 s.

is that there is no overlap between the green phases. In
cases of overlapping distributions in a wide time range it
is most difficult to classify a separated signaling. In this
case, the known distance measures from the literature give a
similar value compared to cases with synchronous signaling.
Therefore we define a new distance measure based on a
Bayesian model comparison [29, chapter 12] and evaluate the
measure against KL and EMD in Section VII. The developed
method consists of the following steps:
• Probabilistic Bayesian comparison of the distributions of

green observations for every second of the cycle
• Circular smoothing of the comparison result
• Setting the distance measure to the minimum of the

smoothed comparison result

A. Probabilistic comparison of the distributions of green ob-
servations with the Bayes factor

The developed measure proposed in this contribution is
based on comparing the binomial distributions of green ob-
servations for every second within a cycle separately. For a
driving direction Ri we get zi,τ ∈ N0 traces with a green
observation at the relative time τ out of ni ∈ N total traces.
For two driving directions Ri with i ∈ {1, 2} we get an
observation vector zτ = [z1,τ , z2,τ ]. Let θi,τ ∈ R with
0 ≤ θi,τ ≤ 1 denote the probability of a green observation
for driving direction i at time τ for a single trace. A Bayesian
hypothesis test is proposed to compare the probabilities of a
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green observation for two driving directions at every time τ
within a cycle. The two hypotheses are that the parameters
θ1,τ and θ2,τ :
• are equal, θ1,τ = θ2,τ (null hypothesis)
• or non equal, θ1,τ 6= θ2,τ (alternative hypothesis).

For the model selection approach, the probabilities of the
observed data zτ given the models Mnull and Malt for the
two hypothesis have to be derived as follows.

Initially we express the probability for the vector of obser-
vations by a product of binomial distributions:

P (zτ |θ1,τ , θ2,τ ) =

2∏
i=1

(
ni
zi,τ

)
(θi,τ )zi,τ · (1− θi,τ )ni−zi,τ .

(17)
First the probability for the observed data zτ is derived for

the alternative hypothesis. We start by applying Bayes rule on
Equation (17) to get the probability for the unknown variables
θ1,τ and θ2,τ

P (θ1,τ , θ2,τ |zτ ) =
P (zτ |θ1,τ , θ2,τ ) · P (θ1,τ ) · P (θ2,τ )

P (zτ )
.

(18)
The beta distribution is utilized as a non-informative prior

to model the probabilities P (θi,τ ) which is shown later.
The main reason for this choice is that the beta distribution
is a conjugate prior of the binomial distribution. The beta
distribution Beta(p, q) is given as follows:

P (θ) =

{
θp−1(1−θ)q−1

B(p,q) for 0 ≤ θ ≤ 1

0 otherwise
= Beta(p, q), (19)

with the variables p, q ∈ N and the beta function

B(p, q) =

∫ 1

0

θp−1(1− θ)q−1 dθ =
Γ(p)Γ(q)

Γ(p+ q)
(20)

as normalizing constant where Γ denotes the gamma function.
The variables p and q represent initial knowledge about
positive and negative observations. Equation (18) is rearranged
to
P (θ1,τ , θ2,τ |zτ ) =∏2

i=1

(
ni
zi,τ

)
(θi,τ )zi,τ+pi,τ−1 · (1− θi,τ )ni−zi,τ+qi,τ−1

P (zτ ) ·B(p1,τ , q1,τ ) ·B(p2,τ , q2,τ )
.

(21)

Comparing the numerator in Equation (21) with the nu-
merator of the beta distribution in Equation (19), it appears
that P (θ1,τ , θ2,τ |zτ ) can also be expressed as multiplication
of beta distributions Beta(zi,τ + pi,τ , ni− zi,τ + qi,τ ). In this
case the denominator has to be a product of beta functions
and therefore the probability for our observations is inferred
to

P (zτ ) =

∏2
i=1

(
ni
zi,τ

)
B(zi,τ + pi,τ , ni − zi,τ + qi,τ )

B(p1,τ , q1,τ ) ·B(p2,τ , q2,τ )
.

(22)
Utilizing Bayes model comparison [30, Section 7.4], driving

directions Ri are compared for every second τ within a
cycle based on the probability of observations. For the null

hypothesis Mnull we assume the parameters θ1,τ and θ2,τ to
be equal:

Mnull → θ1,τ = θ2,τ . (23)

The assumption of the alternative hypothesis Malt is that
the two parameters are different:

Malt → θ1,τ 6= θ2,τ . (24)

For the alternative hypothesis a uniform a priori distribution
of the parameter θi,τ is given by a beta distribution Beta(1, 1).
So the probability of the data is calculated by

P (zτ |Malt) =

∏2
i=1

(
ni
zi,τ

)
B(zi,τ + 1, ni − zi,τ + 1)

B(1, 1) ·B(1, 1)

=

2∏
i=1

(
ni
zi,τ

)
B(zi,τ + 1, ni − zi,τ + 1),

(25)

with B(1, 1) = 1.
The parameters θ1,τ and θ2,τ are equal for both driving

directions under the null hypothesis. Therefore P (θ1,τ , θ2,τ ) =
0 for θ1,τ 6= θ2,τ . Given θ1,τ = θ2,τ = θτ , the probability of
the data for the null hypothesis can be analytically calculated
by the integral

P (zτ |Mnull) =

∫ 1

0

P (zτ |θτ ) dθτ

=

∫ 1

0

2∏
i=1

(
ni
zi,τ

)
(θτ )zi,τ · (1− θτ )ni−zi,τ dθτ .

(26)

According to the definition of the normalizing constant
B(p, q), the probability of the observed data for the null
hypothesis is given by

P (zτ |Mnull) =

(
n1
z1,τ

)(
n2
z2,τ

)
·B(z1,τ + z2,τ + 1, n1 − z1,τ + n2 − z2,τ + 1).

(27)

The model comparison after Bayes is defined as

P (Malt|zτ )

P (Mnull|zτ )
=

P (zτ |Malt)

P (zτ |Mnull)
· P (Malt)

P (Mnull)
. (28)

If the a priori probability of both models is equal P (Malt) =
P (Mnull) = 0.5, the so called Bayes factor [31]

BF =
P (Malt|zτ )

P (Mnull|zτ )
=∏2

i=1B(zi,τ + 1, ni − zi,τ + 1)

B(z1,τ + z2,τ + 1, n1 − z1,τ + n2 − z2,τ + 1)

(29)

follows from Equations (25) and (27).
As at least one of the hypotheses is valid, we can add the

condition P (Malt|zτ ) + P (Mnull|zτ ) = 1. So the probability
for the null hypothesis Mnull at a time τ within the cycle is

P (Mnull|zτ ) =
1

1 + BF
. (30)
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B. Circular smoothing of the comparison result and determin-
ing the distance measure

Single outliers resulting from deviations of the estimated
stop line or measurement inaccuracies should not have a
significant impact on the distance measure. Therefore we apply
a circular smoothing on the resulting probability which is
denoted as p(τ) = P (Mnull|zτ ) for the null hypothesis with a
circular convolution of a discrete Gaussian kernel Kσ(x). The
advantage of a Gaussian kernel over a classical sinc kernel is
a strictly decreasing frequency response. Nevertheless we also
utilized a sinc kernel experimentally which showed that the
choice of the kernel has no significant impact on the results
of the classification. The smoothed function s(τ) is calculated
by

s(τ) =

T∑
t=1

Kσ(τ − t) · p(t). (31)

The σ parameter is set to σ = 2.5 s, therefore it is possible
to detect a minimal difference between the green phases of
five seconds. The continuous line in Figure 9a shows that
this requirement is fulfilled as the simulated signaling varies
only in a range of five seconds. A concise decline of the
smoothed result of the model comparison in the time range
τ ∈ [21 s, 25 s] confirms the correct choice of the parameter.

The proposed distance measure d is defined as the minimum
of the smoothed comparison result s(τ), which means it is the
minimal probability for a synchronous signaling:

d = min (s (τ)) . (32)

Figure 9 shows the result of the model comparison for every
second within the cycle independently as dashed lines. For the
comparison of right and straight, the average probability for
the null hypothesis is 0.86, which means that they probably
have a synchronous signaling. There is one outlier at τ = 26 s
which can be explained by inaccuracies in the estimation of
the stop lines for every driving direction which causes a shift
of the green observations.

The comparison of left and straight results in low probabil-
ities for a synchronous signaling within τ ∈ [21 s, 25 s] and
τ ∈ [33 s, 41 s]. The reasons are an earlier start of the green
phase for turning left and therefore the queue of vehicles also
passes the stop line earlier as we simulated an equal traffic
flow. This results in less green observations a certain time
after the start of green. There are almost no observations for
both directions during overlapping red phases so the measured
distributions are considered to be realizations of the same
underlying distribution.

The resulting distance measures for both turning directions
in comparison to going straight at the simulated intersection
entry are marked by a dot in Figure 9. As the measure
corresponds to a probability, the range of values is d ∈ [0, 1].
Due to the properties of the Bayesian model comparison, the
value 1 will only be reached for an infinite number of samples.
Therefore the proposed distance measure is not a metric.
Compared to the distance measures known from literature,
our measure has the advantage that we can define the desired
difference range between the distribution with the smoothing
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Fig. 9. Results of the Bayesian model comparison. The probability for the
null hypothesis is the probability that a turning maneuver has synchronous
signaling compared to going straight. The dashed lines represent the compar-
ison result for every second of the cycle independently. The continuous lines
are the smoothed result of the comparison.

parameter σ. Additionally the method is robust against outliers
caused by measurement inaccuracies.

VII. EXPERIMENTAL RESULTS

An evaluation of the developed methods on extracting signal
groups is performed on real data from test vehicles extracted
from our database. Additionally we evaluate the improvements
on detecting the relevant traffic light signal utilizing the signal
group information on a set of 344 intersection crossings with
a prototypic camera based traffic light detection system.

A. Evaluation of the extraction of signaling groups

For the evaluation of the extracted signal groups we iden-
tified pairs of intersection paths with the same intersection
entry and enough traces to be able to estimate a stop line [2].
For these pairs, the grouping of driving directions is manually
labeled utilizing Google StreetView. Our database contains 48
pairs of paths which fulfill the requirements where 17 pairs
have different and 31 pairs have synchronous signaling.

After generating the representation according to Section III
for every intersection, the stop line positions are estimated for
every path. This information is used to generate observations
of a green signal according to Section IV. Based on the esti-
mated cycle duration of the traffic light we classify if there is
synchronous signaling for different driving directions utilizing
distance measures. The proposed distance measure is evaluated
against the known measures from literature. Therefore a simple
binary linear classifier is applied to the resulting different
distances. By varying the threshold, a Receiver Operating
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Fig. 10. Receiver Operating Characteristic for detecting groups of driving
directions with synchronous signaling utilizing 48 pairs of intersection paths.
The proposed distance measure which is based on Bayes’ model comparison
gives the best result. The best accuracy was reached with 93.8%.
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Fig. 11. F-score dependent on the number of traces. The data base contains
32 pairs of intersection paths with at least 60 traces. The evaluated number
of traces is sampled randomly from these traces, 30 times respectively. The
blue dots represent single results whereas the red curve shows the trend of
the mean value of the F-scores.

Characteristic (ROC) Curve [32] is produced which allows
the comparison of the different distance measures. Figure 10
shows the resulting ROC curve for the real test data set.
The result indicates that the proposed distance measure based
on the Bayesian model comparison performs best under the
investigated measures. The best possible accuracy of the linear
binary classifier is reached at 93.8 % with a corresponding F-
score of 0.951. The best accuracy point is marked in Figure 10.

Figure 11 shows the F-score dependent on the number of
traces which were used for the evaluation. Out of the 48
pairs of intersection paths with enough traces, there are 32
pairs with at least one path with 60 traces. For every path
we select different numbers of traces randomly, 30 times
respectively. Afterwards the proposed method to determine the
signal grouping of different driving directions is applied. The
red curve in Figure 11 shows the trend of the mean resulting
F-score dependent on the number of traces used as input for
the method. The curve indicates that there is no essential
improvement with more than about 40 traces. Altogether the
F-scores are worse compared to the results from testing all 48
pairs of paths. The reason is that this analysis is performed
on intersections with many traces. These intersections tend to
be bigger and more complex thus the signaling varies more
compared to intersections with less traces.

B. Improvements on Traffic Light Detection

The previous parts of this work were concerned with meth-
ods to automatically extract groups of driving directions at an
intersection entry which are controlled by synchronous traffic
light signaling. To outline the usefulness of such information
an exemplary application in a driver assitance system is
discussed below. According to the introduction the information
about signal groups has the potential to improve camera based
detection of the relevant traffic light signal. Given the scenario
in Figure 1 and assuming that the system knows the driver’s
intention to cross the intersection straight, there are the two
options for the signal pattern shwon in the Figure. Utilizing the
methods presented in this paper the information that the signals
for going straight and turning right are synchronous however
the signalling for going left differs. With this information
the system is able to infer that only option 1 in Figure 1 is
plausible which means that green is the relevant signal.

In this part we evaluate the utilization of automatically
generated map information in comparison to a basic approach
where the relevant signal is chosen based on the minimal
orthogonal distance to the current driving tube. The driving
tube is simply derived from the steering wheel angle and every
traffic light signal is projected orthogonally onto this circular
tube. For the map based approach, a digital map containing
the relevant information was automatically built for all tested
intersections utilizing the methods introduced in this work.
The digital map contains
• positions of intersection centers,
• path information with entry and exit orientation,
• stopline positions and orientations assigned to paths
• and signal group information for paths.
For the evaluation we use a test vehicle with a camera for

traffic light detection, GPS and inertial sensors. 344 traces
from 38 intersections were collected which correspond to 117
minutes of driving time with at least one observed traffic light
signal by the camera system. We evaluate single scenes in a
framework with 100 ms cycle time, which results in 70 176
scenes. The outputs of the algorithms are compared to a
manually labeled ground truth based on video data. The driver
turning intention is a necessary input for the proposed method.
We assume that the intention is known, so the turning direction
was identified through post processing the position data.

Table II shows the results for the comparison of the map
based approach and the simple approach under different testing
conditions. One general condition is that 500 ms after a signal
change were not considered as the camera system has a
detection latency. The results demonstrate an improvement
through additional map information of at least 1.5 % over all
testing conditions and 2.9 % on average. The closer the vehicle
is to the stop line, the smaller is the difference between the
approaches. The reason is that the driving tube estimation is
more accurate at closer distances which makes the detection of
the relevant light easier. Besides the distance, the map based
approach also performs better when there are more signal
groups for the different driving directions. At intersection en-
tries with one signal group, the detection systems still benefits
from map information through a longitudinal distance filter.
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TABLE II
EVALUATION OF TH ACCURACY OF A CAMERA BASED TRAFFIC LIGHT

DETECTION UNDER DIFFERENT TEST CONDITIONS

Test condition Accuracy -
without map

Accuracy -
with map

Number of
scenes

dS > 0m 95.94% 98.23% 67482
0m < dS < 100m 96.89% 99.03% 60754

dS > 100m 87.72% 91.26% 6728
75m < dS < 100m 92.96% 97.72% 7704
50m < dS < 75m 97.55% 99.39% 9275
25m < dS < 50m 97.33% 99.33% 12645
0m < dS < 25m 97.62% 99.16% 31130
One signal group

0m < dS < 100m
97.47% 99.75% 9236

More signal groups
0m < dS < 100m

96.78% 98.90% 51518

More signal groups
50m < dS < 100m

94.92% 98.54% 15243

More signal groups
75m < dS < 100m

92.61% 97.79% 7060

By generating a country-specific statistic over the distance
of traffic lights to the stop line, it is possible to avoid false
detections from pedestrian lights or another close intersection.

The maximum benefit of the map information results with
4.8 % at large distances dS > 100 m and with 5.2 % at 75 m <
dS < 100 m and more signal groups. All of the results are
statistically significant, since the sample size is very large with
at least 6728 single scenes. A chi-squared test with α = 0.1 %
was utilized as significance test.

VIII. CONCLUSION

In this work we proposed methods to automatically extract
information about intersections with traffic lights from car
fleet data. The main contribution of this work is the extrac-
tion of groups of driving directions with synchronous traffic
light signaling at intersections. To this end a new distance
measure on probability distributions is introduced based on a
Bayesian model comparison approach. The approach considers
the number of available traces and observations in order to get
a probability for two driving directions to have synchronous
signaling. Basis for the introduced methods is a generic
representation of the topology and geometry of an intersection
which is also introduced in this work, as well as methods to
automatically generate the representation. The evaluation on
a real test data set with traces from 48 intersections shows
that we achieve 93.8 % accuracy for the classification of two
driving directions to have synchronous signaling.

Furthermore we showed that detecting the releant signal
with a camera based traffic light detection system is signif-
icantly improved by utilizing the generated map information.
Especially at large distances to the stop line of more than
75 m and at traffic lights with more signal groups we achieve
improvements in the accuracy of more than 5 %. For highly
automated driving in urban areas, a correct decision for stop-
ping or driving at traffic light signals is required at about 75 m
before the stop line. Approaching a red light with 60 km/h for
example with a desired comfortable deceleration of 1.5 m/s2

on average requires a reliable detection at a distance of 92.6 m.

These investigations indicate a high potential of automatic map
creation and update. Depending on reliability requirements it
might still be necessary to manually check the results.

A suggestion for future work is to detect changes of
the signal program to further improve the classification of
synchronous signaling. Changes of the cycle duration during
a day could be detected through finding multiple significant
minima of the circular variance. Based on that information and
with the distribution of green signals we plan to train a Hidden
Markov Model in order to get the signal timing information.
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