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Abstract— Stereo cameras are among the most promising
sensors for automated driving. For their deployment, however,
calibration should be automated and possible in-situ. We pro-
pose a restructuring of bundle adjustment into an incremental
online calibration system. It allows us to estimate all observable
camera parameters on the fly. Both simulations and experiments
with real world cameras show its capability to calibrate stereo
rigs in real time while driving. With this method, cameras can
be employed with almost no calibration overhead. Only the non-
observable parameter of scale has to be defined in advance.

I. INTRODUCTION

Along the road towards automated vehicles, stereo cam-
eras have always played a significant role. To this day, they
are widely applied in experimental vehicles for automated
driving. Also, quite recently, they have been introduced
into series production cars as sensors for driver assistance
functions.

While stereo cameras provide rich information for scene
understanding, they are extremely sensitive to calibration.
Even smallest errors in calibration degrade performance
significantly. These errors may be due to faulty initial calibra-
tion but also occur over time, e.g. due to vibrations, thermal
stress or aging of materials. Thus, special attention must be
paid to calibration of stereo camera systems.

For accurate calibration, the pattern based method of
Zhang et al. [1] lays the foundation of most available
tools. They require recordings of known calibration targets
which can be identified in the images later. With the known
structure of the targets, the calibration parameters can be
inferred. A great diversity of different toolboxes is available
[3], [4], [5], including the well-known MATLAB toolbox
by Bouguet et al. [2]. All these processes require time
consuming recording and processing steps as well as expert
knowledge for handling the tools. Also, the camera param-
eters may change over time, making frequent recalibration
necessary.

In order to estimate calibration parameters from unknown
structure, camera self-calibration has been proposed. For
the case of simple, undistorted cameras, self-calibration was
introduced in [6], [7]. However, this fails if lens distor-
tions affect the imaging process. To overcome this, joint
optimization of scene structure, camera motion and camera
parameters was proposed as the so-called bundle-adjustment
[8], [9]. Since bundle adjustment requires a joint global
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optimization of all parameters, it is not feasible to apply
these methods with real time constraints.

The works of Dang et al. aim to tackle these problems
[10], [11]. They propose a reduced order bundle adjustment
as well as parameter tracking using an Extended Kalman
Filter. While this method can even cope with active stereo
cameras, it requires a precalibration of all distortion param-
eters, making it unsuitable for calibration from scratch.

For the deployment of stereo cameras, it would be desir-
able to perform full stereo camera calibration in-situ and in
real time. For production line setups, this enables the system
to track the calibration parameters, even if they change over
its lifetime. Also, in-factory calibration becomes obsolete. In
the context of experimental vehicles, frequent reconfiguration
of stereo camera setups would no longer entail tedious
recalibration.

In this work, we propose a restructuring of the bundle
adjustment problem into an incremental calibration process.
From in-situ observations in stereo camera images, we itera-
tively improve the calibration in both intrinsic and extrinsic
parameters. For this, we break down the problem in se-
quentially executed, quickly computable tasks and then only
perform part-wise optimization for the full bundle adjustment
per small image sequences, resulting in an ever-improving
calibration in real time. For a system that performs motion
estimation from camera images, i.e. visual odometry, the
overhead of simultaneous calibration is neglectable.

II. ONLINE CAMERA CALIBRATION

A. Projection Model

As basis for future derivations, we would like to review
the standard pinhole camera model with radial distortions as
used in previous works [2].

A three-dimensional point under observation is denoted
~XW = (xW ,yW ,zW )>. At a pose T ∈ SE(3), we place our
camera in this three-dimensional space. In a first step, the
point ~XW is transformed from some world fixed coordinate
frame into the camera frame with

~XC = T−1~XW . (1)

Note here that the transform T may be augmented by a series
of individual transformations (see Fig. 1).

For a 3D point (xC,yC,zC)
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Lens imperfections introduce distortions to the lines of
sight, i.e. they shift the perceived line of sight depending on
their position in the image. A common approach to model
radial distortion is based on even polynomials. The distorted
line of sight ~pd is derived from ~pu as

~pd =
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ηd

)
=
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)(
1+ τ0r2 + τ1r4) , (3)

where r is the norm of the undistorted image position
r =

√
χ2

u +η2
u . In our experience, we found tangential and

higher order distortions as modeled in [1] to be of little
relevance. Instead, the additional degrees of freedom may
lead to overfitting and are thus omitted.

As the final stage, the distorted normalized image coordi-
nates are transformed into pixel coordinates by
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where fu, fv represent the focal length of the lens in horizon-
tal and vertical direction respectively and (cu,cv)

> represents
the principal point.

Depending on the parameters of the perspective mapping,
different camera properties can be modeled, three of which
are of greater relevance in this work:

1) Real Camera: the full model as described above,
2) Pinhole Camera: while projection and transforms stay

the same, distortion has been corrected for, thus setting
τ1 and τ2 equal to zero,

3) Rectified Camera: for this setup, two pinhole cameras
have been virtually aligned by rotation and scaling such
that the transform between the two is only a shift in
horizontal direction.

B. Calibration

The goal of this work is to calibrate a stereo camera setup.
That is, we would like to estimate all projection parameters
of both cameras (instrinsic calibration) and their respective
pose (extrinsic calibration). For this purpose, we utilize a set
of observed landmarks ~̂pCi and their reprojections pCi from
their estimated positions ~̂XC. These two measures together
make up the well known reprojection error

~̂ei = ~̂pCi− pCi(~̂XC), (5)

the error that is made from projecting an uncertain landmark
into an image using an uncertain camera model and compar-
ing it to an uncertain observation.

The calibration task is to find the set of intrinsic and
extrinsic camera parameters as well as landmark positions
that minimize the total reprojection error of all observed
landmarks

(~XN
W ,τ,T M,Tc,K) = argmin

N

∑
i=0

~̂e>i ~̂ei, (6)

where XN
W is a series of N 3D-points, T M a series of

M individual camera motion steps and (τ,Tc,K) represent
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Fig. 1: Observation of a landmark in multiple camera frames.
All camera parameters, transformations and landmark posi-
tions have to be estimated online.

all stereo camera parameters, i.e. two independent sets of
projection parameters for the two cameras as well as the
relative pose. Solely the length of the translation vector
between the two cameras is unobservable and thus held
constant. This is known as the windowed bundle adjustment
problem. It is solved using non-linear optimization.

Unfortunately, the bundle adjustment problem is compu-
tationally expensive. Thus, a full calibration in an online
application is hardly possible. To overcome this problem,
we break it into several parts that can each be solved in
real time individually. The following steps are executed to
perform full online calibration:

1) Compute scene structure: with the assumption of a
rectified setup, compute 3D landmarks from triangula-
tion of observations.

2) Guess camera motion: from the initial scene structure,
estimate the camera motion between the last two
consecutive frames.

3) Select relevant landmarks: from the motion and
scene structure, find the best landmarks for further use.

4) Improve scene structure and motion chain: re-
optimize the entire chain of motion transformations
and the 3D landmark positions. The following steps
can only be executed if sufficient motion is detected.

5) Improve projection: again, with the assumption of a
pinhole camera, reestimate the projection parameters.

6) Improve entire calibration: with all knowledge from
Steps 1)-5) as initialization, optimize all real camera
parameters.

While Step 1) can be solved entirely linear, the initial
guess of the camera motion can be approximated with only
one iteration of non-linear optimization if the camera motion
is small [12]. Step 4) is solved to full convergence with [13].

For runtime reasons, only few optimization iterations of
both 5) and 6) are executed last. Then, we use the result as
initial guess as well as for feature remapping for the next
time instance.

C. Feature Re-Mapping

For efficient optimization of the processing steps, we have
to switch between different camera models in the course of
estimation.



1) From Rectified to Pinhole Camera: Rectification is
achieved by rotation of lines of sight with a 3D rotation
matrix RR. If the rectified camera has projection matrix
KR and the pinhole camera KP, then observations may be
remapped with

~pP = λKPR−1
R K−1

R ~pR, (7)

where λ is a scaling parameter to normalize to homogeneous
coordinates.

2) From Pinhole to Real Camera: The distortion function
(3) is defined in forward manner, i.e. from the undistorted
to the distorted case. Again, we utilize the two projection
matrices of pinhole camera KP and of real camera Kr. The
distorted image point can be computed as

~pr = Kr ∗dr(K−1
P ~pP), (8)

where dr(·) represents the distortion function (3).
3) From Real to Rectified Camera: The view from a real

camera can be transformed into that of a rectified camera by
substituting (7) into (8) and solving for ~pR,

~pR = λKRRR ∗d−1
r (K−1

r ~pr), (9)

where, again, λ is needed for normalization. The inverse
distortion d−1

r (·) takes the same functional form as (3), where
only the parameters differ. In order to obtain the parameter
set that undoes distortion, we can simply distort known
points and then solve the system of linear equations for the
undistortion parameters.

Obviously, (7), (8) and (9) can be concatenated for arbi-
trary conversions.

D. Motion Estimation

The problem of estimating camera motion from sub-
sequent images is known as visual odometry. Since we
observe a sequence of motion steps, we may assume that
we have obtained all but the last transformation before.
For the motion from time t − 1 to t, we minimize the
reprojection error of tracked landmarks into the images
w.r.t. the motion transform. We assume little change of
motion in between consecutive frames, thus we only solve
the linearized problem in one single optimization step. We
evaluate the reprojection error for outlier detection. If the
error is too large, we run the RANSAC algorithm for a new
initial guess of motion.

E. Feature Selection

The result of the calibration highly depends on the quality
of the landmark observations. We therefore have multiple
criteria for landmark evaluation. First of all, in the visual
odometry step, we have already computed reprojection errors
per landmark or even performed RANSAC. Thus, we use the
current motion estimate for outlier removal.

As a second step, we perform bucketing of landmark
observations over the image. This ensures that the landmarks
are distributed equally over the image. Without this step, the
landmark density would be cumulated in the center of the

image, leading to a biased result that preferably minimizes
errors in the center.

The third quality measure is the duration of landmark
visibility. Landmarks that can be tracked for a long period
of time have the property of being highly discriminative.
Thus, they can be located accurately throughout an image
sequence.

F. Robustness and Regularization

The detection of landmarks in images is prone to a multi-
tude of errors, among which are random noise and occasional
outliers. These errors may degrade the performance of the
optimization or, in the case of outliers, even fully break it.
In order to cope with the given conditions, we introduce
countermeasures to the optimization.

The first countermeasure is a robust loss function that is
applied to the reprojection error. We employ a Cauchy Loss
Function that reduces the impact of large outliers on the
optimization result. Even with the previous outlier rejection,
this improves performance greatly.

As a second measure for robustness, we desire that the
supposedly static calibration parameters only change slowly
over time. For this, we use a regularization term in the error
function. The change of each parameter with respect to its
last value is introduced to the error. Let, for example, f−u
be the estimated focal length from the last full optimization
step. Then we introduce

e∆ fu = λ fu( fu− f−u )2 (10)

as a new error term, where λ fu is a non-negative weighting
constant. Larger values for λ fu lead to slower change of
parameters and more robustness. Smaller values lead to faster
calibration but less robustness.

Due to the special field of application in a driving vehicle
with wide horizontal field of view, we found it beneficial to
also regularize for isotropic projection, i.e. the focal length
in horizontal as well as vertical direction should be close to
equal. This is achieved by introducing

e∆ f = λ∆ f ( fu− fv)
2. (11)

to the error function. The reason for this is that due to the
wide horizontal field of view, errors are more pronounced in
horizontal direction.

Since the basewidth of the stereo setup, i.e. scale, cannot
be observed, we hold the length of the translation vector
between the two cameras constant at all times.

G. Threshold Decay

Over time, the calibration parameters improve and thus,
they may need less change but instead can be used for
stricter outlier detection. Therefore, we adapt the thresholds
for outlier detection over time.

The outlier removal threshold at initialization εmax should
be fairly high since at this time, reprojection may not be
computed accurately. With better reprojection estimation, the
outlier threshold may decline to a lower level εmin to still



allow for some tolerance. This is achieved with a threshold
ε subject to

ε = (εmax− εmin)exp
(
− t

Tε

)
+ εmin, (12)

where t is the run time and Tε is the time constant governing
the duration of the threshold decline. We choose an exponen-
tial function since the improvement of reprojection error is
large in the beginning where extrinsics are corrected quickly.
Later, the influence of calibration declines and so should the
threshold decay.

H. Parameter Initialization

The parameters have to be initialized for the optimization
to find a valid solution. We have two sets of intrinsic param-
eters per camera to initialize, namely the distortion and the
projection parameters, as well as the extrinsic transformation
between the two.

We initialize the principal point as the center of the image
and the focal length for a horizontal field of view of 90◦, i.e.
half the width of the image in pixels. Distortion is initialized
with all-zero values. If no information on the basewidth is
available, b = 1 can be assumed.

In some cases, the user may know specifications of the
camera setup. If this is the case, these parameters can be
passed to the calibration in advance. This is especially
relevant for the baseline that determines scale. In most cases,
it can be measured by hand to give a close approximate of
the real value.

III. EXPERIMENTS

Since a ground truth calibration cannot be obtained for real
camera system, we perform evaluation in two different ways:
first, we use a simulated stereo camera setup to evaluate the
accuracy of parameter estimation. For real world calibration,
we quantify quality based on results of algorithms that re-
quire calibration, namely visual odometry [12] and disparity
computation [14]. All real-world calibrations use the point
feature matching from [12].

A. Simulated Camera Rig

Ground truth calibration parameters do not exist for real
camera systems. Thus, we simulate a projection with known
parameters to evaluate our online calibration. For the simu-
lation, we use projection of randomly created 3D-landmarks
with a sequence of motion taken from the KITTI dataset.
As calibration parameters, we also employ the parameters
of the rectified KITTI cameras but introduce decalibration
manually. We added displacement of the cameras together
with mustache distortion (see Fig. 2).

Since the parameters have a diverse range of values, we
normalize all errors w.r.t. to the ground truth (GT) value and
evaluate the deviation from that, e.g. for focal length

e =
fEst − fGT

fGT
. (13)

Results for the calibration can be seen in Figure 3. For
clarity of presentation, we only show parameters of the

Fig. 2: The simulated mustache distortion of straight lines
(left) and after online calibration (right).
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Fig. 3: Deviation of instrinsic parameters of left camera from
the simulated values. The value 0 means our calibration and
the simulated values coincide.

left camera and also omit the principal point. The later
experiments will demonstrate the validity for both cameras
and pose estimation.

Most parameters converge to their actual simulated value.
Only the parameter of distortion of 4th degree is slightly
overestimated due to simulated noise. However, this error is
barely noticeable in the undistortion (see Fig. 2).

B. Real-World Stereo Cameras

For real world evaluation, we tested three different stereo
camera setups.

1) KITTI: the unrectified and unsynchronized raw data
from the KITTI dataset [15] together with the supplied
calibration parameters.

2) Low Distortion: a stereo setup with ZEISS DISTAGON
T* 15MM F/2.8 ZF.2-I lenses, designed for distortion
as low as 0.3%.

3) High Distortion: a stereo setup with LENSAGON
BM4018S118 lenses with pronounced distortion and
a field of view of more than 120◦.

Table I gives an overview over the relevant parameters
of the stereo systems. All setups have been calibrated using
offline calibration with checkerboard targets, using either [3]
or [5].

TABLE I: Parameters of the systems under test

Setup f [mm] b [m] Dist. [%]
KITTI [15] 4.5 0.53 ∼ 2
Low Distortion 15 0.57 0.3
High Distortion 4 0.3 > 5
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Fig. 4: Deviation of instrinsic parameters of left camera from
those obtained from offline calibration [12]. The value 0
means our calibration and the offline results coincide.
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Fig. 5: Remapping difference map. The maximum shift is
10.7 pixels.

C. Parameter Accuracy

In a first attempt, we compare the results of our calibration
to a calibration performed offline with checkerboard patterns
[3]. We use the calibration provided with KITTI raw se-
quences.

Figure 4 shows how the deviation of parameters changes
over time. While the focal length is estimated to have the
same value, the rest of the parameters converge to quite
different values. The impact of this can be seen when we
look at the difference of the remapping that is applied to
the image for rectification. Figure 5 shows the magnitude
and orientation of these differences. Since we can add an
arbitrary offset to remapping, we have compensated for the
mean of differences.

Due to differences in distortion, the remapping differs in
the center as well as in the extreme regions. The conse-
quences of this can be seen in stereo matching results in
Figure 8. With the original calibration, the matching in the
corners fails while ours allows dense disparity computation
throughout the entire image. Thus we assume that pure
comparison of parameters is not meaningful to evaluate
quality of calibration.

D. Stereo Matching Density

Disparity computation highly depends on the quality of
calibration, as seen in the previous section. Since a known
calibration is the prerequisite for disparity evaluation, we
only evaluate stereo matching in terms of disparity density.
The intuition behind this is that a denser stereo image
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Fig. 6: Disparity image density over online calibration run-
time. Dashed lines represent the density achieved with offline
calibration.
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Fig. 7: Visual odometry computed for different calibrations.
The black line is the ground truth (GT) obtained with DGPS.

requires a better alignment of epipolar lines and thus, a better
calibration (see Fig. 8).

For each setup, we select a set of images from a sequence
as test images. We then run online calibration on the same
sequences and evaluate both, the disparity density over time
as well as in comparison to an offline calibration result.

Figure 6 shows the density of disparity computation over
calibration runtime. It can be seen that the density of dispar-
ity images increases over calibration. Density reaches same
levels and even surpasses the result achieved with [3] and
[5]. Same quality is reached after roughly 30 seconds.

E. Visual Odometry

Different studies have shown the effect of calibration
on the quality of visual odometry [16]. As an additional
reference, we compare visual odometry performance with
the result of online calibration. For this, we utilize the first
sequence from the KITTI odometry raw data. We loop it
for five minutes for calibration. We then hold the resulting
parameters constant and run visual odometry [12] on that
sequence. Figure 7 shows the estimated motion for the
different calibration states together with one run for the
KITTI calibration parameters.

At initialization, calibration parameters are far from ac-
curate, thus visual odometry fails completely. After the five
minutes of processing the online calibration achieves good



(a) Test image from [15]. (b) Calibrated with [3]. (c) Calibrated with ours.

(d) Uncalibrated. (e) Distorted test image. (f) Undistorted after calibration.

Fig. 8: Stereo matching results [14] for different calibrations in (a)-(d) and undistortion result of highly distorted cameras
in (e) and (f).
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Fig. 9: Average runtime of the entire processing chain

results so that the quality of visual odometry computation
even exceeds the one with the original KITTI calibration.

F. Runtime

The entire processing chain can be executed in real time.
Average runtimes per process step can be seen in Figure
9. We run it on one core of a 2.9GHz INTEL I7-3520M
CPU with images with a resolution of 512 × 1024. As
expected, matching of image points and the initial odometry
computation take up most of the runtime.

IV. CONCLUSION

In this work, we introduced an online camera calibration
scheme based on bundle adjustment. By breaking the bundle
adjustment into sequentially executable smaller tasks, real
time constraints can be met. The use of observed scene
structure for calibration allows us to calibrate all observable
camera parameters, that is all intrinsic and extrinsic camera
parameters up to scale, in real time. In comparison to other
calibration methods, we do not require the use of any
calibration pattern. Also, pre-calibration for an initial guess
is not necessary.

Calibration is done with only little overhead over standard
visual odometry. In the context of automated driving and ex-
perimental vehicles, this enables us to exchange the standard
visual odometry with visual odometry plus calibration. This
way, we do not require time consuming offline calibration in
advance. Instead, we even can do alterations of the camera
setup on the go without having to worry about sensitive
camera parameter adjustments. The code is made publicly
available at https://github.com/KIT-MRT.
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