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Abstract— In this work we present a novel approach for
multi-sensor calibration that significantly outperforms current
state-of-the-art. We introduce a new spherical calibration target
which has major benefits over existing targets. Those are
subresolution detection accuracy in both camera and depth
sensor, view invariance and applicability to a wider range of
sensor setups than current approaches. With our method a
single person achieves high quality calibration in less than a
minute. No preparations for setting up the environment for
calibration is needed. Our method is fast, easy to use and fully
automatic. We evaluate our method in simulation and show
high accuracy with an error of less than 3 mm in translation
and 0.1 ◦ in rotation on real data.

I. INTRODUCTION

Today, robots are deployed in more and more complex
environments to support us in daily life. To perceive their
environment they are equipped with a variety of sensors.
By fusing data from multiple sensors, better robustness and
performance can be achieved in tasks like object detection
or localization. For successful sensor fusion an accurate
calibration of the sensor setup is essential. Sensor fusion is
especially effective with diverse sensors such as cameras and
depth sensors that measure in different domains. But linking
data from different domains is often non-trivial and therefore
makes calibration of such a diverse sensor setup hard.
In literature, different approaches for creating a link be-
tween camera image and depth data are presented. Most
calibration methods make use of dedicated targets. A popular
calibration target for camera to depth sensor calibration is a
checkerboard [1], [2], [3]. Checkerboards have been used
for camera-camera calibration for a long time and have
proven to be suitable for many camera setups [4]. Corners
are detected in the camera image to estimate the pose of
the checkerboard by triangulation. In the point cloud of
the depth sensor the checkerboard is modeled as a plane
which provides a constraint for the calibration problem.
Using multiple checkerboards can fully constraint the poses
of the sensors. For robustness, the checkerboards should have
well distributed orientations. But checkerboards with normals
close to orthogonal to the viewing ray of the sensor cannot
be detected accurately. This raises a fundamental limitation
for practical use of checkerboard based sensor calibration.
Furthermore, a known problem for many depth sensors
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Fig. 1: Projection of LiDAR points into the camera image
for an uncalibrated setup (top) and after calibration (bottom).
The setup consists of two cameras and four LiDARs (see
Fig. 10). The spherical calibration target can be seen in the
top image.

(e.g. LiDAR) is that the reflectivity of the observed surface
influences the actual measured depth [5]. Therefore, black
and white areas on a checkerboard can have a significant
offset in depth. Park et al. [5] uses a polygonal planar board
with a homogeneous surface to prevent this effect. Vertices



of the polygonal board are detected in both the camera and
the depth sensor. Since the resolution of the depth sensor is
usually significantly lower than the resolution of the camera,
the precision of the vertex detection based on 3D edges in the
point cloud is the limiting factor of this calibration method.
The problem of inaccurate feature point detection in depth
data also occurs for planar targets with holes such as de-
scribed in [6], [7]. Besides the afore mentioned target based
methods there are also targetless alternatives. [8] detects
reflections from LiDAR in a darkroom and minimizes their
reprojection errors. In [9], [10] depth edges from range
sensors are matched to intensity edges in camera images
holding the risk of wrong associations since depth and texture
are not guaranteed to match. [11] matches point clouds from
LiDAR and stereo using ICP. This approach however is
limited to setups with at least two cameras with overlapping
fields of view and suffers from common problems of ICP
e.g. wrong point associations. Another approach is based on
the concept of maximizing the mutual information between
measured surface intensities [12], [13]. This approach faces
the problem of wrong associations for large initial calibration
errors and is therefore only applicable for fine tuning [12],
[14]. Furthermore, Schneider et al. [15] use a CNN to
learn calibration of a camera-LiDAR setup. A downside of
the approach is the need for a dataset with a groundtruth
calibration for learning which practically does not exist.
Moreover, the CNN has to be retrained for different sensor
configurations.
To overcome the limitations of the existing approaches this
paper introduces a new calibration method for multi-sensor
setups with any number of cameras and depth sensors.

II. CALIBRATION TARGET

We recognize major benefits in using a calibration target
instead of targetless calibration:
• Dedicated observation features which are designed for

high precision detection
• Uniqueness in the calibration environment which is

essential for outlier rejection
• Invariance to the scene such that the environment does

not influence the calibration
On the search for an ideal calibration target for camera to
depth sensor calibration, we focused on following require-
ments:
The target has to be easily detectable for both sensor types.
It should be distinct from common objects in the environ-
ment to generate unambiguous observations. Unambiguity
is important for reliable target detection in uncontrolled
environments. The detection precision should be better than
the resolution of the sensor. This is especially important for
many depth sensors because of their low resolution. In the
camera image the target should be detected with subpixel
precision. The baseline is state-of-the-art checkerboard cor-
ner detection with subpixel refinement. The target should
be of monochromatic color to prevent errors in depth mea-
surements due to varying reflectivity. Further, an ideal target
is non-stationary and lightweight. This allows to move the

target around the sensor setup which is in many cases more
convenient than the other way round and allows calibration
in confined spaces e.g. cars inside garages. Finally, the target
should be cheap and easy to set up so that it can be used by
everyone. A spherical target meets these requirements. For
our experiments we choose an off-the-shelf white styrofoam
sphere that can be purchased in a regular hardware store.
The radius of the sphere measures 25 cm with precision in
the range of one tenth of a millimeter. In the subsequent
section we will describe how it can be used for calibration.

III. TARGET DETECTION

A. Sphere detection in camera images

We assume that an intrinsic calibration for the cameras
is given. For the commonly used pinhole camera model, a
sphere is projected onto an ellipse in the image plane. An
ellipse is described by five parameters which are too many
for efficiently applying standard methods like RANSAC [16]
or Hough Transform [17]. Therefore, we warp the image onto
a spherical screen which results in a sphere being projected
onto a circle (intersection of the viewing cone with the
spherical screen centered on the apex). Our circle detection
consists of multiple steps: First, we detect circles using the
Hough Transform on Canny edges [18]. Second, the circle
position and radius are optimized in a least-squares sense
using only those Canny edge pixels that lie close to the
Hough circles. This step allows subpixel accuracy for the
circle parameters (see chapter V-A.1). In a final step, false
detections are rejected based on multiple filter criteria. We
define inlier edge pixels as edge pixels which lie on the
contour of the estimated circle. Pixels in close neighbourhood
which are not inliers we call outlier edge pixels. Our filter
criteria are:

(a) The radius of the estimated circle is within a certain
range.

(b) We compute the ratio of inlier edge pixels to the
maximum possible number of inliers. We filter out
detections with a ratio less than a threshold which
indicates an incomplete circle contour.

(c) We threshold the ratio of outliers to inliers to discard
detections that are supported by clutter.

After filtering, the center position of the best circle detection
is warped back to the input image, then its viewing ray is
computed with known camera intrinsics. Further, the distance
of the sphere d can be computed with its known radius R,
the estimated radius Rest,px and the radius of the spheric
projection screen Rscreen,px, both in pixels, as

d =
R

sin(
Rest,px

Rscreen,px
)

. (1)

B. Sphere detection in range data

We assume that the range data is organized in an ordered
structure with rows and columns. This applies for most
commonly used range sensors such as LiDAR or the Kinect
sensor. We detect depth discontinuities within each scan line



to find free standing segments. Segments that are signifi-
cantly longer than half of the sphere’s perimeter are filtered
out. Next, segments which are close together are associated
and form a point cluster. A sphere model is fit to each of the
point clusters by minimizing the squared geometric distance
of points to the surface of the sphere. We define outliers to be
points from the cluster that are further away from the sphere
estimate than a threshold. If the radius of the estimation is
close to the actual radius and the number of outliers is small
then it is a valid detection.

IV. SOLVING THE CALIBRATION PROBLEM

A. Problem Definition

Given is a set of n sensors S = {S1, ..., Sn}. The
transformations T = {T1, ..., Tn} with Ti ∈ SE(3) define
the poses of the sensors in a reference frame. Without loss of
generality, we assume the reference frame to be the sensor
frame of S1. Let O = {O1, ..., On} be the observations
of the sensors in the corresponding sensor frame. By lin-
ear interpolation, we form m time-synchronized pairs of
observations P = {P1, ..., Pm} (see Fig. 2). We define
our calibration problem as finding transformations T which
minimize the sum of squared distances of all observation
pairs P in the reference frame

arg min
T

m∑
i=1

dist(Pi,T )2 . (2)

B. Distance Measure

The distance measure in Eq. 2 depends on the types
of observations within Pi. For a depth sensor we always
represent the observation as a 3D point. Therefore, the
distance between two observations from depth sensors is the
Euclidean point-to-point distance. A camera observation can
be interpreted as a ray when only using the 2D projection of
the sphere’s center. By additionally using the known radius
of the sphere we can estimate the distance of the sphere’s
center (see Eq. 1) and thereby get a 3D point observation. We
show in chapter V-A.1 that the depth estimation in camera
is not as precise as with a depth sensor. Using point-to-point
distance in this case is shown to be less robust than using
point-to-ray distance. Therefore, we use point-to-ray distance
for an observation pair of depth sensor and camera. A ray
is defined by its origin p and its unit direction vector v in
the form of x (s) = p + sv, s ≥ 0. The closest point on
the ray to another point q is at x (sq) with sq = (q− p)

>
v

thus the point-to-ray distance is ‖q− x (sq) ‖ if sq ≥ 0 and
‖q− p‖ if sq < 0.

The third case is an observation pair of two cameras.
Ray-to-ray distance is more sensitive to noise due to ray
geometry. Furthermore, ray-to-ray distance converges to the
trivial solution of all cameras being in one place in case
of the setup consisting of only cameras. Therefore, we use
point-to-point distance for observation pairs from cameras.

C. Observation Synchronization

Calculating the distance between two observations only
makes sense if they have identical timestamps. Especially
when using rolling shutter sensors, such as rotating LiDAR,
the observations will not be time-synchronized so that an
additional synchronization step is needed. The process of
synchronization is depicted in Fig. 2. For each timestamp of
a real observation all observations from the other sensors
are linearly interpolated. We only interpolate in-between
observations that are not further apart in time than the known
cycle duration of that sensor.

t
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P3
O1

O2
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Real
Interpolated Observation pair

Interpolation

t3t2 . . .

Fig. 2: Time synchronization of observations. Interpolation
is shown in detail for t = t2.

D. Optimization

We solve the minimization problem (Eq. 2) by a numeric
solver [19]. The initialization of all sensor poses is random.

E. Robustification

To achieve robustness against outliers from the detectors
we use RANSAC [16]: Calibration is performed multiple
times on randomly sampled minimum subsets of observation
pairs. For all observation pairs P the distance between both
observations is computed. Observation pairs having a dis-
tance larger than a threshold are outliers. A final calibration
is performed only on inliers of the best calibration run carried
out previously. To further increase robustness, we use a
3D constant velocity motion model for filtering out false
detections.

V. RESULTS AND EVALUATION

We evaluate our calibration framework in multiple stages
and separately analyze error propagation in the detectors and
the solver (see Fig. 3):

sensor data

detectors

observations

solver

sensor poses

Fig. 3: Calibration dataflow overview.



First, we simulate raw sensor data which is fed to the
detectors (V-A.1). Thereby, we learn how errors in raw data
effect the quality of the observations. Second, we evaluate
how the solver reacts to different types of error sources
(V-A.2). Third, real sensor data is used and the calibration
results are analyzed in two experiments with different sensor
setups (V-B).

A. Simulation

We simulate a sphere which moves along a trajectory with
a velocity of 0.4 m/s. We generate three different groundtruth
trajectories for simulation. The distance to the sensors varies
between 2-8 m. The simulated sensor setup consists of two
cameras and two laser scanners with 16 scan lines each (see
Fig. 4). The cameras have a resolution of 2000 by 974 and
a focal length of 1222 px. All sensors run at 10 Hz. We

Fig. 4: Simulated sensor setup with two cameras and two
laser scanners.

simulate twelve datasets of one to two minutes. For each
we perform 50 calibrations with randomly initialized sensor
poses.

Fig. 5: Simulated sensor data with virtual sphere for camera
(top) and LiDAR (bottom).

1) Evaluation of Detector Accuracy: We simulate raw
sensor data as shown in Fig. 5 to find out the accuracy
of the detectors. For camera images we render a sphere

on a background image. For simulation of range data we
use a pointcloud recorded by a real sensor. By ray tracing
we get the intersections of the virtual laser beams with
the groundtruth sphere. The following error sources are
simulated and analyzed:
• Cluttered background
• Lighting
• Camera defocus
• Noise in pixel intensities
• Error in focal length
• Noise in range measurements

As a baseline for camera an ideal white sphere in front
of a black background is simulated. First, we add real
background images and lighting to put the sphere into a
realistic environment. Next, camera defocus is simulated
by blurring the contour of the sphere in the image with a
Gaussian filter. By comparison with real data we came up
with a Gaussian kernel standard deviation of σblur =0.5 px.
Zero mean Gaussian noise is added to the intensity of each
pixel. We found that a standard deviation of σI = 4 provides
realistic results for images with 8-bit intensity resolution.
Next, an erroneous focal length of 0.3 % is simulated. This
is a realistic result from good intrinsic calibration [20]. For
LiDAR data we add zero mean Gaussian noise to each range
measurement with a standard deviation of σδ =12.5 mm
which was also determined experimentally.
For evaluation we calculate the distance from each detection
to its corresponding groundtruth point as explained in chap-
ter IV-B. The results of the simulation are summarized in
Fig. 6. The simulations show that calibrating in front of a
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Fig. 6: Effect of different error sources on sphere detection.
Camera: (a) ideal sphere, (b) realistic background image
and lighting, (c) background, lighting, defocus and noise,
(d) 0.3 % error in focal length. LiDAR: (e) ideal depth
measurements, (f) noisy depth measurements.

black background is most accurate. A realistic environment
results in the detection error to approximately double. Ad-
ditionally adding effects like noise and defocus only leads



to subtle deteriorations. The dominant error in the camera
detector is caused by an erroneous focal length. Therefore,
we see no need to calibrate in front of a black background.
Sphere detection on perfect depth data leads to zero detection
error as we expect. The sphere detection with our depth
sensor has a median position error of approximately 4.5 mm.
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Fig. 7: Histogram of reprojection errors for sphere in realistic
scene. The mean error is marked by a red line.

For comparison to checkerboard corner detection we calcu-
late reprojection errors of the sphere detections in the camera
image. Fig. 7 shows that we reach an accuracy comparable to
state-of-the-art checkerboard corner detectors [2]. Simulating
a realistic scenario, we achieve a mean error of 0.15 px.
We also considered estimating the 3D center point of the
sphere via Eq. 1. However, for our setup better results
were achieved when using point-to-ray distance for camera-
depth-sensor observation pairs in the optimization problem.
This can be explained by a higher depth precision of
the LiDAR measurements compared to radius-based depth
measurements in the camera image. By using point-to-ray
distances we effectively rely only on depth from LiDAR.
Results from calibrations using both distance measures are
shown in Fig. 8.

2) Evaluation of Sensitivity: We analyze sensitivity of
the calibration problem by simulating the following error
sources:

Noise on the position: We simulate errors in detection of
the sphere by adding zero mean Gaussian noise to its ground
truth position. For cameras we set the standard deviation to
σpos,cam = 5 mm and for LiDAR we use σpos,lidar = 10 mm.
We set these parameters as upper estimations based on the
evaluation of detector accuracy (V-A.1). From the noisy
position we generate a ray or a point observation depending
on the simulated sensor type.

Observation interpolation: Observations in observation
pairs need to have identical timestamps. Due to untriggered
sensors or rolling shutter effects, this cannot be guaranteed
and therefore must be obtained by interpolation (chapter IV-
C). We analyze the errors from interpolating by triggering
the virtual sensors at different times.
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Fig. 8: Comparison of calibration results between point-
to-ray and point-to-point distance for camera-depth-sensor
observation pairs.

Erroneous timestamps: Professional sensor setups are
usually time synchronized and provide exact timestamps
for their measurements. We want to analyze the effect of
erroneous timestamps which occur in cheap and provisional
setups. We add Gaussian noise to the timestamps with a mean
of up to µts = 30 ms and a standard deviation of σts = 10 ms.
We determined these parameters based on an experiment with
a setup consisting of a camera and a LiDAR for which the
data is stamped when arriving at the main system.

Biased range measurements: The range measurements of
some laser scanners are affected by the reflectivity of the
scanned object [5]. Further, the sensor might have imperfect
depth calibration or measurement drift which also results in
biased range measurements. To simulate this effect a constant
offset of ∆ρ = 10 mm along the line of sight is added
to the detections. The parameter is set based on a depth
measurement analysis for a common LiDAR [21].

Erroneous focal length: We also analyze the influence of
an error in focal length on the calibration result. We simulate
an error of 0.3 %.
The results for the error sources are shown in Fig. 9.
The estimated sensor poses are compared to the known
groundtruth poses and the error is split up into translation
error et and rotation error er.

et = ‖t− tg‖ (3)

er = 6
(
R−1Rg

)
, (4)

with t denoting the translation part and the rotation matrix
R. Groundtruth is indicated by index g.
First, we evaluate the effect of zero mean Gaussian noise on
the observations’ position (Fig. 9a). This error depends on
the quality of the sensor data and the detectors. To validate
the noise parameters we simulate realistic raw data and used
our detectors to create observations (Fig. 9b). By comparing
both results, we show that the assumed position noise on
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Fig. 9: Influences of different error sources on calibration
results: (a) zero mean Gaussian noise in observations’ posi-
tion, (b) realistic raw data with detectors, (c) interpolation,
(d) erroneous timestamps, (e) biased range measurements, (f)
erroneous focal length

the observations is suitable for our setup. Further, we learn
that noise on the observations’ position is noticeable in the
calibration result but with our data and detectors it is not
the dominating source of errors. The least significant error
source we analyze is interpolation. The pose error is less than
0.1 mm in translation and less than 0.001 ◦ in rotation. This
shows that when moving the sphere with moderate velocity
errors from linear interpolation of the observations have
minor influence on the calibration result. A significant error
is introduced by erroneous timestamps. The median pose
error in translation is more than 10 mm and more than 0.1 ◦

in rotation. By slowing down the sphere’s movement one can
reduce this error. As mentioned before, this type of error can
be prevented by using a synchronized sensor setup. Next,
we notice that biased range measurements only introduce a
small error. Errors in focal length show a significant effect
on the calibration result. It is in the range of errors from
noisy timestamps.

B. Experiments on real data

A known problem for evaluating calibration on real data
is that there is usually no groundtruth available. Therefore,
we perform two different experiments:
First, we analyze repeatability of calibration results on
different datasets which were recorded by a setup of four
Velodyne Puck and two cameras (Fig. 10). We vary the

LiDARs

Cameras

Fig. 10: Sensor setup with two cameras and four Velodyne
Puck.

scene, the trajectory of the sphere and the duration of the
recording. We calibrate indoors and outdoors under different
lighting conditions and in front of changing background.
The trajectory varies between helical, zick-zack and random
smooth movements. Based on eight datasets on which we run
50 calibrations each, we calculate average transformations
for the sensors. The average translation is calculated by
averaging the translation vectors and the averaged rotation
is determined as described in [22]. The differences between
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Fig. 11: Results of the repeatability analysis for a sensor
setup with two cameras and four Velodyne Puck.

the averaged transformations and each calibration run is
visualized in Fig. 11. The median translation difference is
3.9 mm and the median rotation difference is 0.087 ◦. This



proves high repeatability of the method and robustness to
different scenes and trajectories.
The second experiment on real data uses another setup of
a single camera and a Velodyne Puck (see Fig. 12). The

Fig. 12: Sensor setup with translation and rotation table.

camera is fixed but the LiDAR is mounted on a moving and
rotating table. The setup allows controlled translation in the
direction of the baseline and rotation around the symmetry
axis of the Velodyne. The procedure for the experiment is as
follows: First, we run the calibration on a starting state S.
In state S, the sensors have a baseline of roughly 180 mm.
Then, a known translation or rotation is applied. We rerun
the calibration for the new state. Finally, we calculate the
translation and rotation difference to the calibration result of
state S. This is the estimate for the manually applied pose
change of the LiDAR. As in the previous experiment, we
calculate mean transformations based on multiple recorded
datasets. In Fig. 13, the results for the starting state T0, a
state Tt with 120 mm increased baseline and a state TR with
20 ◦ rotation are shown. Again, we notice high repeatability
over all states. The repeatability is comparable to the results
of the previous experiment with a different sensor setup.
Comparing the result of state T0 to the result of state Tt gives
the estimate of relative translation (Fig. 13 bottom left). The
median translation difference is 122.7 mm which is 2.7 mm
off from the applied translation. The relative rotation between
state T0 and state TR is estimated with a mean rotation
difference of 19.905 ◦ which is 0.095 ◦ off from the applied
rotation (Fig. 13 bottom right). This experiment shows that
our calibration framework provides accurate results in both
translation and rotation.

VI. CONCLUSIONS AND FUTURE WORK

We presented a new approach for calibrating multisensor
setups of cameras and depth sensors. Our main contribution
is the introduction of a spherical calibration target. By
simulation and in experiments with real data we proved that
our target is superior to currently used targets in multiple
ways: We showed that with simple methods a sphere can be
detected at least as accurate as corners on checkerboards in
camera images. Furthermore, our sphere detector for range
data shows high accuracy even for low resolution LiDAR
data. Our calibration target can be detected from every
viewing angle which makes calibration of complex sensor

0

1

2

3

4

5

6

7

0 mm | 0◦

Tr
an

sl
at

io
n

di
ff

er
en

ce
(m

m
)

0

0.05

0.1

0.15

0.2

0 mm | 0◦

R
ot

at
io

n
di

ff
er

en
ce

(◦
)

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

120 mm | 0◦

Tr
an

sl
at

io
n

di
ff

er
en

ce
(m

m
)

19.8

19.85

19.9

19.95

20

20.05

20.1

20.15

20.2

0 mm | 20◦

R
ot

at
io

n
di

ff
er

en
ce

(◦
)

Fig. 13: Results for estimating manually applied pose differ-
ences.

setups possible e.g. cameras facing each other. Our calibra-
tion framework achieves higher accuracy than current state-
of-the-art techniques while being computationally cheap and
easy to use. We further evaluated sensitivity to multiple
error sources and showed the robustness and repeatability
of our method. The applicability was proven on real data
with different setups and datasets.
For the future, we want to further increase accuracy of our
camera detector by an dedicated refinement step based on
subpixel edges. Also, we plan to improve the detector for
depth sensors by using a maximum likelihood estimator
that considers specific sensor characteristics. Additionally,
we plan to extend our calibration framework by adding
detectors for further types of sensors. In a next version of
our calibration framework we will estimate camera intrinsics
since we identified focal length to have a significant influence
on the calibration result.
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