
Accurate and Efficient Self-Localization on Roads
using Basic Geometric Primitives

Julius Kümmerle 1, Marc Sons 1, Fabian Poggenhans 1,
Tilman Kühner 1, Martin Lauer 2 and Christoph Stiller 2

Abstract— Highly accurate localization with very limited
amount of memory and computational power is one of the
big challenges for next generation series cars. We propose
localization based on geometric primitives which are compact
in representation and further valuable for other tasks like plan-
ning and behavior generation. The primitives lack distinctive
signature which makes association between detections and map
elements highly ambiguous. We resolve ambiguities early in the
pipeline by online building up a local map which is key to
runtime efficiency. Further, we introduce a new framework to
fuse association and odometry measurements based on robust
pose graph optimization.
We evaluate our localization framework on over 30 min of data
recorded in urban scenarios. Our map is memory efficient with
less than 8 kB/km and we achieve high localization accuracy
with a mean position error of less than 10 cm and a mean yaw
angle error of less than 0.25 ◦ at a localization update rate of
50 Hz.

I. INTRODUCTION

Up to the present day, series cars are not capable of
localizing themselves accurately. Localization with high ac-
curacy is becoming more important since next generation
series cars will make use of high definition (HD) maps
[1], [2]. HD maps provide detailed information about e.g.
lanes, road infrastructure and more with centimeter accuracy.
This information will be key to bridge today’s shortcomings
in perception, scene understanding, planning and behavior
generation and thereby will raise autonomy in series cars to
the next level. For this to work, next generation series cars
have to be capable of localizing in HD maps with centimeter
accuracy. Major challenges of introducing highly accurate
localization to series cars is reliability and efficiency in the
use of computational power and memory.
GNSS based localization is very efficient but it is not reliable
enough due to shadowing, multipath and changing weather
conditions [3]. Improvement on these problems have been
achieved by fusing GNSS with odometry e.g. from IMU or
camera [4]–[6]. Still, these approaches can fail e.g. when
conditions are bad in the initialization stage. Therefore,
localization based on GNSS is considered to be unreliable.
Other approaches use dedicated 3D maps which are only
used for localization. In [7], [8], a LiDAR is used to build up
a 3D map containing reflectivity of the environment. Classic
camera-only approaches also build up 3D maps but with
visual landmarks [9], [10]. In [11] a monocular camera is

1 Intelligent Systems and Production Engineering, FZI Research Center
for Information Technology, Karlsruhe, Germany. kuemmerle@fzi.de

2 Institute of Measurement and Control Systems, Karlsruhe Institute of
Technology (KIT), Karlsruhe, Germany.

Fig. 1: Snapshot of evaluation drive with localization poses
(green arrows) and detections of primitives.

used to localize only based on geometry in a 3D map build up
from LiDAR. All these approaches are reported to be highly
accurate but need large amount of memory for dedicated
localization maps.
Map size can be reduced if only specific structures or objects
are use: Localization based on road markings can achieve
position accuracy in the centimeter range in many cases [12],
[13]. Another approach is to use pole-like structures such as
street lamps, traffic signs and trees as landmarks [14], [15].
Especially in urban scenarios, pole-like structures frequently
occur and can be used for accurate localization. Also house
corners show potential as localization features [16] but more
popular are walls for indoor localization [17]–[19]. Since not
every type of feature is omnipresent all the aforementioned
approaches lack robustness and reliability.
We propose a solution to the problem of highly accurate

self-localization with limited resources for next generation
series cars: Our main contributions are:

• a set of localization features which are memory efficient
and reusable for other tasks such as planning and
behavior generation (see chapter II)

• an online built-up local map to resolve ambiguity when
associating detections with map elements

• a newly developed pose graph adjuster for robust local-
ization based on asynchronous and delayed measure-
ments

Evaluation on our map (see chapter IV) shows that our
approach achieves highly accurate and reliable localization

in challenging inner city scenarios (see chapter V, snapshot
in Fig. 1).

II. LOCALIZATION FEATURES

The choice of features has significant impact on the overall
localization performance. We choose features based on two
classes of criteria: The first class is focused on accuracy. This
includes the most commonly used criteria such as features
shall be easy to detect, frequently occurring, viewpoint and
weather invariant, to name but a few. The second class of
criteria is concerned with efficiency. Our features shall have
compact representation to be memory efficient. Further, the
features shall be usable beyond localization for other tasks
like planning and behavior generation. This would make a
dedicated localization layer in the map redundant and further
no additional detectors have to run on the system. Based on
the aforementioned criteria, we found poles, facades and road
markings to be suitable. In the following, more details on the
different types of features are given.

A. Poles

In road scenes, there are often lots of signs, traffic lights,
street lamps and trees. They are all long-lasting static objects
and therefore suitable for localization. Further, because poles
are tall structures they are visible even if a car occludes the
lower part. Signs and traffic lights are functional elements of
road infrastructure and need to be detected by autonomous
cars for planning and behavior generation. For detection
of poles we use 3D LiDAR measurements and a similar
approach as in [15]. We store a pole in the map by it’s
intersection point with the local ground surface, radius and
angle of inclination. The last two attributes are used as a
weak signature to distinguish between different poles. This
is helpful for creating associations between poles in the
mapping and the localization pipeline.

B. Facades

Localization based on facades is motivated by the fact
that tall houses deteriorate localization quality when using
GNSS. Furthermore, because of their size, houses can be
detected from long distances. Geometric changes at house
facades are rare so that a map is valid for a long time.
Beyond localization, facades can be used as a precise target
address to navigate to as well as for inferring observable
space. We detect facades with a 3D LiDAR. We use planes
to approximate the geometry of facades which is suitable in
most cases. In the map, a detected facade is reduced to it’s
intersection with the ground surface and stored as a 2D line
segment.

C. Road Markings

Road markings are designed to be easily recognizable.
Their color is chosen to stand out from the rest of the
street. As a consequence, it is comparably easy to segment
road markings from the street. Besides easy detection, road
markings occur frequently which makes them suitable for

localization. The downside is that road features occur peri-
odically so that there are many ambiguities in associating
detections to map elements. This problem can be resolved
with additional features and by building up a local map
(see chapter III-B). Road marking detection is already used
in series cars for e.g. lane assistance. Further, the type of
road marking (e.g. dashed, straight or stop line) defines rules
which are important for behavior generation and planning.
For detection we use a stereo camera and the approach of
[20]. Detections are represented as two 2D points which
describe the center line in direction of the long axis of the
marking. Additionally, the class of the marking is stored.

III. LOCALIZATION FRAMEWORK

A. Overview

The localization framework can be split up into four layers,
namely sensor, detector, association and optimization layer
(see. Fig. 2). The first layer comprises the sensors used

road marking
detector

facade
detector

pole
detector

camera Lidar GNSSodometry

local map generator

map matcher

pose graph adjuster

sensors

optimization

detectors

association

pose

Fig. 2: Overview of localization framework

for localization. Cameras and LiDARs are used to detect
localization features. Further, a GNSS receiver is used to
have a rough estimate of the current pose and an odometry
unit provides a local motion estimate. The detector layer
consists of detectors for road markings, facades and poles.
The association layer takes the detections as input and
associates them to features in the global map. This is a two
stage process. First, detections of the near past and present
are accumulated in a local map by using odometry. This
increases the number of detections in an association step
and thereby resolves ambiguities. Second, the map matcher
uses a rough pose estimate from GNSS as well as the last
pose estimate of the localization as a prior to find an optimal
association between features in the local and the global map.
In the final optimization layer, pose graph bundle adjustment
is used to update the pose based on feature association pairs
and odometry measurements.

B. Local Map Generator

A drawback of our geometric primitive features is that
they don’t have a strong signature such as e.g. visual point
features. This makes association of a detection to a map
element highly ambiguous. To solve the association problem,
we consider multiple detections. The relative positions of
these detections serve as a pattern. If the pattern is unique

in the map the association can be solved easily. Ambiguity
can occur because of too few detections and periodic pat-
terns. Practical reasons for that are missed features because
of limited sensor range and imperfection of the detectors.
Further, periodicity is common in road scenes, especially for
road markings. The problem of ambiguities can be solved by
accumulating detections over time. The higher the number of
different detections the less ambiguous the pattern gets. To
generate a single pattern from detections of different points
in time, the detections are transformed into a static world
frame. Therefore the movement of the car has to be known.
We use odometry based on wheel encoders as an estimate for
the movement of the car. The local map consists of detections
in the time span S = [tb, te]. The time te is always defined
by the most recent detection. The traveled distance d(., .)
between two time points is used to set tb:

tb =

{
te −Θt,max if d(te −Θt,max, te) < Θd,max

td else
, (1)

where Θt,max is the maximum allowed duration of S ,
Θd,max is the maximum traveled distance and td is defined
by d(td, te) = Θd,max. When accumulating detections longer
than Θt,max, the errors introduced by odometry distort the
local map too much. Therefore, the first case in Eq. 1 sets a
maximum duration of Θt,max. The second case is used if the
traveled distance reaches Θd,max in less than the maximum
duration Θt,max. As a rule of thumb, we assume that there
are no more ambiguities if the car traveled Θd,max.
The resulting local map has more features spread over a
wider area and less missed features compared to a single-shot
pattern. This makes associations reliable so that dealing with
multiple association hypothesis in the optimization layer is
redundant. This is crucial for efficiency in the optimization.

C. Map Matcher
Map matching is the task of finding associations between

elements of the local map Ml and global map Mg . We
shift the estimated vehicle pose p to achieve best alignment
of Ml and Mg . A cost function C(Ml,Mg,p) is used to
assess the quality of the alignment:

C(Ml,Mg,p) =
∑

fd∈Ml

Cf (fd,Mg,p), (2)

where fd denotes a detected feature. The single feature
association cost Cf (fd,Mg,p) is defined as following:

Cf (fd,Mg,p) =

Cp(fd,Mg,p) if pole

wf,1Cs(fd,Mg,p) if facade
wf,2Cs(fd,Mg,p) if road marking

,

(3)

where wf,1 and wf,2 are weighting factors for the differ-
ent feature types. Pole association costs Cp(fd,Mg,p) are
defined as

Cp(fd,Mg,p) =

{
dp(fd,fm,p)

dp,max
+ wp

∆αp(fd,fm,p)
∆αp,max

if ∃fm
1 + wp else

.

(4)

A match fm ∈Mg exists if it is similar in radius, inclination
angle and position to the detection fd. In case of multiple
matches, the match with the lowest cost Cp is chosen. The
pole matching cost is build up of two terms (Eq. 4 first
case). The first term penalizes a high distance between fd and
fm and the second term penalizes a large angle difference.
The 2D point-to-point distance dp is normalized with the
maximum distance dp,max of a matched pole pair (fd, fm).
The angle ∆αp between the poles is normalized with the
maximum angle ∆αp,max of a match. If no matching pole
could be found, the maximum cost is set for the pole fd
(Eq. 4 second case). The association costs for facades and
road markings are computed the same way by using segment
matching costs Cs(fd,Mg,p):

Cs(fd,Mg,p) = (5)
ds(fd, fm,p)

ds,max
+ ws,1

∆αs(fd, fm,p)

∆αs,max
+

ws,2
oout(fd, fm,p)

oin(fd,fm,p) + oout(fd, fm,p)

if ∃fm

1 + ws,1 + ws,2 else

.

Two segments are a match if they are of the same type
(facade, dashed line, stop line, ...), are close in distance
and orientation and have a sufficient amount of overlap.
The segment matching cost (Eq. 5 first case) is build up
of three terms. The first term penalizes the distance between
the segments. More precisely, ds is the distance between the
center point of fd to the line segment fm. This distance
is independent of the difference in orientation and therefore
is more suitable than real segment-to-segment distance. The
second term penalizes differences in 2D orientation ∆αs.
The third term considers the overlap of the two segments.
We define a measure for overlap which is independent of
the difference in orientation. One segment is rotated around
the center point so that the segments are parallel. Then oin is
the overlapping length and oout is the non-overlapping length
when projecting one segment onto the other. The parameters
ds,max and ∆αs,max are used for normalization and ws,1
and ws,2 are weighting factors. Fig. 3 visualizes the three
terms of segment matching costs. If no match was found,
the maximum cost for the detection fd is set (Eq. 5 second
case).

oin

ooutΔαs
ds

a) b) c)

fm fm fm

fd fd fd

Fig. 3: a) distance , b) orientation difference and c) overlap
cost for a segment match.

With Eq. 2-5 we have a tool to compare different proposals
for aligning the local to the global map. We need to find good
proposals to finally find the best alignment. From GNSS and
the last localization iteration we already have pose priors.
Therefore, generating proposals can be done by sampling
around these priors. For each sampled pose the alignment

cost C is computed. The proposal with the lowest cost sets the
associations for the new detected features. The association
pairs are passed to the optimization layer to find an accurate
pose estimate of the vehicle.

D. Pose Graph Adjuster

To estimate the final localization pose, we developed a
sliding window non-linear least squares (NLS) estimator
which adjusts the recent N poses based on odometry mea-
surements and feature-associations as described in section
III-C. In comparison to commonly used variants of the
Kalman filter or Particle filters, estimating a window of
recent poses enables to deal with asynchronous and delayed
measurements due to different sensors and preprocessing
runtimes, with less effort.
For the optimization, the incoming timestamped odometry
measurements have a twofolded purpose. First, each new
odometry measurement induces a new timestamped pose
for the optimization. Hence, the rate fo of the odometry
defines implicitly the rate of the poses and the time span
l = fo ∗ N of the optimization window Wo. Second,
each odometry measurement creates a residual for the op-
timization. Thereby, each odometry measurement provides
a transformation ∆i→i+1 ∈ SE(3) which approximates the
motion of the vehicle from pose pi ∈ SE(3) to pose pi+1

at time i, i+ 1, respectively. Therefore, on the one hand, the
adjuster minimizes a minimal parameterized expression of

r(pi,pi+1) =
(
p−1
i+1pi

)
∆i→i+1, (6)

for each odometry measurement within Wo.
On the other hand, the optimizer receives timestamped asso-
ciations between mapped and detected features as depicted
in Fig. 2. In general, the timestamps of these associations
do not match exactly with the ones of the poses induced
by the odometry. Hence, the adjuster provides two different
methods to associate the feature-associations to the poses:

1) Nearest-Neighbor: A feature-association ak at time k is
associated to a pose pi which has the closest timestamp
i within Wo. However, this can become inaccurate if
the odometry has a low rate fo.

2) Interpolation: A feature-association ak induces a new
interpolated pose pk. For that, the measured pose
difference ∆i→i+1, i < k < i + 1 is split into
two pose differences ∆i→k and ∆k→i+1. To generate
∆i→k and ∆k→i+1, the pose difference ∆i→i+1 is
interpolated linearly in translation and rotation using
the slerp-operation [21].

Each association ak between a mapped feature fm and a
detected feature fd,k at time k which is associated to pose
pi at time i states a cost term r(ak,pi) for the optimization:

r(ak,pi) =

{
w1dp(ak,pi) for poles
w2ds(ak,pi) + w3∆αs(ak,pi) else

(7)

, where w1, w2 and w3 are weighting factors, dp and ds
are distance measures (see chapter III-C) and ∆αs is an

orientation difference measure (see chapter III-C). By adding
cost terms for the associations, the pose estimation becomes
over-constrained and needs to be adjusted. We use the
Levenberg-Marquardt algorithm [22] to adjust all poses in
Wo. Finally, the most recent pose in Wo is published as our
localization result. To meet hard real-time constraints, the
optimization ends after a defined duration independently of
the current estimate and whether the optimization converged.
The most crucial parts of NLS estimation are the initial-
ization of the parameters (six for each pose in Wo) to
estimate and to remove or reduce the influence of outlier
constraints. For that, we assume that the odometry source
provides measurements which are free of outliers. However,
this assumption is not realistic for the provided associations
due to high ambiguity of the used features. Hence, we apply
Cauchy-loss functions [23] to all association constraints to
level off the gradients of outliers after an initialization phase.
In the initialization phase, loss functions must be deactivated
so that large association residuals can force the poses to
converge to the map. We compare the number of small
residuals to the number of all residuals to detect when the
initialization phase is completed. For that we define the ratio

ε =
|{r(ak)|r(ak) ∈Wo ∧ r(ak) < Ta}|

|{r(ak)|r(ak) ∈Wo}|
, (8)

where Ta is a hyperparameter of the optimizer. If ε is
lower than a threshold Tε, we assume that the poses in the
optimization window are not well adjusted to the map and
the robustification through loss functions is deactivated.

IV. MAPPING FRAMEWORK

Our map generation approach can be split into four
parts. First, vehicle trajectory estimation based on visual
point features fused with GNSS poses [10], [24]. Second,
transformation of the detections from local to map frame.
Third, clustering of detections which potentially describe the
same elements. And finally, merging detections in a cluster
to a single map feature.

V. RESULTS AND EVALUATION

A. Dataset

For the purpose of evaluation, we collected data with our
experimental vehicle BerthaONE [25]. For this dataset we
used four Velodyne VLP16 LiDARs mounted flat on the roof,
two BlackFly PGE-50S5M cameras behind the windshield, a
Ublox C94-M8P GNSS receiver and an odometry unit which
fuses steering angle and wheel speed. The sensor setup is
precisely calibrated by using a spherical target for camera-
LiDAR and LiDAR-LiDAR extrinsics [26]. Checkerboards
are used for calibrating camera intrinsics and camera-camera
extrinsics [27].
The dataset was recorded in the center of Sindelfingen,
Germany (see Fig. 4). It consists of three drives of the same
track at different days, daytimes and weather conditions. A
single drive takes about 10 min for the 3.8 km track.

We have chosen this track because of two reasons: First,
it represents an average inner city scenario with houses

Fig. 4: Track in Sindelfingen, Germany.

and road infrastructure. So, all our localization features are
present even though in varying density. The second reason is
that the track is considered to be challenging for autonomous
driving. The road is mostly narrow which makes accurate
localization crucial for safety. Further, conditions for GNSS
based localization are bad since tall houses often shadow
most GNSS satellites. There are multiple sharp curves and a
roundabout which make fast localization updates important
to stay within the lane. An additional challenge is dense
traffic which often occludes parts of the sensors’ field of
view.

B. Groundtruth

Our localization framework is designed to achieve position
accuracy in the single-digit centimeter range. This defines the
accuracy for the groundtruth data needed for evaluation. We
generate our groundtruth as following:
As mentioned before, we recorded three drives on the same
track. One of them we call the mapping drive which is used
to generate our map. The others we call evaluation drives
which are used to evaluate localization accuracy relative
to the map. We use a mapping approach based on pose
graph bundle adjustment with visual point features [10], [24].
We solve the bundle adjustment problem for the mapping
and evaluation drives at the same time as if they were
a single drive. Therefore, the map and evaluation drives
are consistently registered. Registration accuracy can be
estimated by analyzing the localization noise which is below
1 cm for position and 0.1 ◦ for yaw angle.

C. Mapping Results

On the mapping drive we detect 33k road markings, 20k
poles and 90k facades. Our mapping framework merges these
detections to about 600 road markings, 500 poles and 760
facades. On average 55 road markings, 40 poles and 118
facades are merged to a single map element. Facade map
elements are supported by more detections because facades
are larger objects which can be detected from far distances.
The overall map size is around 30 kilobyte which is less
than 8 kilobyte per kilometer. This is very compact when
compared to the 2.1 gigabyte needed for the feature map
generated by our groundtruth method.

D. Localization Accuracy

We evaluate our localization framework on the evaluation
drives and use the map generated on the map drive. We assess
localization accuracy based on position error ∆pos and yaw
angle error ∆yaw. Position error ∆pos is often split up into
lateral position error ∆lat and longitudinal position error
∆lon because they have different limits. Lateral position
error ∆lat has to be lower than 50 cm to stay within the
lane but practically we aim for less than 15 cm for safety.
Bounds on longitudinal position error ∆lon are less strict
since the lane is not left that quickly in longitudinal direction.
A longitudinal position error of less than 25 cm is sufficient
for safety.
In the following we evaluated the accuracy with different
feature sets (see Table I).

TABLE I: Mean errors for different sets of features and
different limits on maximum optimization runtime

Features used ∆lat [cm] ∆lon [cm] ∆pos [cm] ∆yaw [◦]
facades 4 11 12 0.18
poles 7 8 12 0.33

road markings 10 29 34 0.47
all (100ms opt) 3 6 8 0.14
all (50ms opt) 3 7 9 0.18
all (20ms opt) 4 9 10 0.22

GNSS 156 135 227 1.50

When using only facades we already reach low errors in
position and orientation. Especially ∆lat and ∆yaw are low.
Low ∆lat can be achieved because most of the house facades
face orthogonal to the road direction and therefore are strong
constraints for lateral direction. Further, because facades
extend far they enable exact yaw angle estimation which also
keeps ∆lat low. Constraints on the longitudinal direction are
only given if facades facing in driving direction are detected
which is less frequent. This explains why ∆lon is more
than twice as large as ∆lat. With a mean position error
of 12 cm, localizing only based on facades already yields
accurate results on this inner city track.
Localization only based on poles shows higher ∆lat and
∆yaw compared to facades only. Errors in longitudinal
and lateral direction are almost the same because poles
(represented as 2D points) have no single constraint direction
such as facades (represented as 2D lines). In general, the yaw
angle can be accurately estimated by using far detections.
Since poles are small objects compared to facades, they can
only be detected in close neighborhood. Therefore, ∆yaw is
larger in case of using only poles for localization compared
to using only facades. The mean position error of 12 cm
when only using poles is similar to the results for only using
facades.
Localization only based on road markings is more chal-
lenging on this track because road markings are not always
present. Odometry has to bridge some regions without mark-
ings. So, it is not surprising that accuracy is significantly
worse compared to localization based on the other features.
Furthermore, at some places periodicity causes localization
to shift by one period length in longitudinal direction. This

is why especially ∆lon is higher.
Using all feature types for localization leads to significantly
better accuracy than only using one feature type. The major
reason is higher availability of features. Further, the comple-
mentary strength of the features is beneficial for accuracy.
E.g. facades provide accurate lateral but weak longitudinal
positioning. In this case, road markings or poles can con-
straint strongly in longitudinal direction. Fig. 5 shows error
plots of one evaluation drive. We notice that variance in ∆lat

0 50 100 150 200 250 300 350 400 450 500 550 600
t[s]

0

0.1

0.2

0.3

0.4

0 50 100 150 200 250 300 350 400 450 500 550 600
t[s]

0

0.1

0.2

0.3

0.4

0

0.4

0.8

1.2

1.6

2

0 50 100 150 200 250 300 350 400 450 500 550 600
t[s]

ya
w

lo
n

la
t

Δ
Δ

Δ

Fig. 5: Results of one evaluation drive with all feature types.
Color code: low dynamic(green), normal dynamic(blue),
high dynamic(red)

and ∆yaw is low except for peaks at 60 s, 220 s and 440 s.
When moving, an error in yaw angle must lead to increasing
error of lateral position. That is why peaks in ∆lat and ∆yaw
occur at the same time. We notice that these high peaks
are all in sharp curves with high yaw rates of up to 30 ◦/s.
Fig. 6 shows the scenario of time point 60 s for which ∆lat
and ∆yaw are the largest. There are several sources of error

Fig. 6: Roundabout at time point 60 s. Poses from the
localization framework(yellow). Groundtruth trajectory(red).

leading to this result: First, to generate pairs of groundtruth
and localization poses we have to perform interpolation
because of different timestamps. The time difference can
be up to 50 ms. We perform linear spherical interpolation
which is not perfect for non linear rotations (changing yaw
rates). E.g. the worst case error is 0.38 ◦ for linear rise of
yaw rate up to a maximum of 30 ◦/s. Another error source
is due to delays. Sensor delay (up to 50 ms for our cameras)
in addition with detection and association time can sum up

to over 100 ms. Therefore, roughly the last 100 ms of the
optimization window Wo only consists of odometry data.
Our odometry unit is a build-in system on the car and we
can only stamp the data with the time at which it arrives at
our system. So, an error in yaw angle of 1 ◦ could be caused
by a delay of 33 ms when we assume a step in yaw rate
of 30 ◦/s. Further, we noticed errors in the map for features
detected by LiDAR. Our LiDARs are spinning sensors with
a spin rate of 10 Hz. We generate 360 ◦ pseudo-single-shot
scans by compensating the vehicle motion which is estimated
by the odometry unit. Again, a delay in the odometry unit
quickly leads to noticeable errors for dynamic drives. Adding
up these error sources can explain the peaks in ∆yaw and
∆lat for dynamic drives in sharp curves.
Position error in longitudinal direction is more noisy than
in lateral direction. This is expected since less features
constraint the position in longitudinal compared to lateral
direction.
Overall, position error is 98 % of the time smaller than
25 cm and reaches a maximum of 38 cm. These results
are achieved with a runtime limit of 100 ms on the pose
graph optimizer. Table I shows that results deteriorate with
runtime limit of 50 ms and 20 ms but are still sufficient for
autonomous driving. Setting the runtime limit lower than
20 ms increasingly leads to outliers. Further, we evaluated
localization only based on GNSS. We used the solution
provided by ublox. The errors are more than a magnitude
larger compared to our feature-based solution.

VI. CONCLUSIONS AND FUTURE WORK

In this work we proposed a localization framework which
uses basic geometric primitives as localization landmarks.
Our evaluation on real data has shown that requirements
on accuracy, reliability and efficiency for localization of
next generation series cars are met in inner city scenarios.
Mean position error of less than 10 cm proofs that road
markings, poles and facades are suitable landmarks for
accurate localization on urban roads. Reliability is achieved
through local map generation and robustification of the pose
graph optimization. This is proven by a position error of less
than 25 cm 98 % of the time. Memory efficiency of 8 kB/km
was reached by a compact representation of the geometric
primitives. Efficiency in computational power was shown by
limiting the pose graph optimization runtime to a minimum
of 20 ms.
In real case scenarios, even the best localization approach
will fail some time. Therefore, we want to extend our
framework with a measure to assess the current localization
quality. Besides criteria based on availability of features and
association costs we also plan to use other traffic participants
such as cars and pedestrians to detect lost localization.

ACKNOWLEDGEMENTS

This work was funded by Daimler AG as part of the Tech
Center a-drive initiative. The authors would like to thank
Daimler AG for their support.

REFERENCES

[1] Hd map with roaddna, http : / / download .
tomtom.com/open/banners/HD_Map_with_
RoadDNA_Product_Info_Sheet.pdf, visited
on 2018-08-30.

[2] Here hd live map - the most intelligent sensor for
autonomous driving, https://www.here.com/
file/22296/download?token=5W8KZPvT,
visited on 2018-08-30.

[3] B. Eissfeller, G. Ameres, V. Kropp, and D. Sanroma,
“Performance of gps, glonass and galileo”, in Pho-
togrammetric Week, vol. 7, 2007, pp. 185–199.

[4] F. Caron, E. Duflos, D. Pomorski, and P. Vanheeghe,
“Gps/imu data fusion using multisensor kalman filter-
ing: Introduction of contextual aspects”, Information
fusion, vol. 7, no. 2, pp. 221–230, 2006.

[5] M. Schreiber, H. Königshof, A.-M. Hellmund, and C.
Stiller, “Vehicle localization with tightly coupled gnss
and visual odometry”, in Proc. IEEE Intell. Veh. Symp.
(IV), 2016, pp. 858–863.

[6] K. Jo, K. Chu, and M. Sunwoo, “Interacting multiple
model filter-based sensor fusion of gps with in-vehicle
sensors for real-time vehicle positioning”, IEEE Trans.
Intell. Transp. Syst., vol. 13, no. 1, pp. 329–343, 2012.

[7] J. Levinson, M. Montemerlo, and S. Thrun, “Map-
based precision vehicle localization in urban envi-
ronments”, in Robotics: Science and Systems, vol. 4,
2007, p. 1.

[8] J. Levinson and S. Thrun, “Robust vehicle localization
in urban environments using probabilistic maps”, in
IEEE International Conference on Robotics and Au-
tomation (ICRA), 2010, pp. 4372–4378.

[9] H. Lategahn, M. Schreiber, J. Ziegler, and C. Stiller,
“Urban localization with camera and inertial measure-
ment unit”, in Proc. IEEE Intell. Veh. Symp. (IV),
2013, pp. 719–724.

[10] M. Sons, M. Lauer, C. G. Keller, and C. Stiller, “Map-
ping and localization using surround view”, in Proc.
IEEE Intell. Veh. Symp. (IV), 2017, pp. 1158–1163.

[11] T. Caselitz, B. Steder, M. Ruhnke, and W. Burgard,
“Monocular camera localization in 3d lidar maps”, in
IEEE/RSJ International Conference Intelligent Robots
and Systems (IROS), 2016, pp. 1926–1931.

[12] M. Schreiber, C. Knöppel, and U. Franke, “Laneloc:
Lane marking based localization using highly accurate
maps”, in Proc. IEEE Intell. Veh. Symp. (IV), 2013,
pp. 449–454.

[13] F. Poggenhans, N. O. Salscheider, and C. Stiller,
“Precise localization in high-definition road maps for
urban regions”, IEEE/RSJ International Conference
Intelligent Robots and Systems (IROS), 2018, forth-
coming.

[14] R. Spangenberg, D. Goehring, and R. Rojas, “Pole-
based localization for autonomous vehicles in ur-
ban scenarios”, in IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), 2016,
pp. 2161–2166.

[15] M. Sefati, M Daum, B Sondermann, K. D.
Kreisköther, and A. Kampker, “Improving vehicle
localization using semantic and pole-like landmarks”,
in Proc. IEEE Intell. Veh. Symp. (IV), 2017, pp. 13–19.

[16] J.-H. Im, S.-H. Im, and G.-I. Jee, “Vertical corner
feature based precise vehicle localization using 3d
lidar in urban area”, Sensors, vol. 16, no. 8, p. 1268,
2016.

[17] Y. Taguchi, Y.-D. Jian, S. Ramalingam, and C. Feng,
“Point-plane slam for hand-held 3d sensors”, in IEEE
International Conference on Robotics and Automation
(ICRA), 2013, pp. 5182–5189.

[18] S. Yang, Y. Song, M. Kaess, and S. Scherer, “Pop-up
slam: Semantic monocular plane slam for low-texture
environments”, in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2016,
pp. 1222–1229.

[19] J. Biswas and M. Veloso, “Depth camera based local-
ization and navigation for indoor mobile robots”, in
RGB-D Workshop at RSS, vol. 2011, 2011, p. 21.

[20] F. Poggenhans, M. Schreiber, and C. Stiller, “A uni-
versal approach to detect and classify road surface
markings”, in Proc. IEEE Intell. Trans. Syst. Conf,
2015, pp. 1915–1921.

[21] E. B. Dam, M. Koch, and M. Lillholm, Quaternions,
interpolation and animation. Citeseer, 1998, vol. 2.

[22] S. Agarwal, N. Snavely, S. M. Seitz, and R. Szeliski,
“Bundle adjustment in the large”, in European confer-
ence on computer vision, Springer, 2010, pp. 29–42.

[23] S. Agarwal, K. Mierle, and Others, Ceres solver,
http://ceres-solver.org.

[24] M. Sons and C. Stiller, “Efficient multi-drive map
optimization towards life-long localization using sur-
round view”, IEEE Trans. Intell. Transp. Syst., 2018,
forthcoming.

[25] Ö. Ş. Taş, N. O. Salscheider, F. Poggenhans, S.
Wirges, C. Bandera, M. R. Zofka, et al., “Making
bertha cooperate–team annieway’s entry to the 2016
grand cooperative driving challenge”, IEEE Trans.
Intell. Transp. Syst., vol. 19, no. 4, pp. 1262–1276,
2018.

[26] J. Kümmerle, T. Kühner, and M. Lauer, “Automatic
calibration of multiple cameras and depth sensors with
a spherical target”, IEEE/RSJ International Confer-
ence Intelligent Robots and Systems (IROS), 2018,
forthcoming.

[27] T. Strauß, J. Ziegler, and J. Beck, “Calibrating multi-
ple cameras with non-overlapping views using coded
checkerboard targets”, in Proc. IEEE Intell. Trans.
Syst. Conf., 2014, pp. 2623–2628.

http://download.tomtom.com/open/banners/HD_Map_with_RoadDNA_Product_Info_Sheet.pdf
http://download.tomtom.com/open/banners/HD_Map_with_RoadDNA_Product_Info_Sheet.pdf
http://download.tomtom.com/open/banners/HD_Map_with_RoadDNA_Product_Info_Sheet.pdf
https://www.here.com/file/22296/download?token=5W8KZPvT
https://www.here.com/file/22296/download?token=5W8KZPvT
http://ceres-solver.org

	Introduction
	Localization Features
	Poles
	Facades
	Road Markings

	Localization Framework
	Overview
	Local Map Generator
	Map Matcher
	Pose Graph Adjuster

	Mapping Framework
	Results and Evaluation
	Dataset
	Groundtruth
	Mapping Results
	Localization Accuracy

	Conclusions and Future Work

