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Safe but not Overcautious Motion Planning
under Occlusions and Limited Sensor Range
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Abstract— For a successful introduction of fully automated
vehicles, they must behave both provably safe but also con-
venient, i.e. comfortable and not overcautious. Given the lim-
ited sensing capabilities, especially in urban scenarios where
buildings and parking vehicles impose occlusions, this is a
challenging task. While recent approaches gave first ideas for
boundary conditions of safe behavior, an approach for conve-
nient motion planning that fulfills these constraints is still an
open issue. Therefore, we utilize and enhance safety approaches
for occlusion handling in order to facilitate comfortable and
safe motion planning. We consider worst case assumptions,
arising from potential objects at critical sensing field edges,
along with their probability. With this information, we can
ensure to not act overcautiously while still moving provably
safe. The potential of our approach is shown in a modified
CommonROAD scenario.

Index Terms— Automated vehicles, occlusions, field of view,
provable safety, motion planning, behavior generation.

I. INTRODUCTION

Automated driving is gaining more and more attention in
the public, as automated vehicles slowly start populating the
roads. The combination of adaptive cruise control and lane
keeping assist already gives a first impression on how fully
automated vehicles take over control. In the currently avail-
able automation level, however, the driver must continuously
monitor the system due to safety reasons.

One key issue that is not yet solved is the limited sensor
range due to the measurement principle, adverse environ-
mental conditions, or occlusions. The current field of view
has to be taken into account for safety reasons, but also
to ensure comfort, avoiding unexpected and harsh reactions.
Some parts of the sensing horizon can be neglected due to
physical reasons, such as parts behind a guard rail. Other
parts can be neglected as they are implicitly considered in
the motion planner: In many approaches, new obstacles are
treated by frequent replanning. Assuming absence of wrong-
way drivers, being able to stop within the sensing horizon
can already ensure safety.

For the comfort consideration, it is particularly interesting
to look at the probability of objects being at the edge of the
field of view. In this work, we are proposing an approach
for reacting convenient, i.e. safe and comfortable but not
overcautious, to occlusions. The approach is based on our
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Fig. 1: A modified CommonROAD [1] scenario with severe occlu-
sions due to a building (grey). The orange area is obscured for
the sensors of the automated vehicle driving along its desired path
(blue). However, there is a conflict zone (red) due to intersecting
paths with vehicles coming from the occluded area. Using this
information is essential for safe and comfortable motion planning.

recent work [2], where we presented a probabilistic cooper-
ative planning framework considering possible violations of
the model compliance as well as intention uncertainties.

The main contributions are
1) a method to analyze the safety of a given trajectory with

respect to occlusions,
2) a method to estimate the risk and severity of a potential

emergency braking due to an object behind an occlusion
and

3) a probabilistic framework to determine convenient be-
havior in presence of occlusions.

The basic idea of the framework is that a safe emergency
maneuver must be possible to avoid potential collisions
with any object that could be hidden by the occlusion.
Yet, uncomfortable emergency maneuvers are acceptable if
the probability is sufficiently low. Thus, wrong probability
estimates only affect comfort, not safety.

The remainder of this paper is structured as follows: In
the next section, we shortly review the related work. In
Section III, we start with preliminary considerations, before



presenting our new approach in Section IV. In Section V,
we evaluate the approach in a modified CommonROAD [1]
scenario. Finally, we conclude our work in Section VI.

II. RELATED WORK

While the goal of this paper is to provide a comfortable
and comprehensible motion plan that is still provably safe,
previous work mainly focused on comfort while minimizing
some risk measure, as Orzechowski et al. [3] point out in
detail. Recently, Bouton et al. [4] also presented an approach
treating occlusions in a POMDP. While the approach is
promising regarding the computational feasibility of occlu-
sion treatment with POMDPs, it does not guarantee or focus
on safety. Tas et al. [5], on the other hand, focused on safety
but not on comfort.

Bouraine et al. [6] give a so-called passive safety guar-
antee, meaning that if a collision occurs, the robot is at
rest. While this might work for unstructured environments,
it is insufficient for structured environments like road traffic,
where certain traffic participants have the right of way over
others. Rather, guaranteeing to yield the right of way is an
essential component of road traffic safety. Therefore, we
adopt the notion of blame from Shalev-Shwartz et al. [7],
meaning that self-driving cars will never cause an accident.
This notion is also followed by the reachable set approach
of Althoff et al. [8], which Orzechowski et al. [3] recently
expanded by occlusion consideration.

III. PRELIMINARY CONSIDERATIONS

The key issue when facing occlusions and limited sensor
range is that within the occluded area, there might be static
and/or dynamic objects that have to be considered for motion
planning.

A. Integration into probabilistic planning

As motivated in our previous work [2], potential uncertain-
ties from perception and prediction are crucial to the motion
planning problem. In order to be able to cooperate with
other traffic participants, some estimate of their intention,
for example whether they want to turn right or go straight
at an intersection, is necessary. In order to get this estimate,
we need to have measurements for this object beforehand.
Wherever our sensing is limited, e.g. due to occlusions, we
must consider hypothetical objects within those areas. Thus,
dealing with this incomplete information is the first step in
motion planning, before any object intention consideration
and possible cooperative motion planning.

B. Focus on junctions

While a potential cooperation with a hypothetical object
contains too large uncertainties for a meaningful result,
cases with less uncertainty are more meaningful: Specifically
interesting are those sensing edges that hide potential objects
that have priority over us, such that we would have to yield,
as cooperation is rare in these cases and can be neglected.
The most obvious case is an object in our lane, where we
have to avoid a rear-end collision, also with limited sensing

range, for example due to dense fog. Another common case
is a junction, where objects on some lanes have the right of
way over others.

In structured environments, traffic can be separated into
lanes and we can identify overlapping parts with the lanes
of others as potential collision zones or conflict zones,
as explained in-depth in our previous work [9]. In cases,
where we have to give way to potentially occurring traffic
participants from occluded areas, safety can be ensured by
two conditions:
C1 We can ensure to come to a safe state before a conflict

zone.
C2 We can ensure to legitimately pass the conflict zone,

i.e. come to a safe state after the conflict zone without
risking a collision inside.

The union of those conditions must be a hard constraint
to every safe planner. The overall reaction time from the
appearance of an object to the actual response of the actuators
must of course be incorporated in the constraints. They can
be reformulated to As long as we cannot ensure a safe
trajectory through a conflict zone, we have to ensure the
reachability of a safe state before it. 1

Traveling at the edge of these conditions, however, con-
dition C1 means that we react to occlusions late and with
maximum deceleration (a) until condition C2 is fulfilled, or
even worse, (b) until we come to a full stop, if an object
appears and condition C2 remains unfulfilled. Thus, traveling
at the edge of these conditions leads to unpleasant motion
plans. In order to plan convenient trajectories in the presence
of occlusions and limited sensor range, we apply the key
idea of our recent work [2]: We look at possible reactions to
potentially occurring objects along with their probability.

C. Prerequisites

As input to our motion planning module, we need infor-
mation about lanes, conflict zones, the traffic rules as well as
static obstacles that cause occlusions, such as buildings. All
this information can be derived from a lanelet2-map [10].
Then of course, we must be localized inside the map, and
we need critical sensing edges and the predicted occupancy
that arise from those [3]. This input is supposed to be
probably approximately correct [11], in order to guarantee a
reasonable level of safety, as Shalev-Shwartz et al. motivate
[7]. Further, we need information about the traffic density of
those lanes, that cause the predicted occupancy, in order to
decide how likely it is that condition C2 remains unfulfilled
as we actually detect objects at the critical sensing edges.

IV. APPROACH

As motivated in our previous work [2], motion planning
algorithms should distinguish between safety, which has
to be proven, and comfort, where uncomfortable motion
is sometimes okay, if it prevents permanent overcautious

1The special case of carefully advancing into conflict zones is neglected
for now.



behavior. This also facilitates methods for the comfort plan-
ner, that do not give guarantees regarding feasibility and/or
convergence speed, such as sampling.

As stated previously, we explicitly consider occlusions and
limited sensor range: When planning our future motion, we
look at where and when we could sense previously occluded
objects, and how we would have to react, along with the
probability of those hypothetical cases. We assume that we
do not influence the occurrence probability or the behavior of
objects in the relevant occluded areas, as they have priority
over us. Still, theoretically, we would have to consider the
probability of all possible trajectories of others at any time
along with the probability of their occurrence. The expected
cost would then be computed as

Goccl(xego) =
∑
xother

p(xother)G(xego,react) (1)

for every set of trajectories of possibly occluded objects
xother along with their probability p(xother) (including
xother = {}) and the respective reaction of the ego vehicle
xego,react.

A. Simplified reaction model

Since neither the data collection nor the cost computation
is feasible for this general case, we further simplify our
consideration. In most parts of the road network, traffic can
be separated into lanes. At junctions, overlapping lanes can
be identified as conflict zones. Thus, the path for following
a particular route in the road network is rather predefined,
which motivates the use of path-velocity decomposition, as
introduced by Kant and Zucker [12]. Therefore, our scope of
action lies in determining a velocity profile along the path.
In the following, we denote the path with s, the velocity with
v and the longitudinal acceleration along the path with a.

a) Safe state before the conflict zone (C1): Determining
safe states in road traffic is a separate research topic, which
is further discussed by Shalev-Shwartz et al. [7]. In the
remainder of this paper, we consider stopping in a lane as
safe, as long as we are outside of any junction, which we
think is reasonable for urban areas. With this, we can identify
the last possible safe stop in front of conflict zones. Knowing
this position, we can infer a maximum feasible velocity, for
which we are still able to reach the safe state in front of
the conflict zone. Let this last safe position be in a distance
of dsafe ≥ 0 from the conflict zone. Further, let sego be the
position along the path with respect to the conflict zone, as
in Fig. 2. For positions sego ≤ −dsafe, the double integrator
equations

sbrake = vmax,safe · (tr + tbrake) +
1

2
abraket

2
brake

!
= |sego| − dsafe

and

vbrake = vmax,safe + abraketbrake
!
= 0
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Fig. 2: Exemplary visualization of the velocity that ensures safe
passing before a potentially occurring object for the scenario of
Fig. 1, assuming TZCmin = 2s.

yield

vmax,safe(sego) =

abraketr +
√

(abraketr)2 − 2abrake · (|sego| − dsafe)

with the reaction time tr and the maximum brake decelera-
tion abrake.

b) Safely passing the conflict zone (C2): On the other
hand, as stated in the previous section, as soon as we can
ensure to legitimately pass the conflict zone, the trajectory
is safe w.r.t. the conflict zone, such that we do no longer
react to potentially occurring objects regarding this conflict
zone. For this case, we can again compute the velocity profile
vmin,pass(sego), above which a reaction has probability zero,
assuming that occurring objects drive with a maximum
velocity vmax, and that we did not violate their right of
way if the time of zone clearance, i.e. the time between we
leave and they enter, is larger than TZCmin. The relevant
variable here is the earliest possible entrance time of a
hypothetical object ∆tobj,enter. This variable can be retrieved
from the set based prediction as in Orzechowski et al. [3],
however, the maximum processing time from occurrence to
the detection of potential objects, the so-called perception
delay tperc_delay, must be taken into consideration. With the
length of the conflict zone along our path sego,cz, the minimal
velocity to pass is

vmin,pass(sego) =
sego + sego,cz

∆tobj,enter − tperc_delay − TZCmin
. (2)

It is visualized in Fig. 2.
Note, that if slower vehicles are detected, which block the

full lane, this vmin,pass(sego) can even be reduced. This rare
case, however, is not further considered in the remainder of
this work.

c) Irrelevant objects: Still, given a certain velocity of
an object appearing at the sensing edge, we would not react
if being sufficiently far from the conflict zone. Rather, with
limited sensing along a prioritized lane, it is likely that a
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Fig. 3: Exemplary visualization of the velocity below which we
would not react to an occurring object for the scenario of Fig. 1,
assuming the object drives at least vmin = 0.9vspeedlimit.

sensed object will already have left the conflict zone far
before we arrive, unless we are fairly close to the conflict
zone. Thus, just sensing an object does not necessarily mean
that our current planned trajectory is affected at all.For the
scenario from Fig. 1, the velocity profile vmax,idle(sego)
under which an occurring object does not affect the planned
trajectory2 is visualized in Fig. 3, assuming that occurring
objects drive with a minimum velocity vobj,min with respect
to the lane coordinates. The time after which a hypothetic
object will have left the conflict zone is ∆tobj,leave(sego) =
svis(sego)+sobj,cz+lmax,obj

vobj,min
, with our visibility along the ob-

jects’ lane up to the beginning of the conflict zone svis, the
length of the conflict zone sobj,cz and the maximum object
length lmax,obj. The maximum speed up to which we would
enter the conflict zone comfortably after the hypothetic object
is vmax,idle(sego) =

sego
∆tobj,leave(sego)+TZC with the desired

time of zone clearance TZC.
d) Single reaction: With these considerations, we can

eliminate particular trajectories for others from equation (1),
and reduce it to a single reaction consideration

Goccl(xego) = (1−p(react))G(xego)+p(react)Greact(xego)
(3)

where 1 − p(react) is the probability that we can drive
trajectory xego without hindrance. This reaction is only
pursued in the area between vmax,idle and vmin,pass. In other
words, there are parts of the trajectory that are considered
independent of occurring objects xfix

ego.
For the cost computation of Greact(xego), we can take

advantage of the fact that the reactions always intend a full
stop in front of the conflict zone. As the waiting time as well
as the subsequent starting are independent of the reactive
deceleration, the cost can be split into

Greact(xego) = G(xfix
ego)+Gdecel(xego)+Gwait+Gstart (4)

2assuming no acceleration after sensing an object

with the waiting cost Gwait and the starting cost Gstart being
independent of the specific deceleration implied by xego.
Consequently, for the choice of the trajectory xego, we only
have to consider the deceleration phase.

The maximum deceleration that might be needed is caused
by an object that appears just before we can switch to condi-
tion C2, neglecting the planning delay tplan_delay. The latter
delay can be incorporated in the calculation of vmin,pass:

v′min,pass(sego) =
sego + sego,cz

∆tobj,enter − tdelay − TZCmin
. (5)

with tdelay = tperc_delay + tplan_delay. Mathematically, the
point of maximum deceleration amax,brake is the intersection
of our planned trajectory with v′min,pass(s). For an equally
distributed object occurrence, the mean expected deceleration
cost is defined by

Gexp,decel =
1

ttotal

∫
t∈T

G(abrake(sego(t)))dt

=
1

ttotal

∫
t∈T

G

(
v2(t)

2sego(t)

)
dt

with the times where reactive breaking is possible T and the
length of T being ttotal.

We assume that the planned acceleration is not smaller
than the deceleration needed for a stop aego(t) ≥
abrake(t)∀t ∈ T . A violation of this assumption facilitates
stopping before the latest possible safe stop, which is not
meaningful in our case. With this assumption we know that
abrake(t) is monotonic over t. Thus, we can over-approximate
Gexp,decel by subdividing T into N time intervals and
choosing the right bound for every subdivision:

Gexp,decel <
1

ttotal

N∑
n=1

(tn−tn−1) ·G(abrake(sego(tn)). (6)

Note, that a longer interval for possible braking reduces
the expected cost from braking, but does not change the
occurrence probability, as discussed earlier. Note further,
that by using analytically computed trajectories for this
reactive braking maneuver, the planning delay, and thus the
expected cost for reactive braking can be reduced. Also, for
occluded areas that are far away from the conflict zone, a
full deceleration is unlikely. Rather, during replanning, a
comfortable passing between two obstacles without coming
to a full stop is chosen.

B. Occupancy probability

Having an estimate for G(xego,react), the probability of
this reaction is to be estimated. While a profound prob-
ability estimation lies outside the scope of this paper, we
briefly explain an exemplary calculation. The occupancy of
a specific conflict zone can be monitored, yielding a binary
occupancy function over time. With this, we can compute all
time gaps in-between two objects. From those time gaps, we
have to subtract twice the desired time of zone clearance, as
we want to keep a safe distance to our predecessor and our
successor. From the remaining gap, we now have to subtract
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Fig. 4: Occupancy of a conflict zone: The time in which the zone
is occupied by another traffic participant (black) is surrounded by a
zone clearance time (orange). Additionally, the expected time that
is needed to pass the zone is marked in blue. The remaining time
is the potential scope for our traversal.

our estimated zone passing time. The remaining gap is the
potential scope for our traversal, cf. Fig. 4.

tgap,scope = tgap − 2TZC− tpass,ego (7)

Neglecting further information that we could gain from
observing the conflict zone, the probability that we can
unaffectedly pass it is

p(react) = 1−
∑

gaps tgap,scope

ttotal
(8)

In the following, the probability is assumed to be given
and constant for a certain planning time. Further, the ego
vehicles actions do not affect this probability, i.e. changes in
the probability due to future observations are independent of
the ego action.

C. The pass through decision

In the presented approach, the decision to pass a conflict
zone is always implicitly taken. If, however, an object occurs
before we have reached condition C2, we abort the maneuver
and yield to this object. The previously explained cost
computation facilitates a comfortable switch to this yield
maneuver. Note, that safety is never put at risk using this
method, as we only chose trajectories that always fulfill the
union of conditions C1 and C2.

D. Several occlusions leading to one safe stop

Several occlusions that are not related to each other, i.e.
that are statistically independent, but lead to the same conflict
zone, require special treatment. An example would be Fig.
1 with another building on the left, such that the lane from
left to right is occluded as well. For statistically independent
events A and B, we know that P(A∩B) = P(A)P(B). As
the reaction is the same for both events (deceleration for the
same safe stop), we can only react once. Thus, the probability
of reacting to A or B is not statistically independent. As
A and B are equally distributed over certain times TA =
[tbegin
A , tend

A ] and TB = [tbegin
B , tend

B ], we can subdivide the
events into time intervals arbitrarily. Assuming that tend

A <
tbegin
B , this means that a reaction to event B only has the

probability P(Ā)P(B). In general, we can define disjunct
time intervals T1, T2, ... where only A is possible, only B is
possible, both at the same time are possible or where none is
possible, and compute the respective probabilities P1,P2, ...

of the joint event (A∩B) with 0 ≤ Pn ≤ 1. The probability
of a reaction Preact

n in Tn can then be computed via

Preact
n = (1−

n−1∑
m=0

Preact
m ) · Pn (9)

with
∑

n Preact
n = 1− P(A ∩B).

As stated earlier, small decelerations far away from the
conflict zone are not pursued up to a full stop, but a new plan
with the detected object is made. Thus, the single reaction
policy might be violated for far away occluded areas. To
avoid using heuristics or a threshold for those cases, we over-
approximate Preact

n by Pn.

E. Occlusions of consecutive conflict zones

For consecutive conflict zones, more specifically conflict
zones with consecutive safe stop areas, the reaction differs.
The occurrence probability is also assumed to be statistically
independent. As the plan for a successive conflict zone
is only pursued if no reaction is caused by the previous
conflict zone, the concatenation of the events is not further
considered. Thus, the cost weighted with its probability can
simply be added to the cost calculation.

V. RESULTS AND EVALUATION

In order to evaluate our approach, we chose the scenario
from [3], which represents a real world scenario with ac-
tually existing occlusions: It is a modified version of the
CommonROAD [1] scenario DEU_Ffb-1_1_T-1.

In the scenario, we approach a junction, where we have
to yield to crossing traffic. The lane coming from the right,
however, is occluded by a building. Since we know the
layout of the junction, we can infer the conflict zone and the
position for the latest possible safe stop in front of it3. With
this information, we can compute the maximum possible
velocity for condition C1. Also, as the building is mapped
in our lanelet2-map, we can infer the occlusion along the
path beforehand. From these sensing edges, we can infer the
occupancy prediction as in Orzechowski et al. [3] and from
the latter, we can compute the minimum required velocity to
safely pass, according to condition C2.

Now, we look for the best trajectory, given certain oc-
cupancy probabilities and certain actual occupancies, using
jerk sampling. Unsafe trajectories that violate the safety
conditions C1 and C2 at the same time are discarded. As
baseline, we implemented the method of Orzechowski et al.,
but disregarded the jerk constraint. The values were chosen
as in [3]: A fail-safe deceleration of 4 m

s2 and maximum
comfortable acceleration of 2 m

s2 . Note that, as a zone clear-
ance time was not considered here, this approach might still
violate the right of way of others, even though it is provably
safe.

While the baseline always reacts with a sharp deceleration,
independent of the occupancy probability, our approach takes
advantage of the latter: If we are sure, that the junction

3In this case, we have to stop before entering the junction, and must not
stop in the lane crossing from left to right.
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Fig. 5: Planned trajectories for the scenario from Fig. 1. While
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the proposed approach plans constant velocity (upper black) when
expecting a free intersection and decelerates early (lower black)
when expecting occupancy.

will be free (p(react) = 0), we just have to make sure
that we do not risk a collision. As, in the given scenario,
a transition from condition C1 to condition C2 is possible
at the maximum velocity, there is no need to decelerate at
all. On the other hand, if there is a lot of traffic (p(react) =
50%), we decelerate early and comfortably. This behavior
is similar to the one of human drivers, behaving differently
depending on how likely it is, that there actually is a relevant
object in the occluded area. The results are plotted in Fig.
5. Note that as we always check for a safe transition from
condition C1 to condition C2, safety is never put at risk, and
wrong probability estimates p(react) only affect the comfort
of driven trajectories.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an approach for safe but
at the same time not overcautious motion planning under
occlusions and limited sensor range. To the best of the
authors’ knowledge, this is the first approach that optimizes
passenger comfort while being provably safe.

Focusing on junctions, we first derived a method to
analyze the safety of given trajectories with respect to
occlusions, based on reachability analysis. Next, we derived
a method to estimate the expected cost caused by potentially
occurring objects. In this method, we apply path velocity
decomposition for our own trajectory, which is well-suited
for intersection scenarios. Combined with traffic flow infor-
mation of the respective junctions, we can determine the
expected cost of a trajectory as weighted sum of the cost
if we can pursue the trajectory and the cost for the reaction
to an occurring object.

We show the performance and the potential of our ap-
proach by comparing it to the recently presented method
of Orzechowski et al. [3]: The shown trajectories reflect a
human-like behavior, risking stronger potential decelerations,
the less likely they are.

Future work should include carefully advancing into con-
flict zones, as permitted by the traffic rules, in case of
a severe occlusion where a safe transition is not possible
otherwise. Further, as occlusions of potential objects can
also be inferred if we have the right of way, we can deduce
areas where other objects could carefully advance into our
lane. This information must also be included to facilitate safe
motion planning in all scenarios.
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