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Abstract—Visually estimating a robot’s own motion has
been an active field of research within the last years. Though
impressive results have been reported, some application areas
still exhibit huge challenges. Especially for car-like robots in
urban environments even the most robust estimation techniques
fail due to a vast portion of independently moving objects.
Hence, we move one step further and propose a method that
combines ego-motion estimation with low-level object detection.
We specifically design the method to be general and applicable
in real-time. Pre-classifying interest points is a key step, which
rejects matches on possibly moving objects and reduces the
computational load of further steps. Employing an Iterated
Sigma Point Kalman Filter in combination with a RANSAC
based outlier rejection scheme yields a robust frame-to-frame
motion estimation even in the case when many independently
moving objects cover the image. Extensive experiments show
the robustness of the proposed approach in highly dynamic
environments with speeds up to 20m/s.

I. INTRODUCTION

Estimating a rover’s motion is an important prerequisite

for reliably executing a wide range of tasks like mapping,

obstacle detection, and autonomous driving. In the past, this

localization task was often based on wheel speed sensors or

inertia sensors.

In recent years, the computational power even on standard

PC hardware increased dramatically. Furthermore, cameras

became cheaper and yield rich information about the environ-

ment of the vehicle. As a consequence, many algorithms have

been developed using vision based localization. Compared

to wheel speed sensors, vision based localization is more

precise especially in slippery terrain. In comparison to inertia

sensors the local drift rates are mostly lower. As for all

incremental approaches, long-term drift can be mitigated

by fusing GPS information or by applying loop-closure on

(visual) place recognition.

Excellent algorithms have been introduced for laboratory-

like, well structured environments or rough terrain with

low speed (of approximately 1m/s). In urban environments

with many independently moving objects, however, visually

estimating a vehicle’s ego-motion remains a problem (see

Fig. 1). This is especially the case when the vehicle drives

at moderate speed and no constraints can be put on the

environment and the motion.

We here propose a method that can deal with these

challenges. As sole input, video streams from a normal stereo

camera rig are used. The only assumption we make is a

known camera geometry, where the calibration of the stereo
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camera rig might even vary over time. As output, we obtain

accurate motion estimates even if a large part of the image

is covered by moving objects.

The remainder of this paper is organized as follows: the

next section briefly describes work already done in the field

of vision based motion estimation. In section III the basic

motion estimation approach is introduced, which is extended

by a basic outlier rejection scheme in section IV and adapted

to dynamic environments in section V. We close the paper

with experimental results of the proposed approach, a short

conclusion and an outlook on future work.

II. RELATED WORK

In the last decades, many algorithms for visual ego-

motion estimation have been developed which can roughly be

divided into two main categories: approaches using only one

camera (e.g., [4], [27]) and approaches using stereo camera

rigs. We concentrate on the latter, as they mostly yield better

results than the monocular approaches [2] and because they

do not suffer from scale ambiguities.

Further subdivision is possible into methods using feature

tracking over a whole sequence of images (e.g., [24], [8],

[14]) and methods matching features only between consecu-

tive images (e.g., [13], [25], [26]). Due to the computational

complexity of bundle adjustment we here focus on the latter.

To yield robust estimates, some approaches make use of

assumptions about the surroundings and the vehicle move-

ments. In [4] it is assumed that the vehicle moves on a

plane which restricts the motion parameter space to two

linear and one angular component. Scaramuzza et al. [21]

use nonholonomic constraints of wheeled vehicles in order

to reduce the parameter space.

Other methods combine visual ego-motion estimation with

other sensors to improve estimation results and to reduce

drift – an inherent problem of incremental motion estimation.

While Dornhege et al. [8] additionally make use of inertial

measurements, Agrawal et al. [1] use GPS and wheel speed

Fig. 1: Moving objects make egomotion estimation difficult.



Fig. 2: Sketch of the proposed algorithm. The different

components are explained in the specified sections.

sensors to improve their algorithms. Obviously, the use of

GPS information limits drift dramatically due to the global

nature of this system and could therefore also extend the

method proposed in this work.

Good localization results have also been achieved using vi-

sual SLAM techniques (e.g. [7], [20]) which simultaneously

estimate a map of the environment jointly with the trajectory

of the observer in this map. Beside the computational com-

plexity of these approaches, most of them perform well only

in well structured environments with smooth camera motions

at low speed.

Common to all previously mentioned work is the limita-

tion to static environments or environments with only few

moving objects. A rare exception is [9]. They interleave

visual odometry with pedestrian detection and tracking,

obtaining impressive results in crowded pedestrian zones.

However, there are a few drawbacks to mention: object detec-

tion can currently cope only with pedestrians, computations

are currently far-off from real-time, and results were shown

for low speed only.

This work presents a light-weight motion estimation solely

based on visual inputs. It extents [16] to yield accurate results

even in environments with high traffic and at higher speed.

The approach makes no assumptions about the motion or

the surroundings and estimates all six degrees of freedom

(6-DOF). Because of our focus on real-time applicability,

we focus on frame-to-frame motion estimation.

III. VISUAL EGO-MOTION ESTIMATION

Fig. 2 illustrates the different steps of the proposed algo-

rithm. The main branch describes the algorithm detailed in

this section which performs well for static scenes. To apply

the algorithm to dynamic environments we propose different

improvements described in sections IV and V.

A. Trifocal Constraints for Visual Ego-Motion Estimation

In our approach we apply the 3 × 3 × 3 trifocal tensor

T which describes the relationship between three images of

the same static scene. It encapsulates the projective geometry

between different viewpoints and is independent from the

scene structure [12]. We make use of the trifocal tensor’s

ability to map two corresponding feature points xA ↔ xB

in images A and B into image C. This mapping is expressed

via the point-line-point transfer of the trifocal tensor:

xk
C = xk

A · lB,j · T jk
i (1)

Here lB denotes an arbitrary image line through feature point

xB . Given the extrinsic and intrinsic camera calibration and

the movement of the stereo camera rig, there is a mapping

of corresponding feature points xR,k ↔ xL,k captured at

time step k into the current frames k + 1 via xf,k+1 =
hf (Tf ,xR,k,xL,k) with f ∈ {R,L}. Here Tf denotes the

trifocal tensor which relates the previous camera images with

one of the current camera images. The reader is referred to

[16] for more details.

B. Kalman-Filtering

In a first step, we detect corner like image features

in both stereo image pairs. Different kinds of feature

detectors and descriptors are possible (e.g. [11], [17],

[3]). After feature detection, matches between the four

images are established to get feature correspondences

xR,k ↔ xL,k ↔ xR,k+1 ↔ xL,k+1. These feature matches

serve as measurements for the Kalman-Filter which is

briefly described in the following.

To include knowledge about the dynamic behavior of the

vehicle, we use a Kalman Filter to estimate the instantaneous

state of the system. The discrete-time space filter equations

are given by

yk+1 = f (yk) + wk (2)

zk = h (yk) + vk (3)

where yk = (vX,k, vY,k, vZ,k, ωX,k, ωY,k, ωZ,k)
T
is the state

of the system at time step k, f (.) is the in general non-

linear system equation, and wk ∼ N (0,Qk) is the system

noise characterized by the 6 × 6 covariance matrix Qk.

We here assume constant velocity between consecutive time

steps, so the system equation simplifies to the linear equation

yk+1 = yk + wk. This assumption is nearly fulfilled if the

camera provides images with a fairly high frame-rate. Even

if this assumption is violated (e.g. in the case of acceleration,

deceleration or turns), the following update step guarantees

reliable motion estimation.

In equation (3), the non-linear function h (.) relates the

system state to the 4N -dimensional measurement vector

zk = [uR,k,1, . . . , vL,k,N ]
T
and vk ∼ N (0,Rk) represents

the measurement noise in form of a 4N×4N diagonal matrix

Rk. N thereby denotes the number of feature correspon-

dences between the 4 images. The measurement function is

explained in more detail in [16].

Different extensions of Kalman Filters have been derived

for the application to non-linear systems. In such cases a

linearization around the current state is often performed using

a first order Taylor-approximation. This yields the Extended



Kalman Filter (EKF) and the Iterated Extended Kalman

Filter (IEKF). In our case of highly non-linear equations

the results of Extended Kalman Filters are mostly poor. The

reason for this is that the used Taylor-approximation is only a

first order approximation. A better choice in such cases is the

usage of Kalman Filters based on the Unscented Transform

(UT) [23]. Because the unscented transform incorporates

information about higher order moments in the estimation

process, estimates usually improve. Examples for filters

propagating mean and covariance based on sigma points

are the Unscented Kalman Filter (UKF) [15] or the Iterated

Sigma Point Kalman Filter (ISPKF) [22]. We use the latter

one in our approach. Besides the reduction in linearization

error, the ISPKF has another benefit compared to EKF based

filtering. In our experiments, the convergence of the ISPKF

is approximately 60 times faster than the convergence of the

IEKF, without the need for analytical derivatives (see [16]

for a detailed analysis).

IV. RANSAC-BASED OUTLIER REJECTION

The approach described in section III is highly sensitive

to outliers. These stem from wrong feature matches or from

moving objects. To make the algorithm more robust, the

proposed approach is wrapped into the RANSAC algorithm:

iteratively, a subset of the feature correspondences is ran-

domly chosen and egomotion is estimated based on the

current subset. The number of used subsets/iterations is given

by

n =
log (1 − p)

log (1 − (1 − ǫ)
s
)
. (4)

Here, s is the minimum number of data points needed for

estimation, p is the probability that at least one sample

contains solely inliers and ǫ defines the assumed percentage

of outliers in the data set [5]. Because of the low number

of data points (s = 3) necessary for motion estimation,

the number of samples is low even with a serious number

of outliers. The percentage of outliers can even further be

reduced using the classification proposed in the next section,

which dramatically reduces the number of samples and

accelerates the algorithm.

After the Kalman Filter converges, we compute all inliers

using the Euclidean reprojection error. A feature is consid-

ered as an inlier, if the Euclidean reprojection error is lower

than a certain threshold. A final estimation step with all

inliers of the best sample is performed to give the final

egomotion estimate for the current frame. The RANSAC

based outlier rejection scheme already yields robust egomo-

tion estimates even in the presence of few independently

moving objects (see Fig. 3).

V. ADVANCED OUTLIER REJECTION

The approach described in section III and IV is able to

deliver accurate results even if wrong feature matches or

few moving objects are present (cf. Fig. 3). However, an

increasing number of outliers exponentially increases the

required RANSAC samples and thus runtime. Additionally,

if there are other regions of consistent motion present in

Fig. 3: Influence of non-systematic outliers.

the image, RANSAC might focus thereon. This leads to

wrong estimates in heavy traffic scenes (see Fig. 4 and

5). The sole solution to this problem is to interleave ego

motion estimation with object class detection in order to

filter out (potentially) moving objects1. In contrast to [9], we

here favor a light-weight approach applicable for real-time

usage and all object-classes. In the following we present our

approach which works as a preprocessing step for section III

by filtering out matching candidates based on the appearance

of local image regions.

A. Image Patch Classification

The first step of section III is to extract potential matching

candidates by means of an interest point detector. We now

seek to construct a classifier that is capable of deciding for

each candidate whether it represents a potentially moving

object (e.g. car, truck, pedestrian) or not.

By assigning to each candidate (u, v) a constant scale

parameter s, we obtain a square image patch. Using some

descriptor function, this patch is transformed into a feature

vector and classified by some binary classification method.

As our approach is dedicated for real-time usage, the combi-

nation of descriptor and classification function has to be not

only accurate but also fast.

1) Descriptors: Within the last decade lots of descriptor

functions have been developed, ranging from simply taking

pixel values [18] over applying a full (Haar) wavelet trans-

form [19] up to more sophisticated gradient-based descriptors

like e.g. SIFT [17], SURF [3], or HOG [6]. As computational

efficiency is a major selection criterion, we only focus on

the speediest ones – pixel-wise grey values, its wavelet

transform, SURF, and, as a baseline, SIFT. We give an

experimental comparison in section VI.

2) Classifiers: After transforming a patch into a feature

vector, it can then be classified as either positive (non-

moving) or negative (potentially-moving). Many binary clas-

sification techniques exist with support vector machines

(SVM) currently being the most popular for vision problems

due to their robustness. Unfortunately, for each feature

vector being classified, several kernel-calls are necessary

which makes a SVM relatively slow. A fast and nevertheless

1Even advanced filtering techniques will fail when many neighboring cars
move with the same motion.



accurate alternative are decision trees and its derivatives, e.g.

boosting and randomized decision forests. We chose to use

an ensemble of extremely randomized decision trees [10] as

they are fast and the use of multiple trees makes the method

robust. In fact, we experimentally verified that for the given

problem they even outperform a SVM.

By counting the votes from all trees, the classifier effec-

tively returns a single confidence value which is finally used

to decide upon the class. Varying this threshold influences

both, the classifier’s precision (i.e. the percentage of correct

positives) and recall (i.e. the percentage of positives identi-

fied). Using cross-validation, we select a threshold with high

precision (such that nearly all negatives are rejected) but still

acceptable recall-rate (so there are still enough positives left).

B. Adaptive Bucketing

After classification, correspondences are established bet-

ween the four images as described in section III. Afterwards,

a technique called bucketing [28] is applied on one of the

four images to further restrict correspondences. As illustrated

in Fig. 4, the image is divided into rectangles called buckets.

Based on the classification, a bucket is set active, if a

certain percentage of the contained features were classified

as positives. A constant amount of correspondences is then

selected by taking an equal number from each active bucket.

This so-called adaptive bucketing kills two birds with one

stone: First, it is able to further reject some of the few

false positives based on neighboring classification. Second, it

guarantees equal distribution of the correspondences across

the image.

The latter is needed due to several reasons: An equal

distribution across the image results in features being also

well distributed along the roll-axis of the vehicle. This

turns out to be important for a good estimation of the

linear and angular velocities. The distribution of image

features along the roll-axis ensures that far as well as near

features are used for the estimation process. Features with

a large distance to the camera are little affected by linear

camera motions; hence they give less information about the

translatory motion of the vehicle but are an important cue

for the angular velocities. Vice versa, near features give

rich information about linear motions [4]. Additionally,

bucketing reduces the drift rate of the approach. Experiments

with simulated data suggest that high drift rates follow from

biased scene points. This effect is mitigated by the use of

bucketing.

Overall, advanced outlier rejection not only improves the

quality of motion estimates in highly dynamic scenes, it also

reduces overall computational costs. While classification of

image patches is linear in their number, effective RANSAC

with Kalman-Filtering grows more than quadratically (due

to matrix inversion). Depending on the current scene, the

additional time spent on classification can even speed up the

complete method.

VI. EXPERIMENTAL RESULTS

A. Classification of Image Regions

We took 12 single images from urban scenes and hand-

labeled each pixel as either potentially moving or stationary.

We then evaluated several features by 3-fold cross-validation

on the labeled dataset. The features compare as in table I.

Method Avg. Error Avg. Area Under ROC

SURF 0.30 0.75
SIFT 0.19 0.88
Pixels 0.18 0.90
Wavelets 0.17 0.91

TABLE I: Comparison between different features for classi-

fication of key-points as potentially moving.

As processing time is a major design criterion, we chose to

use the wavelet features. For subsequent motion estimation,

we re-trained the classifier using all labeled image features.

The complete outlier rejection step is illustrated in Fig. 4.

After classifying all interest points, adaptive bucketing is

applied to further reduce false positives and to assure equal

distribution across the image.

B. Ego-motion Estimation

The basic ego-motion estimation, as described in sec-

tion III, was already analyzed in detail in [16]. Hence, we

here focus on the performance gain induced by the advanced

outlier rejection. Therefore, we use different challenging

sequences captured in urban environments with high traffic.

The recordings of a high-precision integrated navigation

system (INS) serve as reference for comparison reasons. We

use two measures for evaluation: the mean squared error

(MSE) is given by

MSE =
1

#frames
·

∑

frames

||xEST − xINS ||2

and evaluates the average Euclidean distance between the

estimated position and the reference position. Furthermore

we show the mean positioning error (MPE), which is the

mean pose error related to the length of the trajectory lINS

given by the INS:

MPE =

√
MSE

lINS

Seq. # Frames MSE MSE MPE MPE
(base) (adv) (base) (adv)

1 300 1.33m2 0.14m2 4.62% 1.53%

2 329 3.33m2 3.06m2 5.38% 5.15%

3 436 19.67m2 12.48m2 6.87% 5.47%

4 130 36.97m2 29.40m2 3.50% 3.12%

5 789 8.68m2 8.41m2 5.09% 5.01%

6 447 406.29m2 81.82m2 6.57% 2.95%

7 1380 81.17m2 30.87m2 5.97% 3.68%

TABLE II: Comparison between using only RANSAC (base)

and the advanced outlier rejection (adv) on high-traffic

scenes. Example frames are depicted in Fig. 1, 4, 6.



Fig. 4: Outlier rejection by image patch classification and

adaptive bucketing (sequence 6).

The results for some of our experiments are given in

table II. As can be seen, the MSE is significantly smaller

using advanced outlier rejection. The partially large MSE

values are due to the fact, that the INS drifts dramatically

when the vehicle stops. See also Fig. 6.

Fig. 5: Comparison between the trajectories estimated with

(red) and without (blue) the advanced outlier rejection on

sequence 6, superimposed to an aerial image of the street.

To show the results of the egomotion estimation, we illus-

trate different trajectories in Fig. 5 and 6. Fig. 5 illustrates

a sequence where at the bottom left corner two moving

objects covered a big part of the images. This situation

is depicted in Fig. 4, where it is easy to imagine that

the classification results will help the motion estimation.

Indeed, the trajectory of the advanced outlier rejection is

in accordance with the satellite image, whereas without

advanced outlier rejection the trajectory only follows the

street up to the intersection where the truck and the vehicle

perturbed the motion estimation.

Other situations that illustrate the differences best are

shown in Fig. 6. In both situation the own car stopped at

a traffic light and heavy traffic was passing at the left and

at the right. A backward motion is naturally estimated when

classification is not used. With classification, the approach

even outperforms our INS unit, which fuses GPS with inertial

signals.

VII. CONCLUSION

We proposed an algorithm for reliably estimating a robot’s

own motion. Using stereo image streams, trifocal geometry

between image triples is used together with Kalman-Filtering

to obtain motion estimates. Outliers are rejected by RANSAC

and a novel advanced outlier rejection scheme – a combi-

nation of appearance-based feature classification and equal

feature selection on buckets.

Detailed experiments were carried out with our experimen-

tal vehicle in an urban setting. In contrast to most existing

work, we showed that it is possible to obtain good motion

estimates with cameras alone. Even with many moving

objects present in the images good results were obtained,

owing to the good job of the advanced outlier rejection.

The sole drawback of the proposed method is that the

classifier has to be learned in advance. This includes that

hand-labeled training examples must be present for all pos-

sible situations. Therefore we will try to adapt an online-

learning approach for the feature classification that can adapt

to various situations. Further work will focus on the few

situations where estimates are still erroneous. Including a

kinematic model of the car will already reduce sideways

drifts. As with all incremental approaches, we could also

improve the estimates by fusing GPS information.
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