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Abstract

Designing object models for a robot’s detection-system

can be very time-consuming since many object classes exist.

This paper presents an approach that automatically infers

object classes from recorded 3D data and collects train-

ing examples. A special focus is put on difficult unstruc-

tured outdoor scenarios with object classes ranging from

cars over trees to buildings. In contrast to many existing

works, it is not assumed that perfect segmentation of the

scene is possible. Instead, a novel hierarchical segmenta-

tion method is proposed that works together with a novel

inference strategy to infer object classes.

1. Introduction

Robots need a certain amount of knowledge in order to

be able to interact with the environment in a safe manner.

The type and amount of knowledge thereby depends on the

kind of environment. The more complex the environment

gets the more complex the knowledge-base grows. For con-

trolled factory settings on the one hand predefined trajec-

tories are often sufficient. Uncontrolled outdoor scenarios

on the other hand usually require knowledge about objects,

their physical and semantic relationships, a road-map, and

evenmore. Whereas predefined trajectories can be specified

manually, the vast amount of knowledge needed for highly

unstructured environments is impossible to completely de-

sign by hand.

This work targets at the problem of generating know-

ledge about object classes. The term ”object class“ thereby

refers to an object category (e.g. cars, trees), whereas ”ob-

ject“ is seen as one specific instance (e.g. the pine tree in

front of my house). Input to the knowledge generation algo-

rithm is in this work a raw 3D point cloud. In contrast to

images, point clouds provide full 3D geometry where scale

ambiguity is not a problem. This allows to identify objects

Figure 1: Bird eye’s view on the dataset with marked instances of

one discovered object class (trees).

based on their geometry alone and to ignore highly varying

intensity information. We focus on unlabeled data, which is

easy to obtain, hence no a-priori knowledge exists over pos-

sible object classes. Thus, the algorithm is only capable of

discovering geometric structures that occur frequently. All

similar structures then represent instances of the same ob-

ject class. This discovery and grouping of structures is the

output of the algorithm. In the ideal case, a human could af-

terwards simply attach semantic labels (as e.g. cars, trees)

to the discovered groups. This knowledge can be used for

many applications (like online object detection, scene un-

derstanding, object grasping etc.) although this is not within

the focus of this work.

The main problem during object class discovery is that

numerous classes exist and that the geometry of object

instances might vary heavily within the respective object

class. Some objects might even change appearance over

time, like e.g. walking pedestrians. Furthermore, objects

are usually not fully visible. All this makes it hard to find a
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suitable representation and to automatically learn these rep-

resentations from data.

Despite these challenges, some researchers already tack-

led this problem: Ruhnke et al. [8] take single range im-

ages from indoor scans and subtract the floor, walls, and the

ceiling. The remaining point clouds are then grouped by

comparing all candidates, and finally verified by register-

ing them with ICP against a virtually merged range image.

This method was improved in [3] by replacing the group-

ing and verification with a probabilistic technique also used

in text analysis. The main disadvantage of these two meth-

ods is their restriction to scenes where objects can be easily

segmented by removing walls etc. Shin et al. [11] do not

rely on such simple segmentation but build a neighborhood-

graph on segmented planes instead. Subsequently, they

search segment-combinations that occur multiple times and

verify them by ICP. However, the segmentation is still as-

sumed to be perfect. Moreover, the method works only well

for objects consisting of planes ([13]). A different approach

was presented in [10], where a grammar of cuboids is used.

But again, the problem of a required perfect segmentation

remains. This is not the case for [9], where a hierarchical

segmentation is used. However, this approach is restricted

to completely observed objects.

All these approaches work on 3D indoor-data which usu-

ally simplifies segmentation and the type of object classes.

One of the first works on 3D outdoor data is [6]. But since

a user must click on objects (which then initiates segmenta-

tion, feature calculation and storage of the model) this ap-

proach cannot be seen as fully unsupervised.

A different, but related research area focuses upon im-

ages instead of 3D data. As an image is not a metric rep-

resentation of the world scale ambiguity must be taken care

of. Additional challenges as varying lighting conditions and

viewing perspectives complicate the task even further. A

good overview of unsupervised learning approaches for im-

ages can be found in [14]. Interesting are in particular the

works of Todorovic et al. [12, 1]. They do not rely on a sin-

gle error-free segmentation, but employ a segmentation tree

which is evaluated by the learning algorithm. Rabinovich et

al. [7] on the contrary consider several ”stable“ segmenta-

tions in parallel.

This work focuses on 3D data from outdoor scenar-

ios. To the best of our knowledge, this is the first fully-

unsupervised approach for learning object classes from this

kind of data. To overcome imperfect segmentation, a novel

hierarchical segmentation method is introduced. A specific

combination of features combined with two novel inference

strategies thereafter conduct the final object class discovery.

The work is organized as follows: The following section

describes the proposed approach in detail. Sec. 3 shows

preliminary results on collected data. Sec. 4 concludes and

gives an outlook to future research.

2. Proposed Method

As mentioned in Sec. 1, the proposed method is based

on the assumption that multiple observed objects, charac-

terized by a similar geometric structure, can be interpreted

as instances of an object class. The final goal is to identify

these classes from unlabelled data. Critical steps, putting

this assumption into action, are isolating objects from the

complete scene and defining a similarity measurement, able

to handle arbitrary objects. We propose to solve these chal-

lenges with the algorithm illustrated in Fig. 2.

ρ = 0.67
ρ = 0.4
ρ = 0.3
ρ = 0.2

1)

2)

3)

4:A) 4:B)

Figure 2: Sketch of the proposed algorithm: 1) decomposing the

scene hierarchically. 2) calculating features for each segment. 3)

finding similar segments by clustering. 4:A/B) selecting clusters

as object classes.

Input is a 3D point cloud (usually obtained with a

laser scanner) containing several instances of various object

classes. In the first step (Sec. 2.1), objects are segmented by

a RegionGrowing algorithm. A specific property of the pro-

posed approach is that not a single perfect segmentation is

considered, but a set of segmentation parameters is chosen

and the results are organized in a hierarchical segmentation

tree (ST). The corresponding 3D points of each node are

thereby contained in the set of 3D points of the parent node.

In the second step (Sec. 2.2), one feature vector is calcu-

lated for each segment node which enables comparison of

segments (depicted by different colors in Fig. 2). These fea-

tures are used within the third step (Sec. 2.3), where simi-
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lar feature vectors are clustered. This forms groups of seg-

ments with similar geometric properties. In the final step

(Sec. 2.4), these clusters are analyzed in order to define ob-

ject classes. Two variants, strategy A and B, were devel-

oped to perform this inference. All of these steps are de-

tailed in the following.

2.1. Segmentation

Segmentation starts from a set of 3D point measurements

{pi} derived by sampling from the surfaces of an outdoor

scene. Assuming that the Nyquist-Shannon sampling the-

orem holds, local surface geometry at a point pi can be

reconstructed by looking at the distribution of neighboring

point measurements Ni. A local plane is fitted to Ni

⋃
pi

using principal component analysis (PCA) as described in

[4]. The plane is represented by its normal vector ni.

The same neighborhood is then used for segmentation.

For each point pj ∈ Ni a cost function c(i, j) is evaluated.
pi and pj belong to the same segment iff c(i, j) < θ. Bas-

ing segmentation on pair-wise connections enables to im-

plement it as efficient Region-Growing (see e.g. [5]).

In this work the cost function c(i, j) 7→ [0..1] :=
c1+c2+c3

3
is a linear combination of three cost functions

which are defined on the basis of the 3D coordinates pi/j ,

the distance vector dij = pi − pj = −dji, and the normal

vectors ni/j :

c1(i, j) =max

[
0,

n⊤i dij

‖dij‖
,
n⊤j dji

‖dji‖

]
(1)

c2(i, j) =min

[
1, 1− n⊤i nj

]
(2)

c3(i, j) =min

[
1,

1

d̂
|δi − δj |

]
(3)

c1(i, j) rates the convexity and penalizes concave nor-

mal arrangement between ni and nj (for further informa-

tion refer to [5]). c2(i, j) rates the relative normal direc-

tion, so similar normal vectors tend to be grouped together.

c3(i, j) is sensitive to changes in point densities, where

δi =
1

|Ni|

∑
p
k
∈Ni

‖dik‖ and d̂ is the average δi across the

complete scene.

Unfortunately, in 3D point clouds there often exist re-

gions where the formerly stated assumption about the sam-

pling theorem does not hold. Thus, there are two types of

regions:

1. Over-sampled regions (e.g. building facades) : a subset

of 3D points, describing an object that can be entirely

reconstructed according to the sampling theorem.

2. Under-sampled regions (e.g. vegetation) : the density

of 3D points can’t resolve the details of the corre-

sponding original object, spatial information is lost.

Segmentation using the previously introduced c(i, j)
only works well in regions of over-sampling. To adapt the

segmentation to both cases, we start by determining for each

region in the data, if the underlying real-world object was

over- or under-sampled. In principle this is impossible, be-

cause no knowledge about the real-world object is available.

One way out is to look at the arrangement of the points in

Ni. A locally planar arrangement indicates low spatial fre-

quencies which leads to over-sampling. For this reason the

planarity factor si =
|λ2−λ3|

|λ1|
is determined by re-using the

eigenvalues λ1,2,3 of the PCA from the normal calculation

on Ni. A plane is characterized by high λ1,2 and a low λ3

which leads to si ≈ 1. The less plane-like the region around
pi is, the lower the value of si gets.

Having si, it is possible to develop an additional segmen-

tation method for under-sampled regions. Surprisingly, the

simple negation of c(i, j) works well: 1− c(i, j).

So given two points, pi and pj , four cases are possible:

both are over-sampled, both are under-sampled, i is over-

and j is under-sampled, and vice versa. We linearly blend

these cases using the mean planarity factor si =
∑

Ni
si.

cblend(i, j) = c(i, j) · (si + sj) (4)

+ (1− c(i, j)) · (2 − si − sj)

+ 1 · (1 − si + sj)

+ 1 · (1 − sj + si)

The last two situations are thereby penalized with high costs

(= 1) as a border between over- and under-sampled regions

is a desired border for segmentation. Fig. 4 shows a result of

the proposed segmentation method for various thresholds.

As mentioned in Sec. 1, many works in the field of un-

supervised discovery of object classes assume segmentation

to be perfect. This limitation can be overcome by perform-

ing the segmentation several times with varying cost thresh-

olds. In our case, a set of thresholds Θ = {θ1, . . . , θk} can

be used. If θi > θi+1 is valid for all i, this results in re-

cursive splits of the data set, which allows to arrange the

results in a segmentation tree (ST), see Fig. 3. The depth of

the ST is determined by the number of segmentation thresh-

olds (in our case 13 equidistant thresholds were chosen). A

ST not only returns alternative segmentations, but even al-

lows to extract additional information about the assembly

of objects (see [1]). However, this additional information is

only partly used within this work.

2.2. Feature space

For similarity calculations, all nodes of the ST are trans-

formed into feature space. Each feature vector fi =
[f1, · · · , f21]

⊤ describes the geometry of the corresponding

set of 3D points, represented by a node in the ST. Except for
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θ = 0.56 θ = 0.55 θ = 0.54 θ = 0.53 θ = 0.52

θ = 0.56 θ = 0.54 θ = 0.52

Figure 4: Result of threshold variation on segmentation (colors indicate segments). Upper row: big tree. Lower row: parked cars and

trees.

Figure 3: Resulting segmentation (sub-)tree of a car.

f1, each feature is defined scale invariant, rotation invariant

around the vertical axis and is standardized to [0..1].

Absolute scale is a very descriptive feature, but there

are various ways to measure the scale of a point cloud,

especially when it comes to the two cases of over- and

under-sampling. In the first case, the 3D points describe a

smooth surface. Under-sampling instead can cause volume-

like point distributions. Counting occupied volume ele-

ments V (cells of a 3D grid) is a suitable measurement

for both cases. With the Manhattan-Distance as similar-

ity measurement in mind, the scale feature is designed as

f1 = fscale := loga(|V |). Hence, scaling an object by fac-

tor a results in distance 1 in feature space, independent of

the absolute size.

The other features characterize enlargement (4 features),

normal distribution (8 features) and cost distribution (8 fea-

tures) of the corresponding point cloud. To achieve rotation

invariance around the vertical axis z, PCA is carried out

leading to three principal directions 1, 2, 3.
Enlargement characterizes the extent of the object∆dir =

‖pmax − pmin‖2, measured in the three PCA main direc-

tions and in the vertical direction.

[f2, · · · , f5]
⊤ =

[
∆2

∆1

,
∆3

∆1

,
∆3

∆2

,
∆z

∆1

]⊤
(5)

The normal distribution is based on a 2D histogram of

the angles of the normal vectorsN = {ni}. To achieve ro-

tation invariance, the histogram is characterized by counting

the minimally necessary bins b to contain at least a certain

percentage p of the normals.

[f6, · · · , f9]
⊤ =

[
ξ25%, ξ50%, ξ75%, ξ90%

]⊤
, with (6)

ξp =argmin
i

i∑

k=1

|bk| ≥ p · |N |

For the three most occupied bins the exact percentage is

calculated.

[f10, f11, f12]
⊤ =

[
|b1|

|N |
,
|b2|

|N |
,
|b3|

|N |

]⊤
(7)

The last normal feature determines the percentage of verti-

cal components in the normals, thus describing the horizon-

tal orientation of the underlying point cloud.

f13 =
1

|N |

|N |∑

i=1

nz (8)
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The geometry is further described by the segmentation

costs c1, c2, c3 together with the planarity factor s. The dis-

tribution of the costs and planarity factor within the segment

are described by the mean µ and the standard deviation σ.

[f14, · · · , f21]
⊤ = [µc1 , µc2 , µc3 , σc1 , σc2 , σc3 , µs, σs]

⊤

(9)

The result is a feature vector fi = [f1, · · · , f21]
⊤ de-

scribing a segment in 21 dimensions.

2.3. Clustering

Each feature vector describes the geometric character-

istic of a point cloud by a simple point in feature space.

Grouping close points together means to group similar

geometric structures. It was already mentioned that the

Manhattan-Distance induces a meaningful similarity mea-

sure in feature space. With this metric a simplification of the

iterative clustering algorithm Mean-Shift [2] is used. Our

Mean-Shift algorithm is controlled by one parameter d, de-

scribing the diameter of a local hyper sphere, in which the

mean is calculated. Every iteration step, the sphere center is

moved to the mean of all feature vectors inside the sphere.

In the case of convergence, all feature vectors are removed

from the solution set and the mean is stored as center for

cluster ci. By doing so, the diameter d can be interpreted

as the maximum allowed dissimilarity between two feature

vectors in one cluster. Note that every cluster represents a

potential object class, containing point clouds with similar

geometric structures. According to the main idea, clusters

with only one member can be ignored.

2.4. Inference strategy

Inference from repetitive objects to an object class is

sometimes ambiguous. In Fig. 2 you see e.g. a ST of a scene

containing two instances of the object class ”tree”. How-

ever, possible object classes are also ”foliage”, ”branches”

and ”stems”. Thus, defining all clusters from Sec. 2.3 as an

object class is not the ideal solution.

The most obvious inference strategy to resolve the ambi-

guity takes always the class with the largest instances (stat-

egy A). Therefore, a cluster gets assigned the averaged

scale value fscale of its members. After sorting the clusters

in descending order, the following iterative process is car-

ried out. Define the largest cluster as object class and delete

the subtrees of every instance. Take the next largest cluster

until every cluster is deleted or defined as object class. The

upside of this strategy is that ambiguity is fully resolved in

a way that a 3D point can occur only in one object class.

The downside is that large classes dominate the results and

information about subclasses isn’t used.

Another approach, denoted as strategy B, calculates a

plausibility value ρ(ci) as a function of the number of clus-

ter members and their distribution in the ST tree. A 3D

point will often occur in several clusters, but these clusters

can be put in order according to their plausibility value (c.f .

Fig. 5). Two steps are necessary to calculate the plausibility

value. First, the node positions in the ST are set in rela-

tion to their longest paths (root to leave), which yields the

”relative position” η = node level
longest path

. Second, the position of

a cluster ci in the ST can be specified by the relative posi-

tions of all cluster members. Thus every cluster has a mean

relative position ηci with respective standard deviation σηci
.

The plausibility value is finally defined as

ρ(ci) =
|ci|

|{nodesj ∈ ST|ηj ∈ [ηci − σηci
, ηci + σηci

]}|
(10)

which puts the number of cluster members in relation to all

nodes of the ST located in the interval [ηci ± σηci
]. The

distribution of the plausibility values for the dataset used in

the experiments is shown in Fig. 5.

0 50 100 150 200

0.05

0.1

0.15

0.2

0.25

class index

ρ

Figure 5: Plausability value ρ of the object classes

3. Experiments

We carried out experiments on a publicly available

dataset recorded in the city of Beijing [15], see Fig. 1. The

scene comprises objects like building facades, trees, bushes,

cars, and street lamps. Unfortunately, as with other outdoor

datasets, there is no ground-truth labeling available and ob-

taining such a labeling would be very hard (especially as

compared to indoor datasets or images). This leaves us to

stick to a qualitative evaluation.

The first focus of evaluation lies on the proposed seg-

mentation. As mentioned in Sec. 2, it is difficult to de-

sign a method capable of segmenting both man-made struc-

tures and vegetation. Additionally, parameters must often

be adapted for different kind of objects. The method pro-

posed in this work reduces all adaption to one single seg-

mentation threshold θ. Some segmentation outcomes for

various choices of θ are depicted in Fig. 4. It can be seen

that the proposed method is able to deliver the requested

outcome – although the optimal value of θ depends on the

local scene. Hence, segmentation is carried out for various

values of θ and the segments are arranged within a segmen-
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tation tree, as in Fig. 3. This delays the choice of an ap-

propriate value for θ to the inference stage and allows for

different values at different local scenes.

After segmentation, feature extraction and clustering are

performed to discover similar segments. The final infer-

ence algorithm then defines object classes based on the clus-

ters. The two proposed inference algorithm versions are an-

alyzed in the following. Please note that the algorithms have

no notion of semantics, so the specified meanings of the ob-

ject classes were manually attached to the results.

AlgorithmA Algorithm B

class 1 class 1

class 2 class 2

class 3 class 3

class 4 class 4

Figure 6: Discovered object classes of inference algorithm A and

B on a sub-part of the scene (color indicates object instance).

Fig. 6 shows the first four classes discovered by both al-

gorithms from a small subsection of the dataset. Using the

complete data set, more classes are discovered. Statistics of

the first twenty classes are listed in Tab. 1 which comprise

the classes floor, building facade, tree-tops, trees, bushes,

cars, and foliage. Street lamps are the only occurring ob-

jects that were not among the first 20 discovered classes.

Some selected object classes are depicted in Fig. 7.

Both algorithms are able to discover relevant object

classes. Because algorithm A focuses on spatially bigger

objects, periodic object arrangements like trees in an avenue

causemerged instances (picture 1 in Fig. 7(a)). AlgorithmB
seems to focus more on frequently occurring classes, which

Table 1: Statistics of the first 20 discovered object classes of the

full dataset.

algorithmA algorithm B
class objects objects ρ

1 3 472 0.26

2 2 606 0.19

3 9 284 0.12

4 2 285 0.1

5 2 133 0.09

6 2 1342 0.08

7 2 57 0.08

8 8 128 0.07

9 2 12 0.06

10 3 1012 0.06

11 8 2 0.06

12 14 896 0.06

13 2 35 0.05

14 17 50 0.05

15 9 717 0.04

16 6 635 0.04

17 5 597 0.04

18 2 92 0.04

19 25 125 0.03

20 10 20 0.03

is why objects are preferred that fractionize a lot during seg-

mentation (e.g. foliage, depicted in picture 1 in Fig. 7(b)).

An advantage of the latter is that each object class has asso-

ciated a plausibility value which might be used as an objec-

tive measure to limit the number of discovered classes.

Altogether, there is no clear preference for either of the

two algorithms. Selection will depend on the application

area.

4. Conclusion and Future Work

This work presented a first approach to discover object

classes in outdoor scenarios in an unsupervised manner.

The focus on pure 3D point cloud data thereby makes the

approach independent from texture variations and enables

the use of a wide range of sensors. A novel segmentation

algorithm was developed that is able to deal with man-made

structures as well as with vegetation. Two inference algo-

rithms were presented that both deliver good but different

results. Nevertheless, there remain areas to improve. Seg-

mentation might be improved to yield the same sub-parts

for similar objects. Additional features might be developed

to describe the segments. Finally, the inference algorithms

might be extended. Especially with an improved segmen-

tation the inference algorithm can be altered to match sub-

trees which might in the end be more robust.
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Figure 7: Discovered object classes (color indicates object instances) of (a) inference algorithm A (top row) : trees, cars, trees, building

facades. (b) inference algorithm B. (bottom row): foliage, cars, trees, building facades
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