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Abstract—Estimating a vehicles’ own trajectory and generating
precise maps of the environment are both important tasks
for intelligent vehicles. Especially for the second task laser
scanners are the sensor of choice as they provide precise range
measurements.

This work proposes an approach for simultaneous localization
and mapping (SLAM) specifically designed for the Velodyne
HDL-64E laser scanner which exhibits characteristics not present
in most other systems. This comprises the continuous, spinning
data acquisition and the relative high sensor noise. Together,
these make standard SLAM approaches generate noisy maps and
inaccurate trajectories. We show that it is possible to generate
precise maps and localize therein in spite of not using wheel
speed sensors or other information. The presented approach is
evaluated on a novel, challenging 3D data set being made publicly
available.

I. INTRODUCTION

Among the most basic tasks of an intelligent vehicle is

estimating its own trajectory as it is a prerequisite for path-

planning and control. Two kind of approaches can be distin-

guished, namely incremental and global ones.

Incremental approaches use a limited history of local sensor

data and usually employ some recursive state filtering thereon.

Used sensors include wheel speed sensors, inertial sensors,

cameras, and laser scanners. Although astonishing results were

reported for various types of sensors, the main disadvantage

of incremental methods remains the accumulation of error

over time. This disadvantage can only be overcome by using

global information, which characterizes the second kind of

approaches. Global information can be given by e.g. a GPS

receiver or a global map. While GPS is inaccurate and not

available in all environments, generating a detailed global map

in advance is very costly. Fusing GPS into local approaches

can solve the problem but imposes some restrictions on the

application.

This motivated the development of SLAM methods for

simultaneous localization and mapping as a semi-global ap-

proach. Thereby, the vehicle incrementally builds a map while

it moves and localizes itself within that map. In contrast to

incremental approaches, this results in less incremental error

as the history of sensor data is potentially infinite. In addition,

it allows place-recognition to close a loop and eliminate

accumulated errors. Since SLAM benefits from dense data,

the choice of sensor practically limits to cameras and laser

scanners. This work concentrates on the latter, as typically

both the precision and the field of view is larger.

A very good introduction to SLAM can be found in [1],

which also includes the trends of the last years towards

Fig. 1. Generated map for scenario 2 from a bird’s-eye view perspective.
Color encodes altitude.

probabilistic techniques (e.g. Extended Kalman Filters [2],

Unscented Kalman Filters [3], Sparse Extended Information

Filters [4], or Rao-blackwellized Particle Filters [5]). Excellent

results were obtained, but unfortunately, most of these methods

are computationally hard when the number of landmarks1

grows high. Not surprisingly, their application concentrated

on the use of 2D laser scanners especially within buildings.

Yet, Holz et al. [6] showed just recently that the combination

of several heuristics with simple scan-matching yields a fast

and nevertheless as accurate approach.

When focusing on outdoor-environments, the use of full 3D

data becomes inevitable. To keep device costs low, all current

systems scan the 3D volume by turning a sensor in some

way. Nüchter et al. [7] stop the vehicle for each scan and

do incremental scan-matching. As this is not appropriate for

intelligent vehicles, one has to cope for the sensor movement

as scanning times cannot be neglected. One such approach was

presented in [8] where a nodding SICK 2D-laser scanner was

used. Another approach [9] spins a similar scanner around its

center axis and estimates the trajectory during scanning within

the scan-matching.

In this work, the Velodyne HDL-64E S2 laser scanner is

used. Mounted on top of a vehicle, it continuously scans the

complete 360◦ surroundings. This field of view combined with

a high data rate made it popular among the intelligent vehicles

1In most cases raw measurements are used as landmarks
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Fig. 2. Sketch of the proposed method

community, especially within the DARPA Urban Challenge.

Although there exist approaches for re-calibration [10], [11],

the main drawback is the relatively high measurement noise.

The approach presented here introduces a special handling

of this noise within the context of SLAM. On building the

map, measurements are adapted in areas of flat surfaces.

This not only makes localization more precise (see also [12]

within the context of TOF-cameras), it also enables the built

maps to be used later on as 3D models. To get even more

precise models, an off-line map-refinement step is introduced.

In contrast to [8] no assumptions about the environment are

made in this work. We also show that a simpler technique as

opposed to [9] can be used to cope for the sensor movement.

This paper is organized as follows. The next section details

the hardware set-up and the proposed algorithm. In Section III

experimental validation is provided in two difficult multilayer

outdoor scenarios. Section IV concludes this paper and gives

an outlook to future research.

II. PROPOSED METHOD

An overview of the proposed method can be seen in

Fig. 2. Input is the continuous data stream of the Velodyne

scanner, output is a detailed 3D map i.e. a point cloud of the

environment along with the vehicle trajectory. The algorithm

works in different steps, all of them detailed in the following.

A. Scan Acquisition

A bit simplified, the Velodyne HDL-64E (S1/S2) contains

a column of 64 laser diodes, covering a pitch range of

approximately 26 degrees. While turning clockwise around the

scanners’ center axis, these laser beams continuously sweep

the surroundings producing distance readings in fixed time

intervals. The corresponding sweep angle is determined by

a built-in rotation encoder. As the pitch angles of the lasers

are fixed, each of the lower lasers produces a ring of point

measurements on the road surface (if not occluded).

To enable the use of popular scan matching algorithms,

the input stream is divided into chunks of 360◦ turns of the

sensor2. In the following, these chunks are also called scans.

We denote the scan index k by subscript and the relative

scanning angle by superscript, S denoting the starting angle of

a turn and E the end angle. Scan k is thus recorded between

the two timestamps tSk and tEk . Due to the continuous scanning

characteristic tEk = tSk+1.

For further processing, the range measurements of one scan

are arranged within a range image of 870x64 pixel, where each

row corresponds to the measurements of one specific laser. The

imprecision caused by this projection is low as compared to

the sensor noise and will be compensated in Section II-E.

B. Pre-processing

This section explains preprocessing and feature calculation

given a two-dimensional array of range measurements R :
(u, v) 7→ r as obtained in Section II-A (see also Fig. 3). To

increase readability, we subscript functions by index instead of

using pixel coordinates as function arguments: R(u, v) is thus

denoted by Ri. Connections are implicitly established from

each pixel to its four neighbours, also denoted by indices:

i1 := (u+ 1, v) i3 := (u− 1, v) i5 := i1
i2 := (u, v − 1) i4 := (u, v + 1) (i1)1 := ((u + 1) + 1, v)

Altogether, the following functions/images are used:

range measurement Ri : i 7→ r

point coordinates ~Pi : i 7→ (x, y, z)T

distance vector ~Di,j = ~Pj − ~Pi

linkage value Li,j : i, j 7→ l

normal vector ~Ni : i 7→ (nx, ny, nz)
T

normal confidence Ci : i 7→ c

Some of these relations are illustrated in Fig. 3 and their

calculations are explained in the following.

Fig. 3. Range image as implicit graph on 3D coordinates

The point coordinates (relative to the laser scanner) are

directly obtained from the range measurements using the

physical sensor set-up. The distance vectors follow immedi-

ately. The linkage measure is a first indication for grouping

pixels together and it is used to weight calculations on pixel

connections. A pixel connection gets assigned a high linkage

value if neighbouring distance vectors have similar length.

2Note that this does not correspond to an exact 360
◦ sweep of the

environment when the vehicle is turning.
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Exemplary, the linkage of a pixel to its right neighbour is

calculated as:

Li,i1 = min(sigm(|
(Ri−Ri1 )−(Ri3−Ri)

(Ri3−Ri)
|),

sigm(|
(Ri−Ri1 )−(Ri1−R(i1)1

)

(Ri1−R(i1)1
) |))

(1)

The following sigmoid-like function serves as soft threshold:

sigm(x) = 0.5−
0.5(x− θ1)θ2

√

1 + (x− θ1)2θ22
(2)

where θ1 specifies the effective threshold and θ2 is a constant

scale parameter to influence the tangent inclination at the

threshold.

Second, a local surface plain represented by its normal

vector is estimated at each measurement. For a given pixel

with its four neighbours the normal vector is calculated as

the average of the four cross products, each weighted by the

product of their linkage values:

~N ′

i =

4
∑

j=1

Li,ijLi,ij+1 ( ~Di,ij × ~Di,ij+1) (3)

A moving average filter is then applied to the field of surface

normals in order to reduce noise:

~Ni =

∑4
j=1

~N ′

ij

||
∑4

j=1
~N ′

ij
||

(4)

Third, a confidence value is estimated for each normal

vector. For the horizontal and vertical direction it is separately

evaluated how plain the neighbourhood is. For a given con-

nection from i to j, the angle of the distance vector to the

plain defines a probability that the plain assumption holds for

this connection:

Ci,j = exp{−θ3 arcsin

∣

∣

∣

∣

∣

~Di,j · ~Ni

|| ~Di,j ||

∣

∣

∣

∣

∣

2

} (5)

The decay of the probability is controlled by parameter θ3. In

a fuzzy-logical manner, the plain assumptions holds if it either

holds horizontally or vertically. However, it is limited by the

maximum linkage product from the normal calculation:

C′

i = min(Lmax
i ,max(Ci,i1Ci,i3 , Ci,i2Ci,i4 )) (6)

Lmax
i = max 4

j=1Li,ijLi,ij+1 (7)

Median filtering is afterwards applied on the 4-neighbourhood

to smooth the confidence values. From visual inspection, this

method seems to produces better estimates than calculating a

flatness-criteria from the eigenvalues of the principal compo-

nent analysis.

C. Localization

Once the surfaces of the current scan {Si = (~Pi, ~Ni, Ci)}
are known, localization takes place. Hence, the goal is to

estimate the pose of the vehicle3 ~v(t) relative to some global

3The vehicle pose is defined as the position and orientation of the laser
scanner. For the first frame this can be arbitrarily initialized

coordinate frame. t thereby varies between the scanning start

time tSk and scanning end time tEk . We assume motion with

constant velocity which lets us linearly interpolate between

~v(tSk ) and ~v(tEk ), also denoted ~vSk and ~vEk respectively. Since

~vSk = ~vEk−1, it is for a given scan k sufficient to estimate ~vEk ,

the vehicle pose at the end of the scan.

To estimate ~vEk , the current scan is matched against the

whole map, similar to [6]. Because the map is built from

measurements, it is in this work just a collection of surfaces

in a world reference frame {si = (~pi, ~ni, ci)}, i.e. point

coordinates along with normal vectors and normal confidence

values. The current vehicle position is estimated by searching

a pose that results in a best fit (thus ~vEk = argminv E(v))
according to the energy

E(v) =
∑

i∈scan

(~nT
NN(i)(T(

~Pi, v)− ~pNN(i)))
2 (8)

This is the sum of squared errors of the scan points ~Pi

transformed by the vehicle pose v into the global coordinate

frame and projected onto the surface of the nearest neighbour

in the map. This miminization is solved using the popular

Iterative Closest Points algorithm (ICP) as described in [13].

The algorithm implements iterative minimization which we

initialize with the last pose predicted by the last movement

~̃vEk = ~vEk−1 ⊕ (~vEk−1 ⊖ ~vSk−1) (9)

At each iteration, the current pose is used to search the nearest

neighbours in the map. The pose is then updated by minimiz-

ing the energy. The nearest-neighbour-search is thereby carried

out in 6D (px, py, pz, nx, ny, nz). This makes the convergence

more robust against inital transformation errors. To speed up

the algorithm only a subset of the current scans’ surfaces is

used. 1000 surfaces are sampled uniformly from the upper

half of the image and 500 surfaces from the lower half. More

sophisticated samplings ([14], [15]) seem not to be necessary.

D. De-skewing

The core of the ICP algorithm transforms at each iteration

the current scans’ surfaces into world coordinates using the

current estimate of the vehicle pose. This does not yet account

for possible sensor movements during scan acquisition of the

Velodyne scanner.

One possible solution is to move the estimate of the whole

trajectory into the ICP core, as in [9]. This, however, sophisti-

cates the algorithm and makes need for non-linear solvers. As

the Velodye scanner operates at a relatively high scanning rate

of ∼ 10Hz a simple but effective technique we call de-skewing

is applied:

Initially, the last pose ~vEk−1 and the predicted vehicle pose

~̃vEk are used to linearly transform the surfaces of the current

scan relative to ~̃vEk . Then the ICP is run on the de-skewed

image. Finally, the image is de-skewed once more, but us-

ing the final pose ~vEk . Theoretically, this de-skewing could

be employed at each iteration of the ICP, but experiments

showed that it is sufficient to de-skew only twice: before and

afterwards.
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E. Mapping

As already mentioned in Section II-C, a map is in this work

a loose collection of surfaces in a world reference frame {si =
(~pi, ~ni, ci)}. The map is stored in a 3D grid structure with

each cell containing maximally one surface according to its

3D position ~pi. The grid resolution g hence defines the level

of detail of the map.

Once the current scan is localized within the map and de-

skewed4, the map is up-dated in two steps.

First, each measured surface Si is adapted according to its

neighbours in the map. The idea in regions of high normal

confidence is to move the 3D point coordinate ~Pi along the

normal vector ~Ni to

~P ′

i (a) =
~Pi + a · ~Ni (10)

until it best represents a plain together with the neighbouring

surfaces. The weighted point-to-plain-energy is defined similar

to the ICP-energy by

ESi
(a) =

∑

j∈kNN(Si)

wij(~n
T
j (

~P ′

i (a)− ~pj))
2

wij = Cicj ~N
T
i ~nj

(11)

where kNN returns k map-surfaces in a specified neighbour-

hood and wij are weights according to normal confidence and

similar normal direction. The adjustment a is determined by

âi = argmina ESi
(a), which is a closed-form least-squares

solution.

This adaptation is the key step to account for the mea-

surement noise of the Velodyne scanner and for imprecisions

in the localization and de-skewing steps. As it avoids flat

areas to grow perpendicular to the plain, further localization

is improved since the ICP energy function then has a well-

defined minimum.

Second, each measurement is added to the map. If the

corresponding cell is non-empty, its surface si is replaced by

the current measurement Si in case

ri −Ri

ri
+ (Ci − ci) > θ4 (12)

holds. Hence, preference lies on surfaces that have a higher

normal confidence and/or points that were captured from lower

distance. As a consequence, cells of the map are never erased

and the map grows continuously. To limit the computational

load, it is possible to delete or store cells to disk if they move

out of a certain range of the vehicle.

F. Map Refinement

Most SLAM methods build the map just for localization

purposes. City maps, on the contrary, are mostly built using

high-precision laser scanners which need several seconds or

even minutes for one 360◦ scan. In the following it is shown

that the accumulated map can be even further refined to obtain

a final map containing more details.

4The first scan is belatedly de-skewed and the map readjusted once the
second scan was localized

(a) Scenario 1, length=1.3km (b) Scenario 2, length=1.1km

Fig. 4. Sketch of the scenes used for evaluation. Color encodes altitude
(green=low, red=high). In both scenarios, the horizontal crossing in the middle
is a bridge.

The idea for refinement is similar to the adaptation step

in Section II-E. In areas of high confidence of the normal

vectors, measurements can be constricted onto a local plain.

In Section II-E incoming measurements are adapted according

to already existing, adapted neighbours. This is suboptimal as

it first allows for increasing adaptation drift and second will

not include future measurements.

To overcome these disadvantages, the map refinement builds

a complete new map using the old map. In order to do so, it is

here assumed that for each surface {si = (~pi, ~ni, ci)} also the

original, non-adapted measurement location ~oi is stored. For

each surface in the existing map k nearest neighbors (kNN) are

searched in a specified neighbourhood and, as in Section II-E,

the energy

Esi(a) =
∑

j∈kNN(si)

wij(~n
T
j (~p

′

i(a)− ~oj))
2

wij = cicj~n
T
i ~nj

(13)

is minimized for a in order to obtain the surface location

~p′i(a) = ~oi + a · ~ni in the new map.

III. EXPERIMENTS

The proposed algorithm was evaluated on two complex out-

door scenes captured with our experimental vehicle AnnieWay.

The data is publicly available on http://www.mrt.kit.edu/z/

publ/download/velodyneslam/. Sketches of the two trajectories

are depicted in Fig. 4, which are both results of the proposed

method. It is clearly visible that there is no jump in the position

estimation and that loops close nicely which shows the quality

of the proposed method.

In a first step, the estimated trajectory was compared against

the recordings of an integrated navigation system (INS) which

fuses GPS, wheel speed sensors and inertial measurements.

However, local errors of the INS are much higher than those

of the proposed method. Even after driving more than one

kilometer, errors of the proposed method are in the same range

(see Table I). This prohibits to use the INS as ground-truth.

In order to quantitatively evaluate the algorithm neverthe-

less, we used the characteristics of the scenarios to generate

ground-truth for the end-position of the trajectory: As both

scenarios are loops, we used ICP to match the last scan against

the first scan to obtain the desired end-position. We thus
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TABLE I
INFLUENCE OF THE ALGORITHM STAGES ON THE END-POINT ERROR

Setting Mapping De-skewing Adaptation Error

Scenario 1

IMU – – – 3.30 m
1 no no no 19.60 m
2 no no yes 19.33 m
3 no yes no 27.41 m
4 no yes yes 27.21 m
5 yes no no 4.47 m
6 yes no yes 4.13 m
7 yes yes no 2.90 m
8 yes yes yes 2.29 m

Scenario 2

IMU – – – 2.64 m
1 no no no 22.25 m
2 no no yes 22.09 m
3 no yes no 18.58 m
4 no yes yes 18.89 m
5 yes no no 8.08 m
6 yes no yes 7.36 m
7 yes yes no 4.81 m
8 yes yes yes 4.10 m
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Fig. 5. Influence of the grid resolution g on the end-point error.

evaluate the algorithm by defining the error as the euclidean

distance between the estimated and the desired end-position.

The main focus in the evaluation is the long-term drift in the

position estimation. Therefore, the implementation was altered

in a way that parts of the map are discarded as soon as they

get out of the viewing-range of the sensor (limited to 50m in

the experiments). Although the used scenarios contain loops,

no loop-closure was carried out when revisiting the same

places. Hence, the calculated error is equally representative

for scenarios without loops. If not otherwise specified, the

parameters were fixed to θ1 = 4, θ2 = 1, θ3 = 0.5, θ4 = 0.3,

and g = 5 cm throughout all experiments.

The algorithms’ capability for localization was evaluated

by (de)activating different stages. The results are listed in

Table I. Setting 5 thereby corresponds to approaches like [7]

and setting 7 is comparable to [9]. Not surprisingly, using

pairwise scan-matching only (i.e. no mapping) results in very

high errors, whereas with activated mapping localization is

much more precise. According to Fig. 5, the grid resolution

g can thereby be chosen in a wide range – only the detail

of the map suffers. Not accounting for the sensor rotation is

the second principal influence of localization error. The linear

interpolation used in this work thereby shows its effectiveness.

Finally, adapting measurements while adding them to the map

again improves the results.

Another focus of the evaluation is the quality of the pro-

duced map. The more detailed the map is, the better it can be

used for other purposes, as e.g. city modelling. As this is hard

to evaluate quantitatively, we here stick to visual inspection.

An example map is shown in Fig. 1, one part of that map is

enlarged in Fig. 7, an even smaller part is depicted in Fig. 6. It

is clearly visible that both adaptation during mapping as well

as the map refinement step helps in getting detailed surfaces.

(a) Without adaption, without map refinement

(b) With adaption, without map refinement

(c) With adaption, with map refinement

Fig. 6. Local point cloud of a road surface

The results show that the algorithm can be used for both,

precise localization and city-model building. The grid size

g is thereby the main parameter to choose. A low value

allows for high-precise maps, a higher value for faster (on-

line) processing.

IV. CONCLUSIONS AND FUTURE WORK

This work proposed an approach for simultaneous local-

ization and mapping (SLAM), specifically designed for the

popular Velodyne laser scanner. A new dataset was created

and made publicly available to ease future evaluation. Experi-

ments revealed that the proposed approach is more precise in

estimating the trajectory than an integrated navigation system.

A filtering step was proposed to refine the produced map off-

line in order to be used as detailed city-map.

Although the results of the algorithm are very convincing,

there is still room for improvement. One of the next steps could

be to detect and handle loop-closure appropriately as e.g. in

GraphSLAM. Other future work will include to combine this

approach with obstacle detection and tracking as the approach

is currently limited to (nearly) static scenes.
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Fig. 7. Enlarged part of the map of scenario 1: Crossing of railway tracks. Color encodes altitude.
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