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Abstract

In this paper we present a novel approach to improved

image registration in rainy weather situations. To this end,

we perform monocular raindrop detection in single images

based on a photometric raindrop model. Our method is ca-

pable of detecting raindrops precisely, even in front of com-

plex backgrounds. The effectiveness is demonstrated by a

significant increase in image registration accuracy which

also allows for successful image restoration. Experiments

on video sequences taken from within a moving vehicle

prove the applicability to real-world scenarios.

1. Introduction

Many state-of-the-art computer vision algorithms are de-

signed to work in well-posed visibility conditions. Though

this assumption may hold for most indoor and simulation

scenarios, environmental noise can badly influence their

performance in outdoor settings, e.g. in surveillance ap-

plications or in driver assistance systems where a camera is

mounted behind the windshield of a moving vehicle.

However, proper operation in the presence of rain is a

security-relevant prerequisite to many applications, partic-

ularly on board mobile vehicles. For example image reg-

istration accuracy declines in the presence of raindrops on

the windshield due to mismatched features. In this paper

we propose a novel approach to video-based raindrop de-

tection with an application to monocular image registra-

tion improvement. Detecting raindrops using a photometric

raindrop model also allows for restoring occluded regions

by fusing intensity information from nearby image frames

as illustrated in Fig. 1.

Traditional image mosaicing approaches [2] fail in regis-

tering images from in-vehicle cameras correctly, since they

either assume rotations around the yaw axis merely or in-

significant scene depth. Our image sequence, however, is

recorded at very small frame rates (10 Hz) from within a

vehicle moving at 15 − 25m
s

which changes scene depth

significantly. Furthermore, feature localization noise is high

(a) Raindrop on windshield (b) 3D raindrop refraction model

(c) Raindrop detections (d) Restored image

Figure 1. Raindrop model and image restoration. (a) shows a

typical raindrop’s appearance on the windshield. Modeling the

refraction of light rays (b) allows for precisely detecting raindrops

(c). After registering consecutive frames, occluded areas can be

restored using the intensity from neighboring image frames (d).

due to the tilted orientation of the camera with respect to the

road and the presence of raindrops on the windshield. This

makes direct estimation of the fundamental matrix between

consecutive frames difficult [10].

On the other hand, visual SLAM methods [3] are hard to

employ due to road homogeneities, pattern recurrences (e.g.

lane markings or guardrails) and a wide baseline between

frames. Since we are using only monocular sequences,

stereo information [15] is not available to us.

For registration we therefore extended the approach pro-

posed in [8], which uses prior knowledge of the vehicle dy-

namics and camera setup in combination with homography

constraints. However, this only works reliably, if enough

feature correspondences on the road plane can be matched

between consecutive frames. Due to mismatches and oc-

cluded image regions this is not the case in the presence of

raindrops in front of the camera. In this paper we show that

automatic raindrop detection helps alleviating this problem.

However, raindrop detection is a challenging problem
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due to several reasons: Raindrops on windshields exhibit

a large variety in shape and size. Their short distance to the

camera results in out-of-focus blur, hereby decreasing dis-

tinctiveness of raindrop features. Moreover, transparency

and light refraction makes the raindrops appearance highly

dependent on the image background. Recently, several ap-

proaches have been proposed to overcome these problems:

Garg and Nayar [5, 6, 7] proposed an accurate photo-

metric model for stationary spherical raindrops and deter-

mined the effect of camera parameters on image distur-

bance. However, a static observer or high camera exposure

times are assumed making the approach not applicable in

scenarios where the camera is moving.

Kurihata et al. [12] used a machine learning approach

with raindrop templates, so called eigendrops, to detect

raindrops on windshields. Results within the sky area were

promising, whereas the proposed method produced a large

number of false positives within the non-sky regions of the

image where raindrop appearance modeling becomes more

challenging.

Halimeh and Roser [9] developed the basics of a photo-

metric raindrop model to predict the appearance of a rain-

drop on the windshield. However, they only give experi-

mental validation in a well-defined laboratory setting. They

presently disregard the fact that raindrops appear blurred

since they are outside the scene focus of the camera.

Yamashita et al. [16, 19, 18, 17] proposed several ap-

proaches for detecting and removing waterdrops from im-

ages. They detect noisy regions using difference images

[19] and replace contaminated image parts with patterns

from a second camera, assuming a distant scene. Yamashita

et al. further developed a spatio-temporal approach for de-

tecting adherent noise by image sequence analysis [18, 17],

supposing a camera with constant and known yaw rate.

In this paper, we present an integrated concept for rain-

drop detection (Section 2) that contains the generation of ar-

tificial raindrop patterns at regions of interest (ROIs), ROI

initialization, and raindrop verification by intensity-based

correlation. Then we omit disturbing image regions to im-

prove registration accuracy. Thereto we use prior knowl-

edge of the vehicle dynamics and camera setup in combi-

nation with homography constraints (Section 3). Finally,

we make use of the image registration results and the accu-

rately detected raindrop positions for image enhancement

by restoring occluded image areas with intensity informa-

tion from neighboring image frames. In section 4 we com-

pare the different raindrop detection algorithms in terms of

Precision-Recall curves and demonstrate improved image

registration performance. Finally, we conclude this paper

with an outlook on future work (Section 5).

Potential raindrops

Render artificial raindrop

Comparison

Figure 2. Flowchart of raindrop detection with RIGSEC. Arti-

ficial raindrop patterns are compared to potential raindrops using

intensity-based correlation.
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Figure 3. Refraction model. Light ray tracing allows for accu-

rate reconstruction of raindrops on transparent surfaces from back-

ground scene information.

2. Raindrop Detection

Fig. 2 shows an overview over the proposed raindrop

detection approach. First, we extract ROIs from the im-

age via interest point detection. In order to check if a re-

gion contains a raindrop, we use a photometric raindrop

model which renders artificial raindrop patterns for each

ROI. These patterns show the raindrop appearance at this

location and scale in the image (See Fig. 6). In a verifica-

tion step, we compare the extracted region with the artificial

raindrop pattern.

2.1. Photometric raindrop model

In this section, we give a brief overview of the rain-

drop model we used, called Raindrop Intelligent Geomet-

ric Scanner and Environment Constructor (RIGSEC) and

present all necessary extensions. Our raindrop model is in-

spired by the model of [9], but we enhance the model by

realistic out-of-focus blur and validate the model in real-

world scenarios. Furthermore we compare several strategies

for finding suitable regions of interest.

Given a potential raindrop, our algorithm models the ge-

ometric shape of that droplet on the car windshield. It uti-

lizes its photometric properties and renders an artificial rain-

drop pattern from points in the environment.

Drop modeling can be performed with varying

parametrizations of raising complexity like spherical, el-

lipsoidal or even more complex models. We use a sphere

section, since for most raindrops, it models the shape suffi-

ciently well (see Fig. 1(a)).

Assuming a potential raindrop with radius r at position

P = (x, y) on the image plane, we determine the part of

the scene that will be observed through this raindrop. As

depicted in Fig. 3, a light ray emanating from a point in

the environment will be refracted by the raindrop and the

windshield and finally reaches point P on the image plane.
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The exactly same point can also be seen directly at point P̂ .

By tracing the light rays passing through the raindrop, we

are able to virtually render the appearance of any raindrop

at any location. Snell’s law describes the transition of light

rays from medium 1 to medium 2. The angle of refraction

μ2 is a function of the inclination angle μ1 and the refractive

indices n1 and n2. Hence, for all transitions A − E, the

angle of refraction μ2 can be calculated as

μ2 = arcsin

(
n1 sin μ1

n2

)
. (1)

Thus, an accurate geometric relationship between P and P̂

can be derived. Fig. 6(a) shows the sampling of points in

the world for rendering an artificial raindrop as determined

by our refraction model.

However, in order to compare the intensity values of the

mapped environment to the potential raindrop, a prediction

of the raindrop photometry is equally essential as the geo-

metric ray tracing discussed above. According to [11], Fres-

nel’s reflectivity coefficients for partly polarized sunlight in

the atmosphere going from medium 1 to medium 2 can be

expressed as

R12 =
1

2

(
r2
12‖

+ r2
12⊥

)
(2)

r12⊥
=

n1 cos μ1 − n2 cos μ2

n1 cos μ1 + n2 cos μ2
(3)

r12‖
=

n1 cos μ2 − n2 cos μ1

n1 cos μ2 + n2 cos μ1
(4)

where μ1, μ2, n1, and n2 are the angles and refractive in-

dices of media 1 and 2 respectively. Since the pixel intensity

I
P̂

is known from the camera image, the estimated raindrop

intensity at point P can be determined as

IP =
I
P̂∏

i(1−Ri)j
. (5)

Here Ri denotes Fresnel’s reflectivity coefficients at points

A − E and j = ±1 stands for the direction of the inten-

sity prediction. The geometric relations and the photomet-

ric properties allows an artificial raindrop pattern generation

as depicted in Fig. 6(c).

The sharp optical imaging of an object onto a camera

sensor by means of a thin lens can be described by

1

f
=

1

b
+

1

g
(6)

where f is the focal length of the camera, g is the ob-

ject distance and b is the distance between lens and image

plane. Since video sensors for environment perception are

image
plane

A B

Figure 4. Optical path for out-of-focus imaging. Objects that are

out-of-focus are imaged blurred. If the camera is focusing point A,

point B is imaged onto a disc with diameter ε in the image plane.

Camera

d1

d2

(a) Distance of raindrops to

camera

(b) Out-of-focus blur map

Figure 5. Computing out-of-focus blur. The distance of raindrops

to the camera is dependent from their position on the windshield

(a). This leads to an out-of-focus blur map where each image pixel

is mapped to its corresponding unsharp diameter ε (b).

adjusted for sharp optical imaging of distant objects, close

scene points like raindrops on the windshield violate this as-

sumption. They are not imaged sharply, but rather projected

onto a disc with diameter ε in the image plane (see Fig. 4).

We model this effect by applying an out-of-focus blur us-

ing a disc kernel. According to Fig. 4, the lens equation for

out-of-focus objects is given by

1

f
=

1

b + Δb
+

1

g −Δg
(7)

where Δg is known as depth of field. Using the geometric

relation

ε

D
=

Δb

b + Δb
(8)

with lens diameter D, equation 6 and 7 we get an expression

for the disc kernel diameter ε

ε =
Δgf2

O(g −Δg)(g − f)
(9)

where O = f
D

is the camera aperture size. Since the dis-

tance and relative orientation of the windshield with respect

to the camera is known, ε can easily be computed for each

point on the windshield as shown in Fig. 5. The blurred

raindrop pattern is illustrated in Fig. 6(d). Comparison to

the original raindrop (Fig. 6(b)) shows good visual agree-

ment.

Rendering raindrops at multiple scales and all image lo-

cations is computationally expensive. On the other hand,
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(a) Geometric ray tracing

(b) original raindrop

(c) reconstruction

(d) blurred pattern

Figure 6. Artificial raindrop generation. (a) all pixels of a rain-

drop at a specified location and scale (red circle) are projected to

the environment by our raindrop model (green dots). In (b) the

original raindrop is shown, while (c) depicts our reconstruction

using all points from (a) and photometric constraints. The result

of applying out-of-focus blur to our reconstruction is shown in (d).

Figure 7. Fast RIGSEC algorithm with 4 × 3 artifical raindrops.

raindrop appearance is highly dependent from its back-

gound scenario, which lets simple filter masks or eigen-

drops as discussed in [12] only perform insufficiently. For

this reason, we developed a fast RIGSEC implementation

that synthesizes a limited number of equally spaced rain-

drop temlates and correlates them in a surrounding region.

Fig. 7 shows artificial raindrop patterns and the correlation

areas for a 4× 3 grid.

2.2. Initialization

In order to further narrow the search space we first find

ROIs using two different interest point detectors described

in this section. In this paper we choose the SURF feature

detector [1] as a baseline, which approximates the second

order image derivatives with box filters. By looking at the

scale of the SURF filter response we also get an estimate for

the raindrop size in addition to its location.

Gradient based feature detectors like SURF are not per-

forming well for detecting raindrops, because blurred re-

gions only respond weakly. On the other hand, decreasing

the detection threshold leads to many false detections that

must be rejected by the raindrop model. For this reason, we

present a novel method for detecting blurred image regions

by adaptive bandpass filtering. The intuition behind this is

that raindrops can be located at specific spatial frequencies

which are upper bounded by their out-of-focus blur.

We create a bandpass image B for each image I by com-

puting the Difference of Gaussians (DoG) for each pixel lo-

cation according to

B(x, y) = (I⊗ gσ−Δσ)(x, y)− (I⊗ gσ+Δσ)(x, y)

where ⊗ denotes the convolution operator and g is a 2D-

Gaussian. Here σ is taken from the out-of-focus blur map in

Fig. 5(b) and Δσ has experimentally be determined as 5px.

ROIs are extracted by thresholding the bandpass image and

finding segments using a connected component algorithm

with a 4-neighborhood. Finally, an eigenvalue decomposi-

tion of the covariance matrix of all pixel positions belonging

to a segment is performed. Convexity ratio (segment area to

area of convex hull), dominant orientation (first eigenvec-

tor), and aspect ratio (first eigenvalue to second one) are ex-

tracted to distinguish raindrops from background features.

In our experiments typical raindrops exhibit a convexity ra-

tio of > 0.9, possess an orientation difference of < 15◦ to

the horizontal and have an aspect ratio between 1 and 3.

2.3. Raindrop verification

Verification of a raindrop candidate is performed by

comparing the observed image region with the artificial cre-

ated raindrop pattern in a small surrounding. We maximize

the correlation coefficient of their intensity values CCintensity

as well as the correlation coefficient of their first derivative

(gradient map) CCgradient. In order to take different raindrop

sizes into account, we slightly vary the scale of the artificial

raindrop by a factor of 1− 1.5.

3. Registration and restoration

In this section we show how raindrop detections can be

used to improve image registration accuracy. Furthermore,

we fuse intensity information from multiple views into one

single frame to restore image areas occluded by raindrops.

3.1. Geometric scene description

Approximating the road surface by planes enables us to

describe perspective mappings via homographies [10].

Fig. 8 illustrates the geometric scene description. We

keep the road-to-camera transformation matrix TRC and

the calibration matrix K fixed in all frames and estimate the

parameters of the road-to-road mappings TRR(Θi). The

6D-vector Θi = (rx(i), ry(i), rz(i), tx(i), ty(i), tz(i)) rep-

resents the rotational and translational parameters between

frame i and frame i + 1. The extrinsic and intrinsic pa-

rameters are determining the transformation from the road
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Figure 8. Geometric scene description. Transformations used for

projecting between different coordinate systems.

to the camera coordinate system TRC and the calibration

matrix K. They are estimated using standard calibration

techniques [20] and kept constant over time.

However, only small parts of the scene (e.g. the road)

can be represented well by a single plane. We tackle this

problem by approximating the world as a box using five

homographies, namely the ground plane, the left wall, the

right wall, the sky and the background plane. Please note

that depth is not represented accurately due to our simplified

assumption. However, we model the distance to the left

and right wall such that objects of interest (e.g. closeby

trees and guardrails) are represented sufficiently well. We

achieve satisfactory results in image restoration since only

nearby image frames are considered.

3.2. Registration

We initially warp the road plane from frame i+1 to frame

i using a prior estimate for Θi (by means of a first order

Markov model) and bilinear interpolation. This projection

ensures feature similarity in appearance between frames.

We then compute Harris corners in frame i + 1 that do

not intersect with detected raindrops and search for corre-

spondences in frame i using normalized cross-correlation.

Because of low saliency in our test sequences we com-

pute center-surround feature responses for the maxima in

correlation space which are weighted by the template vari-

ance. Thereof we only keep the 50% best matches. Further

outliers are removed by applying the Direct Linear Trans-

form (DLT) algorithm [10] in combination with RANSAC

[4] which is especially important in situations where other

dynamic objects (e.g. vehicles) are present in the scene.

Refining the final parameter set Θ = {Θi}N−1
i=1 is done

by searching for the MAP solution of

P (Θ|Z1, ...,ZN ) ∝ P (Z1, ...,ZN |Θ)P (Θ) (10)

with respect to Θ, where N denotes the total number

of frames. We assume independence of non-consecutive

frames and therefore the likelihood P (Z1, ...,ZN |Θ) fac-

torizes to
∏N

i=1 P (Zi|Θi) where the observation probabil-

ity P (Zi|Θi) is assumed to be normally distributed

P (Zi|Θ) ∝ exp(−1

2
d

T
i Σ

−1
di)

with covariance matrix Σ = diag(σ2
d, ..., σ2

d)T and di con-

taining the euclidean reprojection errors between the fea-

tures connecting frame i and frame i + 1.

Further assuming independence in the translational and

rotational parameters (rx, ry, rz, tx, ty, tz) over the whole

sequence gives

P (Θ) = P (rx)P (ry)P (rz)P (tx)P (ty)P (tz). (11)

Here the vector rx ∈ R
N contains the pitch angle rate for all

frames of the sequence, for example. Ideally one could use

a uniform prior for the parameters. However, since in our

setting the camera is highly tilted with respect to the reg-

istration surface, small registration errors have a large im-

pact on the parameters. Thus we encourage smoothness by

putting Gaussian process priors [14] on the function space

of the parameters

f(i) ∼ GP(μf (i), σf (i, i′)) (12)

with f(i) ∈ {rx(i), ry(i), rz(i), tx(i), ty(i), tz(i)} where i

denotes the frame number and rx(i) is the i’th entry of rx.

For all f we fix the mean function to an initial estimate of

the parameter μf (i) ≡ f0 and model the covariance func-

tion σf (i, i′) using the squared exponential kernel.

Integrating the prior (11) and the likelihood into

(10) and taking the logarithm yields the log-posterior

log P (Θ|Z1, ...,ZN ) which we maximize using standard

gradient descent techniques [13].

3.3. Multi-band blending

After estimating the parameters Θ, reconstruction of im-

age areas covered by raindrops is possible using intensity

information from nearby frames. Since simple merging of

images leads to unsatisfactory results due to differences in

gain, vignetting, object shadows and registration errors we

use multiresolution splines [2] which are outlined in the fol-

lowing section.

For each frame one base image and one base mask

are generated. The base image contains all visible pixels

warped into the target coordinate system using bilinear in-

terpolation and the homography model from section 3.1,

whereas the base mask contains the warped binary raindrop

detection images. Combining base images is done by gen-

erating difference masks and applying multi-band blending

[2]. We compensate the gain in each contiguous area in-

dependently. This is done by comparing pixels around the

area of interest and adjusting the mean intensity value.

Bandpass images B
k
i are generated by differencing the

previously smoothed base images. Here the index i denotes
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that the image and its mask has been projected from frame

i into the current frame. Please note that only neighbor-

ing frames (we typically used a neighborhood size of 6) are

considered. For k ≥ 1 we have

W
k
i = W

(k−1)
i ⊗ gσ̃(k)

I
k
i = I

(k−1)
i ⊗ gσ̃(k)

B
k
i = I

(k−1)
i − I

k
i .

where the standard deviation of the Gaussian kernel gσ̃(k) is

set to σ̃(k) =
√

2k + 1σ. Combining overlapping regions

Ik
Σ(x, y) =

∑
i W k

i (x, y)Ik
i (x, y)∑

i W k
i (x, y)

Bk
Σ(x, y) =

∑
i W k

i (x, y)Bk
i (x, y)∑

i W k
i (x, y)

finally yields the mosaic

Imosaic = IKσ
Σ +

K∑
k=1

Bk
Σ

with K the total number of bands.

4. Results

In this section we evaluate our approach using two

types of experiments: Raindrop detection rates in terms

of Precision-Recall and image registration errors with and

without raindrop detection. The results are generated by ap-

plying our algorithm to an outdoor sequence of 302 frames

recorded in a rural environment. We used monochrome im-

ages with a resolution of 1024 × 768. The camera system

was mounted at a distance of ≈ 14cm from the windshield

with a focal length of 6mm.

4.1. Raindrop detection experiments

First, we perform experiments on raindrop detection for

the different methods described in section 2. To this end we

asked several persons for labeling elliptical regions which

appear to contain raindrops within our 302 test frames. De-

tection results for the different methods are illustrated in

figure 9. We present results in terms of Precision-Recall

for varying detection thresholds. Precision and recall are

defined as

precision =
TP

TP + FP
recall =

TP

TP + FN
(13)

where TP = true positives is the number of correctly dis-

covered raindrops, FP = false positives is the number of

detections which are no raindrops and FN = false negatives

is the number of raindrops which are not detected. A detec-

tion is considered to be correct if its center is within the true

raindrop. Other closeby detections are removed to avoid

multiple true positives for one drop. The ground truth and

two exemplary detection results for the image sequence are

presented in Fig. 10(a). We further position each frame in

Precision-Recall space (Fig. 10(b)) and take the mean value

for each configuration to generate the Precision-Recall plots

shown in Fig. 10(c).

Fig. 10(c) compares the performance of the proposed al-

gorithms SURF, BLUR, fastRIGSEC and a combination of

BLUR and RIGSEC for varying parameters. SURF is tested

with varying filter response thresholds. A recall close to

1 is achieved when keeping the threshold low. However,

up to 2000 detected interest points lead to very low pre-

cision. Higher thresholds increase precision slowly but at

the expense of decreasing recall. In contrast, BLUR shows

a non-monotonic behaviour for varying parameters. The

curve reaches its best value at a threshold of 0.05. Lower

thresholds lead to an insufficient segmentation of raindrops

in the binary image and hence show low precision and re-

call. Higher thresholds omit raindrops that are less dis-

tinctive. Recall rates up to 0.67 are achievable with this

model. The fastRIGSEC algorithm uses a 4×3 grid and we

vary the threshold for the intensity correlation coefficient

CCintensity between 0.1 and 0.95. The best compromise of

recall and precision with regards to subsequent image reg-

istration was found at values of 0.85− 0.9. As can be seen,

fastRIGSEC dominates SURF and BLUR in performance,

verifying the validity of the raindrop model. As depicted

in Fig. 10(c), we further combined BLUR with RIGSEC

and varied the threshold for CCintensity, and CCgradient respec-

tively. The presented results reveal that BLUR+RIGSEC

clearly outperforms all other proposed methods. However,

in terms of recall, fastRIGSEC can exceed BLUR+RIGSEC

(at the cost of low precision). This is caused by the fact that

RIGSEC only validates interest points. Hence, the recall

of BLUR+RIGSEC is bounded by the recall of the BLUR

model.

Please also note that neither temporal nor stereo infor-

mation are used in our system. All tested algorithms can

be applied to single monocular grayscale images in contrast

to methods using multiple cameras [19] or image sequence

analysis [18, 17] for raindrop detection. We believe that fur-

ther improvements can be made by temporally integrating

the respective methods.

4.2. Image registration experiments

In this experiment we compare different raindrop detec-

tion methods and their impact on image registration. For

this purpose we remove all feature detections which are hid-

den by drops detected with one of the methods described

in section 2 and perform image registration as described in

section 3.2. We further gather ground truth information vi-

sually by maximizing equation 10 using hand selected fea-
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(a) SURF (b) BLUR (c) fastRIGSEC (d) BLUR+RIGSEC

Figure 9. Qualitative raindrop detection results. This figure shows our raindrop detection results for the different methods (columns)

and two test images (rows). True positives are marked in green, false positives in red.
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Figure 10. Quantitative raindrop detection and image registration results. (a) shows the raindrop ground truth with TP and FP rate of

two detectors over time. (b) shows the results of (a) transformed to Precision-Recall space to permit a better comparison. (c) illustrates

the performance of raindrop detection algorithms. A combination of BLUR+RIGSEC leads to a precision up to 0.8 at good recall rates

of ∼ 0.67. (d) and (e) show the translational and rotational registration error over the percentage of occluded road area for the proposed

methods. Image registration accuracy can be significantly improved by considering the raindrop detection results.

tures and prior knowledge about the camera setup and the

vehicle speed. Results are presented in terms of the mean

translational and rotational error between frames.

Fig. 10(d+e) show error histograms over the percentage

of occluded road area for the respective methods. Both er-

ror measures increase with the number of raindrops when

no raindrop detection is performed. This is due to the fact

that raindrops are matched with high reliability in consec-

utive frames. Please note that location and appearance of

raindrops are not reflected by this figure, leading to non-

monotonic curve characteristics. However, using our rain-

drop detection approach lowers the mean registration er-
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ror for all test scenarios. We observed that combining the

BLUR detector with RIGSEC performed best, which is con-

firmed by the results in section 4.1. The ground truth acts

as an approximate lower bound on the attainable registration

error. It is nearly reached using the combined method which

shows the effectiveness of our raindrop detection model on

real data. We used the successful image registration pro-

vided by this method to reconstruct occluded image areas.

An example is shown in Fig. 1(d). Please note that some ar-

tifacts have been left mainly in the image center. This stems

from the fact that regions close to the vanishing point of the

image are unobservable since no intensity information from

neighboring frames can be used for reconstruction.

5. Conclusion and Future Work

In this paper we have presented a novel approach that

improves image registration accuracy in rainy weather con-

ditions by considering raindrop detections. We compared

different detectors and combined the complementary BLUR

detector with the presented raindrop model. This combina-

tion revealed superior performance compared to the SURF

baseline. We further showed that restoring occluded areas is

possible by considering information from neighboring im-

age frames and leads to improved visibility.

Since the sphere section assumption of our model does

not cover all raindrop shapes, we plan to extend the raindrop

model flexibility. Making use of temporal dependencies in

raindrop location and appearance will further improve rain-

drop detection rates and hence registration results. We be-

lieve that this could pave the path for applying many vision

algorithms even in rainy weather conditions.
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