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Abstract— In this paper we propose a novel framework for
road reflectivity classification in cluttered traffic scenarios by
measuring the bidirectional reflectance distribution function of
road surfaces from inside a moving vehicle. The predominant
restrictions in our application are a strongly limited field of
observations and a weakly defined illumination environment.
To overcome these problems, we estimate the parameters of
an extended Oren-Nayar model that considers the diffuse
and specular behavior of real-world surfaces and extrapolate
the surface reflectivity measurements to unobservable angle
combinations. Model ambiguities are decreased by utilizing
standardized as well as customized reflection characteristics. In
contrast to existing approaches that require special measure-
ment setups, our approach can be implemented in vision-based
driver assistance systems using radiometrically uncalibrated
gray value cameras and GPS information. The effectiveness
of our approach is demonstrated by a successful classification
of the road surface reflectance of expressway scenes with low
error rates.

I. INTRODUCTION

Digital imaging devices provide a dense environment per-

ception and their benefits are already exploited exhaustively

in vision-based driver assistance systems (DAS). Whereas

many state-of-the-art computer vision algorithms work reli-

ably in good weather, they are heavily affected by adverse

conditions such as reflective road surfaces in combination

with disadvantageous illumination scenarios (see Fig. 1).

However, proper and robust operation in arbitrary situations

is a security-relevant prerequisite to many applications, par-

ticularly on board mobile vehicles. Hence, estimation of road

surface reflection properties is fundamental for improving

vision-based DAS. It may allow for evaluating the quality of

environment perception to the point of completely compen-

sating the reflective part of the luminance distribution, only

leaving the road surface albedo.

The bidirectional reflectance distribution function (BRDF)

is the predominant radiometric concept used in computer

vision. The difficulty in deriving a BRDF is to acquire a

sufficient number of measurements in a well-defined imaging

and illumination setup. So far, this can only be performed

experimentally using sophisticated measurement devices.

Identifying the road surface reflectance from inside a moving

vehicle using only a single grayscale image is highly ill-

posed and challenging for several reasons:

1) Recent vision-based DAS use low-dynamic-range cam-

eras with radiometrically uncalibrated CCD sensors.

Fig. 1. Road Surface Reflectivity. Diffuse road surfaces (top row) provide
good visibility of road markings and traffic participants, whereas specular
surfaces (bottom row) are a challenging problem for current DAS.

2) Sensor data from complex traffic scenes in adverse

weather conditions is subject to severe noise which

lowers measurement quality.

3) In-vehicle camera perspectives only yield sparse mea-

surements from flat observation angles (see Fig. 6).

Hence, only a small part of the road surface BRDF is

observable, which makes accurate identification of the

general reflection characteristic hard.

4) Unknown illumination directions do not allow for a

systematic control of measurement acquisition, like it

is the case e.g. in gonioreflectometers.

This paper addresses the problem of estimating the road

surface BRDF in cluttered real-world traffic scenarios. Our

main contribution is a framework for BRDF estimation and

road surface reflectivity classification using only a single

grayscale image and GPS information acquired from inside

a moving vehicle. A core part of our approach is to fit mea-

sured BRDF values to an appropriate physical BRDF model

in order to extrapolate the surface reflectivity measurements

from a considerably limited field of observation. Based on the

estimated BRDF model, we propose meaningful reflectance

features that allow for an accurate identification of the road

reflectivity state. The effectiveness of our approach is demon-

strated quantitatively by a binary classification of expressway

scenes into the classes diffuse and specular (example images

for these classes are depicted in Fig. 1 and Fig. 7).
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Section II reviews relevant literature. The BRDF definition

is summarized in Section III. Section IV introduces an

extended Oren-Nayar reflectance model, that we are using

for achieving a general BRDF characteristic of the surface

patch only from sparse measurements. Section V proposes

the novel framework for BRDF estimation and classification

of the road surface reflectivity. We present detailed feature

evaluation and classification results in Section VI and con-

clude our work in Section VII.

II. RELATED WORK

The BRDF offers a pointwise description of light reflection

on real surfaces. It can be measured by acquiring dense

samples taken from well-defined observer and light source

positions. Traditional gonioreflectometer-based approaches

[27], [4], [15] demand flat material samples and take up to

several hours for data acquisition. Image-based measurement

systems [13], [14], [10] are proposed in order to speed up

acquisition time at comparable accuracy. However, they all

demand a well-defined experimental setup and are still quite

time and memory-consuming.

Extensive databases [4], [14] provide dense BRDF mea-

surements of real-world materials. However, the materials

are typically chosen to span a wide range of photometric

properties for computer graphics rendering. BRDF mea-

surements of road samples are rare. Although Meister [15]

evaluated several urban surfaces for identifying land covers

in satellite supported sensor data, only a small amount of his

data such as asphalt and concrete is relevant for automobile

applications. Hence, an assignment of acquired road surface

BRDF measurements to available database knowledge is

unfeasible.

In order to improve BRDF applicability, the general goal

is to find an accurate low-parameter representation of an al-

ready densely sampled BRDF. To this end, the measurements

are typically fitted to an appropriate analytical model. They

can basically be divided into empirical BRDF models [2],

[21], [27] and physical models that simulate the microscopic

surface geometry [22], [3], [18], [19], [16]. Empirical func-

tions describe densely measured BRDF data well, whereas

physical models are also capable of fitting noisy and sparse

BRDF measurements of real surfaces, which is the task in

our application.

In the context of automobile applications, BRDF measure-

ments are predominantly used for optimizing the road illumi-

nation level and traffic visibility [11], [8], using standardized

reflection parameters [1] for robust surface characterization.

Other efforts have attempted to improve headlamp design,

preventing dazzle effects from the driver or oncoming traffic

[26], [25]. However, they only evaluate a few surfaces in lab-

oratory environments or with specialized field measurement

equipment. A generic approach for road surface reflectivity

classification has to cover a multitude of road surfaces,

subject to arbitrary wetting conditions. Hence, any database

generation in laboratory environments will fail due to the

enormous amount of data that has to be acquired.

incident beam reflected beam

(a) Perfect mirror.

incident beam reflected beam

(b) Arbitrary surface.

Fig. 2. Reflected radiance. On a mirror-like surface, the incident light
ray is totally reflected (a). Dealing with arbitrary surfaces, any combination
of diffuse or specular reflection may occur (b). Note, that only light rays in
the plane of incidence are visualized.

III. BRDF DEFINITION

The reflectance of opaque objects usually depends on the

angles at which its surface is illuminated and observed. For

a perfect mirror the zenith angle θi of an incident light ray

equals the zenith angle θr of a reflected light ray as depicted

in Fig. 2(a). For an arbitrary surface patch, any combination

of diffuse or specular reflection may occur and lead to light

reflections emitting in all directions of the upper hemisphere

(Fig. 2(b)).

In general, this behavior can be described in terms of the

BRDF. According to [17], the BRDF fr of a surface dA

can be defined as the ratio of reflected radiance Lr and

incident irradiance Ei for all possible observer and light

source positions given by their azimuth (φr, φi) and zenith

angles (θr, θi):

fr(φi, θi, φr, θr) =
dLr(φr, θr)

dEi(φi, θi)
. (1)

The incident irradiance Ei describes the radiant flux Φ per

unit area A

Ei =
dΦ

dA
(2)

and the reflected radiance Lr is given

Lr =
d2Φ

dA cos θrdΩ
, (3)

which is the radiant flux Φ per unit solid angle Ω and a

surface perpendicular to the propagation direction.

IV. REFLECTANCE MODEL

Reflectance models are typically introduced in order to

achieve low-parameter representation of the acquired BRDF

measurements. One prominent physical BRDF model for

diffuse reflection is proposed by Oren and Nayar [18], [19],

[16]. It assumes isotropic surfaces that are composed of small

surface facets arranged in v-shaped grooves of constant width

d as depicted in Fig. 3. Superimposition of the Lambertian

behavior of all surface facets leads to two diffuse reflection

components. fd,dir
r includes all directly reflected parts and

fd,ms
r takes multiple reflections into account:

fd,dir
r =

ρ

π
(C1(kw) + C2(kw) cosφ tan θ2

+ C3(kw)(1 − | cosφ| tan
θ1 + θ2

2
)), (4)
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Oren-Nayar

d d

Fig. 3. Surface modeling. Oren-Nayar assumes a macroscopic surface
consisting of small surface facets, arranged in v-shaped grooves of constant
width d.

fd,ms
r = 0, 17

ρ2

π

k2
w

k2
w + 0, 13

(1 −
4θ2

2

π2
cosφ), (5)

where ρ is the surface albedo, φ = |φi − φr| is the relative

azimuth angle, θ1 = max(θi, θr) is the maximum zenith

angle and θ2 = min(θi, θr) is the minimum zenith angle,

respectively. C1(kw), C2(kw) and C3(kw) are constants

that are solely dependent on kw and the geometric relation

between the observer and light source [19]. For clarity, all

model equations do not explicitly state any dependency from

the observer and light source positions θi, θr, φ.

Real-world road surfaces demand for an accurate de-

scription of surface reflections which cannot be regarded in

the traditional Oren-Nayar model. Therefore, the traditional

Oren-Nayar model is extended by a specular part [15], [22],

where all surface facets are assumed to act as small, perfect

mirrors. Specular reflections only occur in the direction of to-

tal reflection for each facet. This yields the local illumination

angle θ′ = θ′r = θ′i with respect to the surface facet normal
�N (see Fig. 3), that can be determined geometrically [24].

We model the probability distribution P of the surface facet

normals that are involved in the specular reflection using

a zero-mean Gaussian distribution function with standard

deviation kw:

P (kw) ∝ e
α
2

2k2
w . (6)

where α is the zenith angle of the surface facet normal
�N with respect to the macroscopic surface normal �M as

illustrated in Fig. 3. Using (6), the specular part can be

described as

fs
r (kw, n) =

F (n)P (kw)G

4 cos θi cos θr

, (7)

where F (n) denotes the Fresnel reflectance that describes

the photometric behavior of light rays on surfaces [7] and

G is a geometric attenuation factor regarding masking and

shadowing effects within the facet structure [19].

Finally, a weighted superposition of the diffuse and specu-

lar reflection parts (fd
r and fs

r ) gives an extended Oren-Nayar

(ONext) model:

fr = kdf
d
r (kw) + ksf

s
r (kw, n), (8)

where kd and ks denote the weighting factors for the diffuse

and specular reflection terms, n the material refraction index

and kw is a parameter for the surface roughness.

(a) Traditional BRDF measure-
ment devices.

(b) Vehicle based BRDF measure-
ment approach.

(c) Automotive BRDF measurement setup

Fig. 5. Experimental setup. Whereas traditional BRDF measurement
devices, such as gonioreflectometers, observe the same surface patch under
varying observer and light source positions (a), we observe different
surface patches for each perspective that are assumed to have an invariant
reflectance behavior (b). (c) shows a three-dimensional geometric model of
our automotive BRDF measurement setup.

V. REFLECTANCE ESTIMATION FRAMEWORK

A robust road surface reflectivity classification technique

depends on reliable, strong BRDF features. Single images

taken from an in-vehicle camera, in principle, provide suffi-

cient information for that task.

In this section, we propose a novel framework for vision-

based road surface reflectivity classification as depicted in

Fig. 4. First, we determine all radiometric and geometric

quantities that are necessary for BRDF measurement acqui-

sition according to (1) (Fig. 4(a-b)). The BRDF measure-

ments are acquired within 10 × 10cm patches on the road

surface (Fig. 4(c)). Then, we fit an extended Oren-Nayar

BRDF model to the acquired data and extract reliable BRDF

features (Fig. 4(e-f)). Finally, these features form a low-

dimensional description vector that is used to decide on the

road surface reflectivity class (Fig. 4(d)).

A. Data Acquisition

In order to compute the BRDF measurements according

to (1), the incident irradiance Ei on the road surface, the

reflected radiance Lr towards the viewer as well as the

geometric observer and light source positions specified by

θi, θr, φ must be known. These entities can be acquired from

our measurement setup as depicted in Fig. 5(c).

A predefined camera mounting behind the windshield as

well as knowledge about the camera orientation, received

from two GPS antennas, specify one side of the geometric

relationship between observer and light source. Assuming

the sun as the only relevant illuminant, the latter half can

be computed using a formula for the momentary, geocentric

sun position [23].
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(a) Input information. (b) Defined experimental setup. (c) Road reflectance measurement.

SVM

diffuse

specular

(d) Road surface reflectivity classification.

[ ]S ,S ,1 2 S3

S2

S1

S3

(e) Robust feature extraction.

[k , n, ]d k , ks w

(f) BRDF model fitting.

Fig. 4. Flowchart of proposed method. (a) An in-vehicle camera, two GPS antennas and a diffuse reflector provide all necessary input information for
a well-defined, experimental measurement setup. In (b), the illumination direction is illustrated by introducing an artificial 2 × 0.5m object and computing
its shadow with respect to the current sun position. The relative sun intensity is shown by a color bar in the right top corner of (b). In (c), the BRDF
measurements are acquired within a 10 × 10cm neighborhood (green boxes). In (f), an extended Oren-Nayar BRDF model is fitted to the received
measurements. Then, robust features (e) are used for a SVM classification of different road reflectivity states (d).

During the image acquisition process, each camera pixel

integrates the radiant flux Φ that is striking its area A over

a defined exposure time Te. Given a linear camera sensor

characteristic, disregarding any noise stemming from the

image acquisition process and using (2), the relation between

a camera pixel’s gray value g and its incident irradiance E

yields

g ∝

∫ Te

0

AEdt. (9)

According to [9], the relation between the reflected radiance

Lr of a road surface patch and its incident irradiance E on

the camera sensor is given by

Lr ∝
E

cos4 θ
, (10)

with θ defining the relative, geometric position between

camera and reflector. Note, that the proportionality constants

of both equations solely depend on camera properties. Hence,

a pointwise description between the radiance Lr reflected

from the road surface patch and the gray value g of the

camera pixel can be deduced from (9) and (10). In contrast

to traditional BRDF measurement techniques that observe

the same material patch from different observer positions

(see Fig. 5(a)), we assume the road surface to have an

invariant BRDF characteristic and observe its radiance from

different angles in a single image as depicted in Fig. 5(b).

The radiance measurements are achieved from a birds-eye

view perspective by evaluating the mean gray value in a

10 × 10cm neighborhood of 75 × 30 supporting points as

illustrated in Fig. 4(c).

For determining Ei on the road surface, we assume that the

sun irradiance is constant throughout the vehicle surrounding.

This enables an estimation of the incident irradiance on the

road surface Ei by determining the incident irradiance Es

on a diffuse GORE
TM

DRP R© reflector that is mounted on the

hood of our experimental vehicle as depicted in Fig. 5(c).

The BRDF equation of a perfectly diffuse reflector is given

by

Ls =
ρ

π
Es. (11)

For robustness, Es is computed according to (9)-(11) by

taking the mean of all gray values g exceeding a certain

threshold in the gray value histogram of the reflector. Hence,

the incident irradiance on the road surface Ei yields

Ei = Es = K ·
g

Te

, (12)

where the proportionality constant K can be determined,

using the camera and reflector properties as well as their

relative, geometric position. Note, that K remains constant

for all images captured with the same experimental setup.

B. Preprocessing

The reflected surface radiance is determined from intensity

values of a camera sensor. Hence, major changes in the road

surface albedo such as bright road markings on dark concrete

violate the assumption of invariant road surface patches

and lead to outliers in the BRDF measurements. Moreover,

all atmospheric effects between the surface patch and the

camera sensor, for example raindrops on the car windshield,

will additionally disturb the measurement process. Since this

approach should enhance DAS especially in adverse weather

conditions, insensitivity towards these effects is of particular

importance.

For this reason, we use a previously developed vision-

based raindrop detection [6], [20] as well as a standard lane

detection approach and consider only BRDF measurements

that are not disturbed by raindrops and do not lie on road

markings.
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Fig. 6. Model fitting. An extended Oren-Nayar model function (colored
envelope) is fitted to few BRDF measurements (green crosses), received
from a strongly limited field of observation.

C. BRDF Model Fitting

A meaningful BRDF evaluation of the road surface can

only be realized for a bounded area in front of the vehicle

as illustrated in Fig. 4(b). This corresponds to a zenith angle

range of 77◦ < θr < 87◦ and an azimuth angle φr that

is limited to the car heading ±20◦. Since this results in a

limited field of view (see Fig. 6), the light source and viewer

positions are certainly different for various daytimes and

vehicle headings and a comparison of different traffic scenes

cannot be performed on the BRDF measurements, directly.

Therefore, we fit an extended Oren-Nayar model in order

to achieve a model-based extrapolation of the whole BRDF

of the road surface. Applying standard nonlinear Levenberg-

Marquardt optimization [12], we estimate the unknown ONext

parameters (kw, ks, kd, n), conditioning normalized weight-

ing factors (kd + ks = 1) [3].

Note, that traditional BRDF model fitting tries to find a

low-parameter approximation of an already densely sampled

BRDF in order to perform a model-based interpolation be-

tween the acquired samples. The estimated model parameters

themselves normally do not play a major role. In contrast to

that, our purpose is estimating a BRDF parametrization from

a strongly limited field of observation as depicted in Fig. 6.

D. Feature Extraction

In addition to the estimated ONext model parameters, we

extract robust CIE reflectance parameters S1, S2 according

to [11], [1], but for an adjusted observer position θr ≈ 82◦.

These parameters evaluate the whole BRDF function for two

characteristic points:

S1 =
fr(φ = 180◦, θi = 26.6◦, θr ≈ 82◦)

fr(φ = 180◦, θi = 0◦, θr ≈ 82◦)
, (13)

S2 =
Q0

fr(φ = 180◦, θi = 0◦, θr ≈ 82◦)
, (14)

with

Q0 =
1

Ω

∫

(Ω)

fr(θi, θr, φ)dω. (15)

S2 determines the enclosed BRDF volume Q0 with respect

to the reflectance in surface normal direction. Especially S1

is a customized reflectance parameter for headlight and street

lightning design, that indicates the reflectance for a standard

light source position φ = 180◦ and θi = 26.6◦.

We expect, that this angle combination is not ideal for

our application. Therefore, we propose a novel reflectance

feature S3:

S3 =
fr(φ, θi, θr ≈ 82◦)

fr(φ = 180◦, θi = 0◦, θr ≈ 82◦)
, (16)

which is computed using the current vehicle heading and sun

position that can be obtained as discussed in Section V-A.

E. Classification

We choose selected combinations of ONext model param-

eters kw, kd, n and reflectance features S1, S2, S3 to create a

descriptor vector v, which is then used to decide on the road

surface reflectivity class. In our case, we perform a binary

classification into the classes C = {diffuse, specular}. Thus,

the problem of classification can be thought of as finding

some function f that maps v from descriptor space D into

the classes C with c = f(v), where f : D → C.

Numerous machine learning methods have been proposed

for finding such a function f from training examples [5]

using techniques like k-Nearest-Neighbor, Decision Trees,

Neural Networks and Support Vector Machines (SVM). As

SVMs are simple, fast, and powerful, we decided to use them

as our learning and classification method.

One of the advantages of SVM’s is that kernel methods,

such as linear and RBF (Radial Basis Functions), can be

incorporated in the algorithm. With them, non-linear decision

boundaries can be found. However, since one parameter for

the RBF kernel has to be optimized manually and linear

separation already gives satisfactory results, we preferred

applying a linear kernel.

VI. RESULTS

For all experiments, we used 680 grayscale images with

a resolution of 1024 × 768 pixels. They observe different

illumination situations and road surfaces on expressways,

mainly covering specular and diffuse reflections on dry and

damp roads (see Fig. 1 and Fig. 7).

The BRDF models are visualized in a spherical coordinate

system, using the so called q-body representation [11]: For a

fixed light source, a set of vectors, given by their zenith and

azimuth angles to the observer and the corresponding BRDF

value as their vector norm, composes an envelope that is

describing the surface reflection characteristic (for examples,

refer to Fig. 7). For better illustration, some figures also show

2D cuts of these 3D BRDF envelopes.

In order to overcome the problem of limited image data

for the classification task, we performed a 5-fold-cross-

validation. We ensured that no image is used for both training

and testing at the same time, as well as we ensured equal

amount of images for each set.

A. BRDF Model Estimation

As depicted in Fig. 7, the extended Oren-Nayar models

and their parameters allow for successful distinction be-

tween different road reflectivity conditions for well-posed

test image examples. However, real-world traffic scenes are

subject to measurement noise, especially in adverse weather
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conditions. Furthermore, estimating a BRDF model that

describes the material reflectance for all possible observer

and light source positions from a strongly limited field of

observation as illustrated in Fig. 6 is a highly ill-posed

problem. Our experiments show, that for these reasons, the

ONext model parameters alone are not sufficient to classify

the road surface reflection state accurately.

B. Model Ambiguities & Measurement Noise

We introduced a data preprocessing for reducing measure-

ment noise and extracted more robust reflectance features

S1, S2, S3 for increasing model uniqueness.

In order to illustrate this phenomenon of model ambi-

guities, we parametrized an arbitrary BRDF q-body and

varied the ONext parameters kd and kw. The refraction index

n is assumed to be constant for this experiment and the

specular weighting factor is set to ks = 1 − kd. The shape

similarity between the original q-body and the varied ones is

measured in terms of the Sum-of-Squared Differences (SSD).

As depicted in Fig. 8(a), various parameter sets lead to small

SSD errors (red line), that means they all describe similar q-

bodies. Fig. 8(d) shows 2D cuts of two exemplary q-bodies

for diffuse and specular road surfaces. Although the diffuse

BRDF models (and specular BRDF models, respectively)

show similar shapes, their ONext parameters differ consider-

ably. However, the proposed reflectance features S1, S2, S3

are more stable and hence are invariant to model ambiguities.

Fig. 8(b) shows the original analysis area with and without

road markings. As illustrated in Fig. 8(e), road markings

significantly influence the BRDF estimation. However, only

considering BRDF measurements that do not lie on road

markings lead to an improved BRDF estimation. Note,

that the ground truth in Fig. 8(e) is achieved by manually

shrinking the analysis area in such way that it is not affected

by road markings anymore.

Due to the BRDF model restrictions, an inherent robust-

ness to raindrops already exists. We tested this statement by

estimating the BRDF directly before and after wiper passing.

As depicted in Fig. 8(f), the estimated BRDF functions

are very similar, even if the image is heavily distorted by

raindrops on the windshield (see Fig. 8(c)). Considering only

image regions that are not affected by raindrops [6], [20]

further improves the results.

C. Surface Reflectivity Classification

The road surface reflectivity was classified using se-

lected combinations of either the extended Oren-Nayar

model parameters (n,kd,kw) or the robust reflectance features

(S1,S2,S3). The resulting error rate of the different combi-

nations is shown in Fig. 9. Table I depicts the confusion

matrices for selected feature combinations.

A decision about the reflectance class with ONext pa-

rameters results in a high error rate between 18.5% (kd)

and 24.7% (kd,kw,n). In constrast, the proposed reflectance

features outperform a classification based on the extended

Oren-Nayar model parameters, exclusively.
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Fig. 9. Feature comparison. Classification error for different feature
compositions. A subset of the proposed reflectance features (S2,S3) clearly
outperform any classification based on the extended Oren-Nayar model
parameters, exclusively.
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Fig. 10. ROC curves. ROC curves for classification results with ONext

parameters and proposed reflectance features.

Since the reflectance parameter S2 considers all BRDF

values of the estimated ONext model, it is the most stable,

single feature for our classification task (error rate: 5.9%).

Although S1 enjoys great popularity in lighting design,

it is inapplicable for our application. A classification with

S1 results in an error rate of 34.6%. Even a combination of

S1 with S2 does not yield any classification improvements.

This is due to the reason, that the position of light source and

observer evaluated in S1 is chosen for the special case of road

lighting design and hence is not ideal for road reflectance

identification, where the predominant illuminant is the sun.

A classification improvement could be achieved with S3

that we individually tailored for our application. Although,

this feature is error-prone to measurement noise because it

evaluates only a single BRDF value in a defined direction,

the strengths of S3 appears when combining it with other,

stable features. The best classification results are obtained

using S3 in combination with S2 (error rate: 5.0%).

We investigate the results in Fig. 9 by computing the

ROC curves of selected classification results (Fig. 10). They

emphasize the advantage of choosing reflectance parameters

rather than classifying road surfaces with ONext model pa-

rameters, directly.
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ONEXT PARAMETERS

kd 0.42

kw 0.37

n 1.00

ONEXT PARAMETERS

kd 0.53

kw 190.00

n 1.01

ONEXT PARAMETERS

kd ≈ 0

kw 386.00

n 1.29

ONEXT PARAMETERS

kd ≈ 0

kw 330.00

n 1.60

Fig. 7. BRDF model parameter estimation. BRDF measurements are acquired in trapezoidal regions on real road surfaces with diffuse and specular
reflectance behavior (top row). The corresponding BRDF models show, that diffuse road surfaces predominantly appear Lambertian whereas for specular
road surfaces a preferred direction of light reflections is noticeable (middle row). For well-posed examples, a distinction between the different road surface
reflectivity states can be performed, using the extended Oren-Nayar model parameter (bottom row).
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(a) SSD error for different BRDF models. (b) Road markings elimination. (c) Raindrop elimination.
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Fig. 8. Influence of model ambiguities and measurement noise. Model ambiguities arise from the phenomenon, that different ONext model parameters
create similar BRDF envelopes with small SSD error (a). For two exemplary parameter sets, their BRDF bodies appear similar, although kd and kw differ
significantly (d). However, customized reflectance features S1, S2, S3 are more robust and show comparable results (d). Measurement noise, stemming from
road markings (e) or adverse weather conditions (f) can influence the BRDF model estimation. These effects can be improved by appropriate preprocessing,
like road marking elimination (b) or raindrop detection (c).

TABLE I

CLASSIFICATION RESULTS FOR SELECTED FEATURE. ROWS CONTAIN THE CORRECT CLASSES, COLUMNS THEIR CLASSIFICATION RESULTS.

(kd , n) (S2) (S3) (S2 , S3)

diffuse specular diffuse specular diffuse specular diffuse specular

diffuse 205 135 325 15 312 28 331 9
specular 6 334 25 315 32 308 25 315

Total error rate: 20.74% Total error rate: 5.88% Total error rate: 8.82% Total error rate: 5.00%

(correct: 539, wrong: 141) (correct: 640, wrong: 40) (correct: 620, wrong: 60) (correct: 646, wrong: 34)
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TABLE II

COMPUTATIONAL TIMES FOR ROAD REFLECTIVITY IDENTIFICATION

PART TIME [S]

Irradiance estimation 0.102
Sun position determination 0.034

Radiance measurement 0.213
BRDF computation 0.372

ONext model parameter estimation 1.723
Reflectance parameter extraction 0.336

SVM classification (test)1 0.021

Total CPU time 2.801
1 C++ Matlab Wrapper

Despite the satisfactory low-error classification results,

difficulties may arise if the assumptions of surface isotropy

or incident irradiance constancy are violated. An anisotropic

surface behavior may occur because of polished regions on

the concrete pavement or minor road surface corrections.

Cast shadows may corrupt the assumption of a globally

constant incident irradiance. This would lead to irradiance es-

timates, received from the car hood, that do not represent the

actual illumination condition on the road surface anymore.

However, both difficulties can be tackled by considering

temporal consistency of the measurements.

D. Computational Times

We implemented the proposed framework in

MATLAB
TM

with no special focus on performance

optimization. The computational times in Table II are

achieved computing the mean value for ten evaluation runs,

using an Intel R©Pentium R©E2180 with 3.0GHz and 2GB

RAM. The mean processing time is 2.8 seconds per image.

VII. CONCLUSION AND FUTURE WORK

We proposed a novel road reflectivity classification ap-

proach based on estimating the bidirectional reflectance

distribution function of road surfaces. We utilize an extended

Oren-Nayar model that considers diffuse and specular reflec-

tion characteristics. Meaningful reflectance features allow for

an accurate and robust classification of the road reflectance,

even in adverse weather conditions. Since we only use GPS

information and single gray value images acquired from

an uncalibrated camera on board a moving vehicle, the

proposed framework is applicable for real-world scenarios

and provides valuable information for all driver assistance

systems.

Future work will include a detailed evaluation of cus-

tomized reflectance features. Image sequence analysis will

further improve the BRDF model estimation and road surface

classification, especially in situations, where the assumptions

of surface isotropy or incident irradiance constancy are

violated.
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