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Continuous Stereo Self-Calibration by
Camera Parameter Tracking
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Abstract—This paper presents a consistent framework for
continuous stereo self-calibration. Based on a practical analysis of
the sensitivity of stereo reconstruction to camera calibration un-
certainties, we identify important parameters for self-calibration.
We evaluate different geometric constraints for estimation and
tracking of these parameters: bundle adjustment with reduced
structure representation relating corresponding points in image
sequences, the epipolar constraint between stereo image pairs, and
trilinear constraints between image triplets. Continuous, recursive
calibration refinement is obtained with a robust, adapted iterated
extended Kalman filter. To achieve high accuracy, physically
relevant geometric optimization criteria are formulated in a
Gauss–Helmert type model. The self-calibration framework is
tested on an active stereo system. Experiments with synthetic data
as well as on natural indoor and outdoor imagery indicate that
the different constraints are complementing each other and thus a
method combining two of the above constraints is proposed: While
reduced order bundle adjustment gives by far the most accurate
results (and might suffice on its own in some environments), the
epipolar constraint yields instantaneous calibration that is not
affected by independently moving objects in the scene. Hence, it
expedites and stabilizes the calibration process.

Index Terms—Active vision, self-calibration, stereo vision.

I. INTRODUCTION

S TEREO vision is of growing importance for many appli-
cations ranging from automotive driver assistance systems

over autonomous robot navigation to 3-D metrology. Probably
the most prominent advantage of stereopsis is its ability to
provide both instantaneous 3-D measurements and rich texture
information that is crucial to many object classification tasks.
Camera calibration is indispensable to relate image features
acquired with a stereo rig to real world coordinates. The calibra-
tion process is typically required to recover camera orientation
with an accuracy of say to degrees. Traditionally,
camera calibration is determined off-line by observing special,
well-known reference patterns (see, e.g., [1]). Recent years,
however, have seen increasing interest in camera self-calibra-
tion methods. Stereo self-calibration refers to the automatic
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determination of extrinsic and intrinsic camera parameters of a
stereo rig from almost arbitrary image sequences. Hence, such
methods allow recovery of the camera parameters while the
sensor is in use without necessitating any special calibration
object.

We believe that self-calibration is an important ability re-
quired for the introduction of stereo cameras in the market, es-
pecially in the automotive field. Only self-calibration can guar-
antee maintenance-free long-term operation, since camera pa-
rameters may be subject to drift due to adverse environmental
conditions such as, e.g., mechanical vibrations or large temper-
ature variations that are commonly encountered in automotive
applications. Additionally, reliable self-calibration may render
costly initial off-line calibration obsolete, thus reducing time
and cost in the production line.

Another important field of application is active vision [2]–[5].
Inspired by the human visual system, an active vision system
usually consists of two or more cameras that can adjust gaze
direction to currently important areas of the scene. Clearly, such
a system can be useful in many applications such as extending
the field of view for autonomous vehicles at street crossings
or smooth following of objects. We have developed an active
camera platform consisting of three cameras as depicted in
Fig. 1. The camera system is intended to implement the afore-
mentioned active vision capabilities for autonomous driving.
Additionally, since we do not rotate the baseline of the stereo
cameras but all cameras individually to reduce packaging size,
the platform is an excellent test bed for stereo self-calibration.

The main objective of this paper is to describe a framework
for continuous stereo self-calibration. Our approach differs
from many self-calibration tasks since we assume that an
initial guess of the camera calibration is readily available (e.g.,
camera orientation is given with errors up to a few degrees),
and our self-calibration has to refine these initial guesses. A
first refinement will be available after processing of a single
stereo image pair which is further improved upon availability
of more images. Calibration parameters are not constrained to
be constant during the continuous calibration process, but may
drift over time. Furthermore, we address calibration from al-
most arbitrary imagery, i.e., we do not impose imagery taken in
completely rigid scenes. We thus on one hand address only part
of the full self-calibration problem, as we expect a coarse initial
guess. However, we believe that this simplification is valid for a
variety of applications, e.g., when the parameters of the stereo
rig are given within the tolerances of the manufacturing process
or in active vision when (perturbed) commanded camera pa-
rameters are available. On the other hand the proposed process
offers instantaneous and continuous calibration with relaxed
constraints on parameter constancy and scene dynamics.
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Fig. 1. (a) Active camera platform mounted in our experimental vehicle. The
platform consists of two (stereo) cameras with a field of view of 46 and one tele
camera. The two stereo cameras can be rotated independently about their yaw
axes while the tele camera is capable of both horizontal and vertical rotations
to compensate vehicle pitch. (b) Schematic view of the active camera platform
(C1, C2: stereo cameras, C3: tele camera, M: mirror).

In our framework, we evaluate different constraints that
may be employed when tracking stereo calibration parameters:
recursive bundle adjustment with reduced dimension of the
parameter state vector, the epipolar constraint between a pair
of stereo images, and the trifocal constraint. A Gauss–Helmert
type model is employed to ensure that physically relevant errors
are minimized. We find that recursive bundle adjustment and
the epipolar constraint may complement each other in practical
applications: Bundle adjustment provides highest accuracy
and might suffice on its own in some environments. Methods
employing the epipolar constraint are fast and are not affected
by independently moving objects in the scene and may thus
expedite and stabilize the calibration process. We propose
an algorithm that combines both the epipolar constraint for
instantaneous measurements and recursive bundle adjustment
that cumulates information from spatio-temporal trajectories of
correspondences over time. The algorithms are demonstrated
on both synthetic and real imagery.

The paper is organized as follows. Section II briefly catego-
rizes existing literature on camera self-calibration and puts our
approach in context with previous work. Section III outlines
the stereo camera model used throughout this paper and ana-
lyzes the sensitivity of stereo reconstruction to the individual
camera parameters. The framework for continuous self-calibra-
tion based on different geometric constraints is described in Sec-
tion IV. Our algorithm is evaluated on synthetic and real-life im-
agery (Section V). Section VI summarizes our results and con-
cludes the paper.

II. RELATED WORK

Probably the earliest work related to camera self-calibration
stems from photogrammetry, addressing the extraction of metric

quantities from multiple (often aerial) images. In case of uncer-
tain camera parameters, 3-D reconstruction is usually obtained
via bundle adjustment (e.g., [6]–[9]): the intrinsic and extrinsic
camera parameters as well as the observed 3-D structure are si-
multaneously refined such that the distance between measured
and expected image coordinates becomes minimal. Given accu-
rate correspondence features and a suitable initial guess of all
camera parameters, bundle adjustment is known to provide cal-
ibration results with high precision. Bundle adjustment always
processes a block of images, i.e., a window in a sequence of im-
ages. The size of this window is an important design parameter
usually limited by the computational resources available. When-
ever new images are added to this window, a re-computation of
the entire bundle is required which is undesirable in continuous
processing.

In the computer vision community, self-calibration of
monocular and stereo cameras has been in the focus over the
last 15 years and is still an active research topic. While in
photogrammetry applications an initial guess of the camera
intrinsic and extrinsic camera calibration is usually avail-
able from camera data sheets and mechanical specifications,
most computer vision research does not assume any a priori
information about the camera calibration. Self-calibration
is commonly formulated as a multistage procedure: First, a
projective representation of the camera system is determined
in form of fundamental matrices [10] or trifocal tensors (e.g.,
[11]). Using this representation, it is possible to calculate a
projective reconstruction of the scene. Several possibilities
have been described to update this projective reconstruction to
a metric one: [12]–[14] used the Kruppa equations to compute
intrinsic camera parameters from the epipolar geometry of two
views. However, the Kruppa equations are nonlinear and known
to be degenerate in some cases [15]. Another direct method to
obtain a metric calibration involves the absolute quadric over
several views [16]. Alternatively, a stratified approach has been
presented, that computes affine structure from the projective
model and subsequently solves the self-calibration problem
by upgrading the affine structure to a metric one [17]. This
method was extended for the self-calibration of a stereo rig in
[18] and [19]; [20] investigated critical motion sequences for
autocalibration from multiple stereo image pairs.

The aforementioned multistage methods may yield camera
calibration without any prior knowledge of the cameras (except
for some minor restrictions on the intrinsic parameters as, e.g.,
zero skew). However, the attained accuracy is not comparable to
classic bundle adjustment. This is mostly due to the utilization
of algebraic optimization criteria for autocalibration. Algebraic
error criteria neglect available knowledge of observation noise
characteristics. In the presence of noisy input data, they pro-
vide inferior result as compared to geometric approaches mini-
mizing physically relevant error measures. Thus, bundle adjust-
ment is often used in a nonlinear post processing stage to refine
the camera parameters. Other nonlinear methods for refining an
initial guess of calibration binocular cameras are proposed in
[21] and [22]. They employ a Euclidean parametrization of the
fundamental matrices between pairs of images in the stereo se-
quence and use nonlinear optimization to find the camera pa-
rameters that satisfy the spatial epipolar constraints between
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left and right stereo images as well as temporal epipolar con-
straints between pairs of consecutive images. An important as-
pect of the work in [21] and [22] is that the nonlinear optimiza-
tion can be implemented as a recursive approach via an extended
Kalman filter. Since such an algorithm can—in theory—run in-
finitely and continuously integrate new information as soon as
it becomes available, we will refer to this class of approaches
as continuous self-calibration. Apart from Kalman filter based
methods for continuous self-calibration, other probabilistic al-
gorithms such as sequential importance sampling have been in-
vestigated in [23] and [24] for monocular cameras; [24] demon-
strates how to consider critical motion sequences in an algorithm
that recovers the focal length of a moving camera.

A natural extension to the usage of the epipolar constraint for
continuous self-calibration is to exploit the geometry of three
images as captured in the trilinearities (formulated in [25]). The
main advantage of the trilinear constraint over a set of epipolar
constraints between three images lies in the deficiency of the
epipolar transfer (e.g., [26]): given the fundamental matrices be-
tween three images and two corresponding points and in
the first two views, it is not possible to compute the position if
the corresponding object point lies on or near the plane defined
by the optical centers of the cameras. The trifocal transfer does
not suffer from this degeneracy. For a monocular camera, the tri-
linear constraint has been used to determine Euclidean camera
motion as an initialization step for subsequent self-calibration
in [27]. We are not aware of any continuous binocular self-cal-
ibration that relies on a Euclidean parametrization of the trilin-
earities.

Continuous self-calibration is especially important in active
vision when the camera calibration is constantly changing
and online self-calibration is thus indispensable: [28] employs
a variable state dimension filter (VSDF), an efficient imple-
mentation of an EKF, for the self-calibration of a monocular
active camera from purely rotational motions. A limitation of
the VSDF is that it does not allow any dynamics of system or
structure parameters. [4] proposed a stereo self-calibration for
an active stereo rig that updates the yaw angles of both cameras.
The algorithm relies solely on spatial point correspondences
between the left and right camera images. A modified version
of this approach has lately been implemented in real time
using FPGAs [29]. However, these algorithms depend on the
assumption that the rotation axes of the two cameras are pre-
cisely aligned and can only recover two calibration parameters,
namely the yaw angles of both cameras.

Our contribution belongs to the category of continuous self-
calibration algorithms. It extends an earlier conference paper
[30] and provides a consistent framework for recursive auto-
calibration that compares and combines different constraints in
Euclidean parametrization: Apart from the epipolar constraint
that was already utilized in [4] and [21], we also evaluate the
trilinear constraint and bundle adjustment with reduced dimen-
sion of the parameter state. To the best of our knowledge the
latter two constraints have not yet been used in a framework for
continuous stereo self-calibration as presented here. Our work
is inspired by structure from motion algorithms for monocular
cameras [31]–[33], that employ 2-D displacements in an image
sequence to retrieve the 3-D structure of a rigid scene.

III. CAMERA MODEL

A. Mathematical Formulation

Fig. 1 depicts our active camera platform consisting of three
independently moving cameras: two stereo camera with one
rotational degree of freedom (DOF), respectively, and a tele
camera with two DOF. Since the platform will serve as an ex-
perimental setup for stereo self-calibration in this article, we
will refrain from discussing the tele camera. For convenience,
an extrinsic camera model will be employed that is specifically
tailored to active stereo cameras. However, this is not a general
limitation as any other representation of the extrinsic camera pa-
rameters may also be used in our framework.

In this paper, the ideal pinhole model is employed to de-
scribe the stereo cameras. This model relates a 3-D point

and its 2-D image coordinates by the
following projective equation (see, e.g., [34]):

(1)

where is an unknown scalar factor. The projection matrix
of the ideal pinhole camera is defined as follows:

with (2)

The matrix comprises the intrinsic camera parameters, i.e.,
the focal lengths , the image center , and the
image skew coefficient . In the scope of this work, we will as-
sume that the pixels are square, i.e., and ,
which is true for almost any modern digital camera. The rota-
tion matrix and the vector specify the extrinsic camera pa-
rameters: describes the orientation of the camera coordinate
system with respect to the world reference frame and denotes
the position of the camera center in world coordinates.

For simplicity, we abbreviate perspective projection (1) of a
3-D point onto its image by . The inversion of the
pinhole projection will be denoted as . Please
note that depth component of is required for a unique re-
projection of .

Fig. 2 depicts the extrinsic parameters of our active camera
platform. In many stereo applications, the world coordinate
system (WCS) of the stereo rig is chosen to coincide with one of
the two camera coordinate systems. In active vision, however,
this is not an adequate choice since both cameras may change
their orientation with respect to the moving platform. We thus
define a WCS whose origin lies in the center of the baseline
and whose -axis is aligned with the baseline. To eliminate
the remaining DOF, we impose that the -axis of the WCS lies
within the plane spanned by the baseline and the optical axes
of the right camera. Thus, the pitch angle of the right camera
must be equal to zero.

Given the WCS as presented above, it is convenient to rep-
resent camera orientations as a concatenation of yaw-pitch-roll
rotations. A vector of yaw, pitch and roll angles
is transformed into a rotation matrix as follows:

(3)
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Fig. 2. Extrinsic parameters of active stereo rig. The world coordinate system
(WCS) is located in the middle of the baseline of the stereo cameras. Addition-
ally, we impose that the �-axis of the WCS is parallel to the plane defined by
the baseline and the optical axes of the right camera. � denotes the base length
of the stereo rig and the rotation matrices are specified in yaw, pitch and roll
angles.

where , , are rotations about the -, -, and -axis,
respectively.

Referring to variables of the left or right camera with sub-
scripts and , respectively, the projection matrices and

of the two cameras are defined through Fig. 2

(4)

(5)

with

(6)

(7)

The stereo camera system is thus fully described by six in-
trinsic parameters and six extrinsic parame-
ters: denote the orientation of the left camera with
respect to the WCS, specify the yaw and roll angles of
the right camera (the pitch angle is omitted since the WCS is
aligned with the optical axis of the right camera), and is the
base length of the stereo rig.

B. Sensitivity of 3-D Reconstruction to Erroneous Camera
Calibration

The objective of this section is to illustrate the effect of er-
roneous camera calibration on stereo reconstruction and to ana-
lyze the importance of the individual camera parameters for self-
calibration. This is not a trivial undertaking since a thorough
sensitivity analysis of 3-D reconstruction must not only consider
stereo triangulation but also the consequences for stereo corre-
spondence analysis. In practical applications, the search for cor-
responding points in both stereo images is usually restricted to
a 1-D search space: Given a point in the right image, we can
compute the so-called epipolar line in the left image which con-
tains all points that may correspond to . The computation of
this epipolar line depends on the intrinsic and extrinsic parame-
ters of the stereo rig (cf. Section IV-B). Thus, if camera calibra-
tion is inaccurate, the computed 1-D search may not contain the
corresponding point and stereo matching may fail completely.
Even for a search that is extended beyond the epipolar line, a pair
of “corresponding” points will most likely yield nonintersecting
associated light rays, necessitating a careful triangulation pro-
cedure (e.g., [35]).

A precise, stochastic analysis on how the accuracy of camera
calibration affects stereo reconstruction is presented in [36]. In
this work, each given point pair is first corrected to satisfy the
epipolar constraint and then used for stereo triangulation. The
camera parameter uncertainties are propagated through each of
these processing stages to assess the influence of calibration
errors. However, the obtained results are rather complex and
do not allow a straight-forward, illustrative sensitivity analysis.
Since our objective is to get more insight into the effect of er-
rors in the individual camera parameters and into the restric-
tions that apply to enable matching along epipolar lines, we will
follow a different approach. Other work on the sensitivity of
stereopsis to calibration inaccuracies is presented in [37] and
[38], however, with very strict constraints, such as purely ver-
tical misalignments or exactly coplanar optical axes. Recently,
an experimental framework was presented in [39] that deter-
mines the limits on relative camera alignment errors to allow
stereo matching and reconstruction.

For the sensitivity analysis, we assume a calibrated and rec-
tified stereo rig. Rectified or ideal stereo images can be thought
of as acquired by two cameras which have coplanar retinas and
optical axes that are perpendicular to the baseline. Image coor-
dinate systems in a rectified stereo system may further be chosen
such that the epipolar lines are parallel to the -axes, i.e., corre-
sponding pixels and in normalized image coordinates

(8)

fulfill

(9)

The (normalized) disparity of (9) is inversely proportional to
the depth of an observed object point (e.g., [40])

(10)

In case of rectified stereo images, the projection matrices sim-
plify to and . Using (1) and
(10), stereo reconstruction is easily obtained by

(11)
Erroneous camera parameters affect the quality of both the

rectification and the 3-D reconstruction. More precisely, the
image coordinates obtained with erroneous calibration
will differ from the coordinates that had been produced
with ideal calibration:

(12)

where and depend on the true image positions and
the erroneous calibration parameters. The vertical and hori-
zontal components of affect stereo vision in different
ways.

1) Vertical misalignment : Due to the calibration errors,
corresponding pixels may no longer lie in the same scan
line and most stereo matching algorithms may deteriorate
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since the search space may not contain corresponding re-
gions. Thus, in practical applications no correspondence
might be found at all, and, hence, the vertical misalignment

should be small.
2) Disparity error : The horizontal position errors induce a

perturbation of the stereo disparity
in normalized image coordinates and ,

in coordinates of the left and right camera,
respectively. Taking the derivative of (10) with respect to

, this disparity error results in a deviation from the
true range as follows:

(13)

Similar expressions hold for the unnormalized disparity
errors and . Thus, for given disparity errors
or in pixels or normalized coordinates, respectively, the
range uncertainty increases quadratically with distance.

For the further sensitivity analysis, we assume small perturba-
tions in the calibration parameters and restrict our consideration
to a first order approximation. Hence, for the effect of calibra-
tion errors to image coordinates we are left with

and (14)

in normalized coordinates and in pixels, respectively. The vector
comprises all camera parameters as defined in Section III-A.

The operation point denotes the nominal camera parameters.
For the compact results presented in this section, is given
by an stereo rig with parallel image planes. Given admissible
bounds on deviations in image coordinates due to calibration
inaccuracy, one can thus impose requirements on the accuracy
of the individual calibration parameters.

For example, let us first analyze the effect of a yaw error
in the orientation of the left camera. According to (5), the nor-
malized, erroneous image coordinates in the left stereo frame
can be computed as

(15)

where

(16)

is the rotation matrix due to the deviation in the calibration
of the left camera about the -axis. The dependency on 3-D co-
ordinates may be eliminated using (11) and subsequent solving
for the scale factor finally yields

(17)

Thus, we find that in vicinity of the principal point ( ,
) a small error in the yaw rotation yields a negligible

vertical misalignment but may result in a significant disparity
error (in normalized coordinates). For cameras

with large viewing angles it is worthwhile to consider the in-
crease of the disparity error with horizontal viewing angle, and
the increase of vertical misalignment towards the corners of the
image.

Using (13), the range uncertainty may be calculated as

(18)

i.e., the uncertainty in depth increases slowly and to both sides
with horizontal viewing angle, linearly with the yaw error, and
quadratically with the distance. It is easy to show that a yaw
error in the right image leads to exactly the same results.

Equation (14) may also be used to assess the impact of inaccu-
racies in the intrinsic camera parameters on image coordinates
and on 3-D reconstruction. Consider for example a perturbation

in the image center coordinates of the
left camera. The resulting image coordinates are given by

(19)
Together with (11), this yields

(20)

which is identical to the result that had been achieved from (2)
and (8). The vertical misalignments, disparity errors and range
uncertainties for perturbed image center and other camera pa-
rameters are listed in Table I (please note that the given results
are valid for calibration errors in both cameras). It is interesting
to note that the effect of an image center offset can be re-
garded as a superposition of a yaw and pitch error for small
viewing angles. This suggests, that adjusted yaw and pitch an-
gles of a stereo camera may—at least to a first order approxima-
tion—compensate erroneous image center coordinates. Conse-
quently, a self-calibration algorithm that recovers the extrinsic
parameters of the stereo rig may neglect the precise determi-
nation of the image centers. These analytical results coincide
well with the experimental findings reported in [21]. Another
important point is that the effect of orientation errors and errors
in the focal lengths on the range uncertainty increases lin-
early with the horizontal and vertical distance to the principal
point in the image. In other words, objects that are close to the
centers of the rectified images tend to be localized with higher
accuracy than objects at the image borders.

From the sensitivity analysis presented in this section, we
draw the conclusion that our stereo self-calibration algorithm
should recover the focal lengths , of both cameras as well
as the five extrinsic orientation parameters , , , ,
and . Both base length and principal points coordinates

are excluded from the autocalibration method. The latter
parameters are omitted because our analysis revealed a strong
correlation between effects of errors in image center coordinates
and errors in yaw and pitch angles. Since cameras are scale blind
(i.e., cannot distinguish whether an object is 10 m wide and at a
distance of 100 m or 1 m wide and at a distance of 10 m), the base
length may not be recovered from image data alone. Depending
on the application, additional information as, e.g., known object
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TABLE I
SENSITIVITY OF 3-D RECONSTRUCTION TO ERRONEOUS CAMERA CALIBRATION

lengths or given absolute velocities of the observer would be re-
quired to estimate . Such information has not been used in this
work. Furthermore, Table I indicates that base length errors may
not be too critical for some applications: First, reconstruction er-
rors scale linearly with and small base length tolerances are
feasible in the production line. Second, base length errors do not
induce vertical misalignments and thus do not affect the recon-
struction density of standard stereo matching.

IV. STEREO SELF-CALIBRATION

After modeling the stereo sensor and its parameters, the
first step in designing a self-calibration algorithm is the defini-
tion of observation models that relate system parameters and
(ideal) measurements. Different constraints can be exploited
to obtain these relations: our framework utilizes the geometry
of stereo image sequences (Section IV-A), stereo image pairs
(Section IV-B), and image triplets (Section IV-C). Based on
these constraints we derive different cost functions for stereo
calibration. These can be used individually but may as well
contribute to a combined optimization criterion. To achieve
higher accuracy, special care is taken to employ physically
relevant geometric instead of algebraic error functions.

Finally, a recursive optimization algorithm is designed that is
adequate for continuous stereo self-calibration (Section IV-D).
A mathematical derivation of this algorithm is given in the Ap-
pendix of this paper. Robustness is an important issue in prac-
tical self-calibration since occasional gross errors in the input

data are commonly encountered due to, e.g., occlusions or repet-
itive patterns in the images.

A. Reduced Order Bundle Adjustment

To illustrate bundle adjustment, let us first consider a set of
object points , . We assume that these points are
moving rigidly through space, i.e., obey a simple 3-D motion
model , where the vectors

and define the camera’s 3-D rotation and translation
at time . The projections of these object points into the left
and right images are denoted , respectively, and we
are given noisy measurements ,

. The positions errors and
are assumed to be zero-mean and to have covariances
and , respectively.

The objective of bundle adjustment is to find the 3-D struc-
ture , the object motion , and the camera parameters

such that the distance between the ideal pro-
jections and the measured coordinates is
minimal over all frames of a sequence. Bundle adjustment
has been widely used in photogrammetry and as a refinement
step for off-line camera calibration since it can provide highly
accurate results. However, it has several shortcomings: First, it
requires an initial guess of the parameters with sufficient quality
to guarantee convergence to the global optimum. Second, it is
usually implemented as a batch approach that requires that all
input data is given at once. Third, the parameter space is high
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dimensional since each tracked point introduces three addi-
tional DOF, resulting in difficult and time consuming optimiza-
tion procedures. As stated earlier, we assume that a sufficient
initial guess is available and cover only the latter problems. A
recursive parameter estimation method will be used (cf. Sec-
tion IV-D), so that all data will be processed as soon as it ar-
rives. To reduce the state dimension, we decompose each
into its projection onto the right image and its depth :
cannot be recovered directly and is thus included in the param-
eter vector, whereas is treated as a (directly accessible) ob-
servation in the measurement constraint as will be shown later.
Thus, in our formulation each tracked point introduces only one
DOF and the dimension of the state vector is reduced signifi-
cantly.

Assuming we are given the true image position and
the true depth of a tracked point, we can reconstruct
via inverse pinhole projection

(21)

Using , we are able to predict image positions
and

(22)

Thus, for each time instant , (21) and (22) constitute an implicit
constraint between the ideal measurements and the parameter
vector

(23)

Now assume that we are measuring—over the whole image se-
quence—the temporal displacement of the tracked object point

between two consecutive frames of the right camera as well
as the spatial displacement between the object point’s coordi-
nates in the right and left image. In other words, we are contin-
uously observing noisy image positions ,
and . Given these measurements, the objective of our
self-calibration is to minimize at each the pixel error1

(24)

subject to a constraint between camera parameters and ideal
image positions

(25)

evaluated for all features . Implicit measurement con-
straints as given by (24) and (25) are related to Gauss–Helmert

1������ denotes the normalized squared distance ������ � ������,
where � is the covariance matrix representing our uncertainty in the measure-
ment ��.

Fig. 3. Epipolar constraint. The optical rays of both images image points
� �� have to lie within the same plane.

models (e.g., [41]). We wish to emphasize that (24) minimizes a
physically relevant geometric error corresponding to pixel dis-
tances in the image. In addition, the dimension of the parameter
vector in our optimization problem is
(where is the number of tracked points and is the number
of stereo image pairs), while standard bundle adjustment ex-
tended to parameter drift would require
elements.

B. Epipolar Constraint

The epipolar constraint has been known in photogrammetry
since the beginning of the 20th century [42] and was introduced
to the computer vision community by [43]. It constitutes an ele-
mentary relation between two stereo images: Consider two cam-
eras viewing the same scene from different positions and a pair
of corresponding points and within those images as de-
picted in Fig. 3. Geometrically, it is clear that the optical centers
of both cameras and the image points and all lie in the
same plane. Mathematically, this relation is expressed via the
fundamental matrix (cf. [44])

(26)

where

(27)

and denotes the skew-symmetric matrix operator, i.e.,

(28)

Please note that the epipolar constraint (26) does not involve
the 3-D position of the observed object point, i.e., the epipolar
constraint decouples the extrinsic camera parameters from the
3-D structure of the observed scene.

Given noisy image positions and
, our objective is to find the camera param-

eters that minimize the sum of squared pixel
errors

(29)
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subject to the epipolar constraint (26) abbreviated by

(30)

Each point correspondence yields one constraint equation.
However, as is also clear from Fig. 3, the epipolar constraint
constitutes only a necessary condition for corresponding image
points: each pair of corresponding points must fulfill the
epipolar constraint, but not all points that satisfy (26) may be
images of a single object point. Thus, the epipolar constraint
neglects matching errors along the epipolar line.

Although the epipolar constraint has some theoretical dis-
advantages compared to bundle adjustment since it does not
provide as much information and cannot achieve the same level
of accuracy, it still provides some practical benefits: First, the
parameter space for self-calibration is much smaller. Since
the epipolar constraint decouples camera parameters from 3-D
structure, the cost function (29) only depends on the parameters

and , while (24) additionally requires one depth for each
observed point and the motion of the camera. The lower dimen-
sion of the parameter space simplifies the optimization problem
and reduces the computational effort significantly. Second, the
epipolar constraint does not require temporal feature matching
between consecutive image frames. Since all information is
gathered instantaneously, the epipolar constraint will still hold
in the presence of independently moving objects in the scene.

C. Trilinear Constraints

The geometric relation between coordinates of corresponding
points in three images is captured by the trilinear constraints
[25]. As in the epipolar constraint described in the previous sec-
tion, the trilinearities decouple scene structure from camera cal-
ibration since they do not require the 3-D position of the ob-
served point explicitly. They provide a sufficient condition for
three image coordinates to correspond to the same object point
without the deficiency of a set of epipolar constraints (cf. Sec-
tion II). For more details on the trilinear constraint, the reader is
referred to [34] and [41].

Consider a triplet of corresponding image points
in the current right, left and

subsequent right camera frame, respectively. For brevity,
we denote these image positions by and their
associated projection matrices are given by

(31)

(32)

(33)

where describes the 3-D motion of the stereo
rig.

The geometry of three cameras can be captured elegantly by
the trifocal tensor [45]. The trifocal tensor has 27 elements,
but at most 18DOF are required to fully specify the camera
configuration. In this contribution, we employ a Euclidean
parametrization of the trifocal tensor that has even less DOF
since we assume that the intrinsic parameters do not change be-
tween two stereo frames and we neglect image skew and aspect

Fig. 4. Geometric interpretation of the trilinear constraints in (37). The 3-D
point � is reconstructed as the intersection of the optical ray associated with
� and the plane containing � and the line � , where � is parallel to the
�-axis of the camera coordinate system and passes through� . The two trilinear
constraints used in this paper state that � should lie in the two planes defined
by the optical center � and the horizontal line � and the vertical line � ,
respectively.

ratio. The trifocal tensor is computed from the projection
matrices as

(34)

and refer to the th and th row of the matrices and ,
respectively. is the matrix without the th row.

The trifocal tensor allows the formulation of constraints be-
tween point triplets that are multilinear in the elements of the
trifocal tensor and in the image coordinates

(35)

The linearity is of course not pertained if a Euclidean
parametrization in intrinsic and extrinsic camera parame-
ters is used. However, the experiments in [11], [27] suggest that
the integration of nonlinear restrictions between the calibration
parameters improves the achievable accuracy of the camera
calibration (given an initial guess with sufficient quality for
nonlinear optimization). Equation (35) actually yields nine
constraints for the possible choices of . Four of
these constraints are linearly independent [25], but as shown
in [41], the trilinearities impose only three constraints on the
geometry of the image triplet if a minimal parametrization is
used. An optimal choice of the constraints is non trivial, in
fact the selection of the constraints should be adapted to the
current motion of the stereo and the position of the observed
3-D point. This has not yet been implemented in our work.
Instead, we found that for our stereo rig with fixed base length,
a combination of two trilinear constraints (1,1), (1,2)
and the epipolar constraint between the left and right stereo
frame gives adequate results. A geometric interpretation of
these two trilinear constraints based on [46] is given in Fig. 4. It
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is obvious from this illustration that the transfer problem using
the chosen set of constraints is only degenerate if the the point

lies on the line containing the optical centers and . This
configuration, however, is irrelevant for typical stereo vision
applications.

Using the selected constraints and given a set of corre-
sponding point triplets in three images, our self-calibration al-
gorithm has to minimize the cost function

(36)

subject to the constraint

(37)

for all .

D. Recursive Optimization

Three different geometric constraints for stereo self-calibra-
tion have been discussed in the preceding sections and formu-
lated in a common Gauss–Helmert type model. In the Appendix
of this paper, we derive a recursive algorithm for such models.
The algorithm is an adaptation of an Iterated Extended Kalman
Filter (IEKF) and can readily be applied for our continuous
self-calibration. It is important to note that the proposed algor-
tihm differs from standard IEKF methods since it recovers not
only the camera parameters but also corrected measurements.
These corrected observations can be considered nuissance states
which are required for subsequent relinearization of the non-
linear implicit constraint functions. The state vector deter-
mined by our algorithm comprises the depths of all tracked
bundle adjustment features in the set , object motion, and
camera parameters

(38)

While the measurement equations of the filter are given by
(24), (25), (29), (30), (36), and (37), we still need to define the
system model that governs the dynamics of our state vector. For
simplicity, we assume that the camera is moving with a constant
velocity model pertubated by Gaussian white noise, i.e.,

(39)

If additional information is available (such as, e.g., commanded
steering angles and accelerations or more precise vehicle mo-
tion models), it should be incorporated at this point. However,
we found that the simple motion model already provides good
results in our experiments. The depths then evolve as

(40)

with . The dynamics of the ex-
trinsic camera parameters are assumed to be governed by

(41)
where denote the commanded yaw angles of the right
and left stereo camera, respectively. specifies the system
noise associated with the extrinsic camera parameters. Simi-
larly, constant focal lengths are assumed with additive Gaussian
white noise

(42)

If no command signals are sent to the active stereo rig, the stan-
dard deviations of the noise components are set to
small values to account for linearization errors. If
new gaze directions are commanded, the standard deviations
of are temporarily increased to 1 to make up for me-
chanical inaccuracies. Equations (39)–(42) represent our knowl-
edge of the stereo rig and its motion. The system model enforces
smoothness of the estimated camera parameters over time, es-
pecially in configurations when certain camera parameters are
difficult to observe (e.g., when all acquired feature points have
approximately the same depth).

Feature points for recursive bundle adjustment, epipolar con-
straint, and trilinear constraints are acquired using Lowe’s SIFT
feature detector [47]. In addition, the search region used for fea-
ture matching is predicted using the current filter state and its
uncertainty. We also experimented with a corner finder as de-
scribed in [48] and correlation based matching with subsequent
accuracy evaluation as presented in [49]. However, we found
that SIFT gave better self-calibration results for our active stereo
rig with horizontal gaze directions ranging from to 25 .

As indicated earlier, robustness is an essential property of
our self-calibration algorithm since feature matching is prone
to occasional gross errors due to periodic patterns or occlu-
sions. Additionally, there may be independently moving objects
in the scene that violate the rigidity assumption required for the
trilinear constraints and bundle adjustment. We have thus em-
ployed a Least Median of Squares random sampling scheme in
the innovation stage of our algorithm as proposed in [50] (cf.
Appendix). This method eliminates outliers in the input data and
reduces the sensitivity of our algorithm to model violations.

V. EXPERIMENTAL EVALUATION

A. Synthetic Data

The objective of our synthetic data experiments was to eval-
uate and compare the performance of the different self-calibra-
tion constraints described in the previous sections. We randomly
generated synthetic stereo sequences of a moving point cloud
with 40 points. Each sequence was 50 stereo frames long and
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Fig. 5. Comparison of self-calibration results on various noise levels. The plot
shows the mean 3-D reconstruction error obtained with the different self-calibra-
tion constraints: a: using the epipolar constraint, b: using the trilinear constraint,
and c: using reduced order bundle adjustment.

Gaussian white noise was added to the image coordinates of all
points in both images. The initial guess for the stereo calibration
deviated 2 in each component from the true extrinsic parame-
ters and differed by 10% from the true focal lengths.

To assess the self-calibration results after each simulation
run, we compute the mean relative 3-D reconstruction error of
all points in the last frame of the sequence. Given the true,
noise-free image coordinates and in both images and the
estimated camera parameters, we can determine the 3-D posi-
tion of the corresponding object point using Hartley’s trian-
gulation method [35]. The relative 3-D reconstruction error is
then computed as

(43)

where denotes the true 3-D position.
Fig. 5 depicts the results of the proposed algorithm. The

standard deviations of the pixel error varied from 0 to 1 pixels
and 50 independent simulations were run on each noise level.
We compared three different versions of the algorithm: a)
using only the epipolar constraint, b) using only the trilinear
constraint, and c) using reduced order bundle adjustment only.
As indicated above, bundle adjustment is the most complex
method since it involves the largest parameter space of all three
methods and requires temporal, as well as spatial correspon-
dences. However, it gives the most accurate results (reduced
order bundle adjustment outperforms the trilinear constraint by
a factor of three; compared to the epipolar constraint, reduction
of the mean 3-D reconstruction error is one order of magni-
tude). Still, the epipolar constraint has advantages in practical
application: Since it does not require any restrictions like
rigidity on the observed scene, it is unaffected by independently
moving objects. Furthermore, it yields calibration parameters
instantaneously after processing of a single stereo image pair.
In the real imagery examples presented in the next section,
we thus employ the epipolar constraint in combination with
bundle adjustment to expedite and stabilize the self-calibration
process.

Fig. 6. Sample stereo frame of the indoor sequence. Stereo correspondences
obtained with the SIFT key point detector are marked with “�”. The sequence
consisted of 305 stereo frames and both cameras were rotated about roughly 20
to the right after 199 frames.

B. Natural Imagery

Our algorithm was also evaluated on a variety of real imagery
sequences. Here we describe two representative examples in in-
door and outdoor environments. All stereo images have been
acquired with an active stereo rig as described in Section III. In
both examples, the intrinsic camera parameters were constant
while the extrinsic parameters haven been varied throughout the
sequences. Radial and tangential distortion effects have been re-
moved prior to our calibration tracking algorithm.

The first sequence was recorded by a mobile platform trav-
eling through a laboratory environment (Fig. 6). To obtain a
reference calibration, we determined the camera parameters at
the beginning of the sequence with Bouguet’s excellent off-line
camera calibration toolbox.2 However, we used a manual ini-
tial guess for the calibration parameters that differed from the
reference calibration ( in camera orientation and 10% in
the focal lengths) to start our self-calibration algorithm. The se-
quence was 305 frames long and included a change in the gaze
direction after 199 frames. The self-calibration algorithm com-
bined reduced order bundle adjustment and the epipolar con-
straint, where at most 50 points were tracked over time and no
more than 20 points constituted the epipolar constraint. Fig. 7
depicts the results of our algorithm.

To assess the performance of our algorithm, we used the mean
of the relative 3-D reconstruction error (43) for the stereo fea-
tures in Fig. 6. The off-line calibration results were used to gen-
erate a ground truth for the 3-D positions. This ground truth was
compared to the triangulation obtained with the self-calibration
parameters after 100 frames. Table II summarizes the self-cal-
ibration results. Using the manual guess for the stereo calibra-
tion, only 63 of the 91 stereo features yielded a position in front
of the cameras. However, these 63 positions still had a mean 3-D
reconstruction error of approximately 50%. After 100 frames,
all features could be reconstructed and the results are compa-
rable to off-line calibration.

The stereo self-calibration was also tested in an outdoor
scenario with our experimental vehicle. Fig. 9 shows sample
frames of a sequence with extracted correspondence features.
We have chosen a version of our algorithm combining at most
30 tracking features in bundle adjustment and 30 stereo features
in the epipolar constraint. The vehicle was first driving straight
for about 40 frames and then made a left turn. This is also

2http://www.vision.caltech.edu/bouguetj/calib_doc.
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Fig. 7. Extracted ego motion �������, extrinsic camera orientations ���� ���� �
and focal lengths �� � � � for indoor sequence (Fig. 6). The camera rotations
are tracked accurately.

Fig. 8. Three-dimensional reconstruction of the stereo features from Fig. 6. “.”
indicates reconstructed 3-D positions using camera parameters obtained with
Bouguet’s offline calibration. “�” marks the reconstruction results using the
self-calibration parameters obtained after 100 frames.

TABLE II
COMPARISON OF 3-D RECONSTRUCTION RESULTS

clearly shown in the estimated motion parameters and
(Fig. 10). The cameras were rotated twice in the sequence:
first about 15 to the left before starting the turn at frame 38,
second about after completing the turn (frame 168). Both

Fig. 9. Second and third stereo frame of sample sequence. The automatically
selected features are also shown: �: successfully tracked features, �: stereo
features for epipolar constraint, �: invalid tracking features. The predicted po-
sitions of the tracked features are marked by their covariance ellipses.

Fig. 10. Extracted 6d ego motion (rotation and translation) and camera param-
eters for the sequence depicted in Fig. 9. The cameras were rotated twice: 15 to
the left before starting the turn (frame 38) and then 15 to the right after leaving
the curve in frame 162.

changes in the gaze direction are captured by the self-calibra-
tion.

For a quality analysis of the calibration tracking in the out-
door example, we used the self-calibration results in a standard
stereo vision process: Stereo reconstruction was obtained by
first rectifying the images with the estimated camera parameters
(using the method proposed in [51]), so that all corresponding
pixels in both rectified frames should have the same -coordi-
nate. Then, correlation based matching as described in [52] was
performed. Please note that we fully relied on stereo rectification
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Fig. 11. Stereo reconstruction results obtained with the stereo calibration
from Fig. 10. (a) Initial guess of the camera parameters at frame 0. Note that
no offline stereo calibration was employed, the initial calibration parame-
ters are just manually set and do not allow meaningful 3-D reconstruction.
(b) Reconstruction at frame 30. (c) Reconstruction after first camera rotation
(frame 40). (d) Reconstruction after second camera rotation (frame 180).

and used only a 1-D search region for stereo matching, so that er-
roneous camera parameters greatly influence the matching per-
formance.

The top row of Fig. 11 displays the stereo reconstruction re-
sults using the initial stereo parameters. As the initial parameter
setting was just a manual guess of the camera calibration, stereo
reconstruction was not possible here. At frame 30—before ro-
tating the cameras to the left—, the self-calibration has con-
verged to camera parameters and allows reliable stereopsis. The
estimated stereo calibration even remains valid after the camera
rotations in frames 38 and 168, respectively, and gives satisfying
results over the whole sequence.

VI. CONCLUSION

This article proposes a novel algorithm for continuous self-
calibration of stereo cameras based on geometric error criteria. It
relies on a consistent derivation of a robust, recursive optimiza-
tion scheme for Gauss–Helmert models. The algorithm allows
combining different geometric constraints (i.e., epipolar con-
straints for stereo images, trilinear constraints for image triplets

and collinearity constraints in reduced order bundle adjustment)
in a common framework.

Examples on synthetic and real imagery demonstrate the
effectiveness and advantages of our algorithm: Our iterative
method has proven the ability to refine an initial guess of the
camera parameters as well as to continuously track drift in
the stereo calibration parameters. The combination of bundle
adjustment and epipolar constraint features sets ensures both
high accuracy as well as robustness against independently
moving objects that are often encountered in real imagery. It
was shown that our algorithm can provide reliable results that
allow stereo reconstruction with relative 3-D errors of less than
5% as compared to offline calibration.

Another contribution of this work is a thorough sensitivity
analysis of 3-D stereo reconstruction to errors in the camera cal-
ibration parameters. This analysis allows to quantify the impor-
tance of the individual camera parameters for stereo self-cali-
bration and to compute tolerance limits for camera calibration
that guarantee desired 3-D reconstruction accuracy. The anal-
ysis reveals correlations between the effects of calibration error
on stereo reconstruction and helps to decide which parameters
should be considered for online self-calibration.

Future work beyond the scope of this article includes the auto-
calibration of lens distortion parameters. The reliable estimation
of these parameters is a necessary step to replace costly offline
calibration by online self-calibration. Additionally, open issues
arise from the sensitivity analysis presented in Section V. First,
the correlation between the effects of several camera parame-
ters on 3-D reconstruction errors gives rise to the question for
“optimal” camera parameterisations for stereo self-calibration.
Another interesting subject is to evaluate the influence of feature
points with various positions or various motions on 3-D recon-
struction accuracy. This topic is closely related to critical mo-
tion sequences. It may help to automatically identify input data
points with highest information gain in the current situation and
to decide online whether or not to update certain parameters in
a given scenario.

APPENDIX

ROBUST ITERATED EXTENDED KALMAN FILTER WITH IMPLICIT

MEASUREMENT CONSTRAINT

Our optimization problem is fully specified by a nonlinear
system equation and an implicit measurement constraint equa-
tion: The state vector evolves according to a stochastic dif-
ference equation

(44)

where the initial state is given by , is the non-
linear transition function and is the control vector. In our
case, both noise components and are modeled as re-
alizations of independent Gaussian random variables with co-
variance matrices and , respectively. We are also
given noisy observations

(45)
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where again represents Gaussian white noise with covari-
ance , and the ideal observations need to satisfy a
nonlinear implicit constraint

(46)

For self-calibration, we seek to minimize the sum of normalized
squared observation errors . This optimization problem can be
solved recursively by an adaptation of a robust iterated extended
Kalman filter (IEKF) for implicit measurement constraints. The
IEKF alternates between three different stages—prediction, ro-
bust innovation, and relinearization of the measurement con-
straint—to determine an optimal state estimate and its associ-
ated covariance matrix .

Prediction: Let denote the a posteriori state estimate
at time (i.e., our best estimate of the system parameters given
all previous information) and the corresponding covari-
ance. Given and , we can predict the a priori state
vector and its covariance matrix in the
next time step using the standard formulas of an extended
Kalman filter (e.g., [53] and [54])

(47)

(48)

where and .
Robust Innovation: After completing the prediction step, we

incorporate the current measurement to compute both the
a posteriori state estimate and , the best estimate
of the ideal observation vector . This is achieved by mini-
mizing (for brevity, the time index is omitted in the following
paragraphs)

(49)

subject to the nonlinear constraint in (46).
To solve this optimization problem, we first linearize (46)

about an operation point that corresponds to
our best available guess of the true parameters. We obtain

(50)

where , and
. Using Lagrangian multi-

pliers, we then have to find the extremum of the cost function

(51)

Taking the derivatives of with respect to the corrected mea-
surement , the corrected state vector , and the Lagrangian
multiplier , we get after some algebra

(52)

(53)

(54)

Substituting (52) and (53) in (54) yields

(55)

For simplicity, we define a transformed observation vector

(56)

and obtain from (55)

(57)

Please note that in our application, the matrices , , and
have full rank and thus the inverse in (57) exists. Combining

(52), (53), (57), and we have derived the formulas for computing
our corrected observations and state parameters

(58)

(59)

(60)

(61)

From (59), it is straightforward to determine the covariance ma-
trix of the updated state estimate

(62)

Please note that (59)–(62) are equivalent to the standard
Kalman filter innovation equations for a transformed obser-
vation model with measurement vector and correspond to
the minimization of a normalized Sampson error [55]. Similar
results (yet with different derivation) have been presented in
[56], [57]. The main difference to our algorithm, however, is the
correction of the observation vector in (58). Our best estimate

of the ideal image positions can be considered a nuisance
state vector: is irrelevant for subsequent stereo rectification
and 3-D reconstruction. However, both and define a
new operation point for subsequent relinearization (see next
section). Sparse matrix operations can be used to implement
(58)–(62) efficiently.

Several possibilities exist to make this optimization algorithm
robust against gross outliers in the input data: First, one could
check the (cumulated) -distribution of the residuals associ-
ated with each measurement as proposed in [58]. Thus, iden-
tified outliers could be excluded from the relinearization and
further tracking process. Second, random sampling as described
in [50] could be employed in the filter innovation stage: sub-
sets of all given input features are randomly selected and used
in (59)–(62). The best subset is the one with the least median
residual error of all correspondence features. Subsequently, a
state update is computed based on all features that are consis-
tent with this best subset. The second method was used for the
examples in Section V.

Relinearization: The iterated extended Kalman filter (IEKF)
is a common approach to improve the a posteriori state esti-
mates in case of nonlinear observation models. The IEKF uti-
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lizes of (59) as a new operation point for an additional lin-
earization of the model equation and iteratively refines the pa-
rameter state vector. However, since our cost function is min-
imized with respect to both optimal state parameters and op-
timal observations, the nonlinear constraint (46) should be re-
linearized about instead of .

The IEKF for implicit measurement constraints can be for-
mulated directly following, e.g., [54]. The resulting filter equa-
tions are stated here for completeness: The nonlinear constraint
equation is first linearized about our best available guess for
the state vector and the ideal measurements, i.e.,

. Then, for , where denotes the number
of iterations in each time step, compute

(62)

(64)

(65)

(66)

(67)

The final a posteriori state vector and its covariance matrix are
given by

(68)

Equations (63)–(67) may be iterated until the difference
between two refined state estimates falls below a predefined
threshold or a fixed number of iterations is reached. Based on
our experiments in [59], we found that more than 60% of the
improvement by iterated innovation steps is already obtained
after one additional linearization. After the fourth lineariza-
tion, the accuracy of the estimation results does not change
significantly. We have thus chosen for the experiments
presented in this paper.
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