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Abstract— Environment perception is an important task in
computer vision for many applications in robotics. Especially
for robots navigating through different levels of a building,
stair detection constitutes an important perception task. In this
paper, we propose a stair detection algorithm using range data.
Firstly, we introduce a parameter, which describes local surface
orientations w.r.t. a global reference. Secondly, a matched
filter is used to detect relevant edges in the orientation data.
Afterwards, line segments are determined using these edge
data which are further used to estimate stairs. The proposed
method is invariant against rotations of the sensor. We show
that the system can handle typical outdoor stair types and
outperforms the accuracy of state-of-the-art stair detection
methods. Moreover, the method is used in real time to assist
visually impaired people who wear the camera system on a
helmet.

I. INTRODUCTION

In recent years, 3d vision sensors are used in surface
reconstruction [13], object detection [12], gesture recognition
[21] and many other fields in robotics. The substantial
progress made in the field of environment perception is
widely applied to autonomously navigating robots and safety
assistance systems for automobiles.

Presently, these advancements have received more in-
terest in assistance systems for visually impaired people
[1]. Blind people usually rely on feedback from a white
cane, navigating very cautiously in environments that are
unknown or in which steps and stairs occur. Especially in
these situations, it is helpful for the visually impaired to
provide additional information of the surrounding. Curbs and
stairs represent hazardous situations in everyday indoor and
outdoor environments.

In this paper, we present a detection system for ascending
stairs to provide additional information for the visually
impaired, e.g. the location and orientation of stairs and the
dimensions of the steps. The main contribution of this paper
is a rotational invariant 3d edge detection method, which
is determined by a parameter, that considers local surface
orientations w.r.t. a global height axis. Moreover, we present
a stair model, which allows the detection of multiple steps
and stairs from temporally tracked 3d line segments. The
results demonstrate the accuracy of the proposed approach
compared to other state of the art stair detection systems.
The presented work is evaluated on a real-time capable
system, that combines a stereo camera rig and an inertial
measurement unit (IMU) which are mounted on a helmet.
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Fig. 1: Reconstructed 3d point cloud of a typical outdoor
stair scene. The line segments of the first step are marked as
concave (green) and convex (red).

This paper is structured as follows: Section II gives a brief
overview of state of the art stair detection research. Section
III introduces the novel stair detection method, describing
all relevant processing steps in detail. In section IV the
used hardware is specified. The experimental results of the
introduced method are presented in section V. We close this
paper with conclusions and an outlook.

II. RELATED WORK

Detection of staircases has been focus of research in the
last decades, especially in the field of mobile robotics and
the assistance of visually impaired people. In this section, we
will give a brief overview of state of the art stair detection
methods. So far, two main approaches were proposed for stair
modeling: plane and line extraction based methods. Line-
based stair detection methods firstly detect convex and/or
concave stair line segments to fit these line segments to a
stair model afterwards (see fig. 1), whereas plane-extraction
based methods consider stairs to be detected as a sequence of
planar and vertical plane segments. Previously used sensor
hardware varies from monocular cameras to 3d sensors like
stereoscopic and RGB-D cameras or lidars.

Plane extraction based methods are commonly used with
range sensors. Oehler et al. [16] group surface elements with
similar aligned normals (surfels) from an RGB-D camera.
The scene is further segmented by estimating planes into
connected surfels. Pradeep et al. [19] compute point-wise
surface normals from stereo camera data. Afterwards, tensor
voting is used to calculate globally consistent normals and
clustering is performed to fit planes onto the 3d point cloud.
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Fig. 2: Topview of the prototype hardware setup. The stereo
camera rig is front directed (left in the image), the IMU is
integrated in the helmet.

Osswald et al. [17] extract planes for steps and risers from
3d point clouds, which is assembled by tilting a 2d lidar
mounted on a robot’s head. Recently, Yus et al. [20] have
proposed a method for RGB-D cameras which uses region
growing on 3d point clouds, taking normal orientation and
curvature information into account.

Line-based stair detection approaches usually extract
edges from a monocular camera which are clustered in
groups of concurrent line segments. The variation of intensi-
ties is used to differentiate between convex and concave line
segments. Obviously, challenges are expected if shadows in
the scene produce false detections or intensity gradients are
low due to difficult lighting conditions.

A texture detection method based on Gabor filters was
proposed by Se and Brady [22] using a monocular camera.
Concave and convex line segments are distinguished by the
variation of intensity. A combination of Gabor filters and
fuzzy fusion phase grouping was presented by Zhong et al.
[24]. Delmerico et al. [3] use an RGB-D camera to extract
stair edges from depth images, fuse the edge observations
and estimate a stair model. Approaches using a gray value
image and additional 3d information (e.g. from a stereo
camera rig or RGB-D setup) take depth steps in the 3d-
point cloud into account to distinguish convex from concave
line segments. A commonly used method for line detection
is the Hough transform (HT) [6]. Lately, the authors of [14]
combined the depth discontinuities with an edge detection
from a single gray value image. This information is fused by
a weighted HT which classifies the edge segments as concave
or convex. Stereo artifacts proved to be the main challenge
in this approach and could only partially be compensated by
additional heuristics. Approaches using texture information
rely on the existence of intensity gradients, which are not
always present and are therefore another disadvantage.

Even though there is a huge diversity of different line-
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Fig. 3: Processing pipeline used in this paper.

based stair detection approaches, there is no approach to
our best knowledge, that uses range information without
texture information to estimate convex and concave line
segments directly. Such an approach has the advantage to be
portable to any other range sensor. In addition, drawbacks
of approaches using texture information can be overcome,
e.g. false positive detections from misleading shadows edges
or missed detections in image regions with low intensity
gradients due to difficult lighting conditions. Our approach
meets the challenge of line detection from depth data and is
introduced in the next section.

III. STAIR DETECTION

This section introduces the line-based stair detection algo-
rithm step by step, following the processing pipeline (see fig.
3). Our goal is to describe a stair as a set of steps, whereas
each step consists of a pair of a convex and a concave line
segment, see fig. 1. We estimate concave and convex line
segments from depth data directly (i.e. from dense disparity
maps), track these line segments over time and fit a stair
model into the tracked line segments.

The used sensors in this work are a stereo camera system
and an IMU, which are both calibrated intrinsically and
extrinsically. Both sensors are mounted on a helmet (see fig.
2). Further information regarding the sensor hardware can be
found in section IV. The two sensors are triggered, so that a
pair of rectified gray value images and a global orientation
of the helmet is delivered for every processing step. A state-
of-the-art stereo matcher with sub-pixel accuracy is used to
compute a dense disparity image [9] [7]. The dense disparity
image is the input for the following processing steps.
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Fig. 4: From orientation image Iδ to correlation costs C1 and
C2

A. Surface Orientation

In a first step, we compute the surface normals in the sen-
sor domain, as suggested by Badino et al. [2]. The pixel-wise
estimated normals ndisp in disparity space are transformed
to world space nworld, as explained in [8]. A parameter
is determined for each pixel position, which describes the
deviation angle δ between the local surface normal nworld
and a global height axis hworld in world coordinates. The
deviation angle δ is defined as

δ = arccos
hworld · n̂world

‖hworld‖‖n̂world‖
. (1)

Note that δ is the dihedral angle, so that δ ∈ [0◦,90◦].
The global height axis hworld can be determined from an
independent measurement of an IMU (acceleration and mag-
netic sensors) or estimated by tracking the ground plane
normal vector over time. The parameter δ is invariant against
rotations of the camera system because of the chosen global
height axis reference. The output image Iδ contains the
deviation angles δ for each pixel position (u,v), see fig. 4a.
For further processing steps, Iδ is normalized (Iδ ∈ [0,1]).

B. Correlation Costs

The next processing step generates two cost images from
Iδ , that are later used to extract concave and convex line
segments. Both cost images consist of pixel-wise cost values,
which describe a transition from flat to vertical surfaces (C1)
and vice versa (C2). In the following, the cost images are
abbreviated by C j, j ∈ {1,2}. The measurements C j use
correlation operations on Iδ . The correlation masks p j (see
fig. 4b) are applied on Iδ and can be expressed by the
following column-wise correlation functions

(a) Binary mask Ibin1 from C1
for concave edges

(b) Binary mask Ibin2 from C2
for convex edges

(c) One segment of binary mask (ROI)

(d) Multiplication of binary mask segment with cost image. Black
indicates high costs, white low costs.

(e) Red points stand for minimum points, green line segments are
estimated by iterative end point fit method

Fig. 5: Line segment estimation

C1(u,v) = 1− 1
sp
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v
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)
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C2(u,v) = 1− 1
sp

(
v+sp

∑
i=v

Iδ (u, i)−
v

∑
i=v−sp

Iδ (u, i)

)
(3)

The parameter sp in pixels is defined by the discrete pixel
height estimated for each 3d point in world coordinates
assuming a certain height hm in meters (e.g. hm = 0.2 meters)

sp(d) =
d hm

b
, (4)

where d represents the current disparity value at pixel
position (u,v) and b the baseline in meters. The larger the
scene depth, the smaller gets sp. The correlation functions
work similarly to a matched filter, see [15] for further details.
The two output images C j provide pixel-wise values, which
describe the membership to a transition from flat to vertical
surfaces and respectively. See fig. 4 for an example of C j.
The color green corresponds to low costs (i.e. the pattern
fits), while red corresponds to high costs (i.e. the pattern
does not fit).



C. 3d Edge Detection

This step provides relevant areas of C j, which are used to
estimate line segments. Both histograms hC j of the cost im-
ages C j reveal a characteristic bimodal distribution of values.
To achieve a differentiation of the maximum distributions
for varying highpeaks, we maximize the intra-variance σw
of hC j as proposed by Otsu et al. [18] and determine a
binary image for each C j. Connected regions in the binary
image are clustered using a border following algorithm [23].
Assuming a minimum size Se for relevant stair edge regions,
two binary masks Ibin j are extracted, which contain the region
of interests (ROIs) for further stair edge estimation, see fig.
5a and 5b.

During the next step, line segments are estimated in the
previously extracted ROIs. Each binary ROI is multiplicated
with the appropriate cost image C j, see fig. 5d. For each
resulting ROI, the shortest path (e.g. by using a Dijkstra
graph solver [4]) describes the global optimal solution in C j.
Unfortunately, calculating a shortest path is computationally
expensive and requires a predefined start and end point,
which are not known because the ROI can be orientated
arbitrarily. We approximate such a shortest path by rotating
each ROI in the image plane, so that the principal component
of each ROI is aligned with the image u-axis. Afterwards
the column-wise minima are determined, as can be seen
in fig. 5e. A direct solution to obtain stair line segments
would be the estimation of a line for each ROI, using a
least square estimator or M-estimator. The results of such a
straight forward solution are inaccurate, due to infrastructure
objects or noise effects (see fig. 5d) which appear in the same
ROIs with stair line segments. Most stairs are composed
of steps which can be described by line segments or a set
of line segments. Thus, each minimum cost path can be
represented by a set of line segments. To achieve that, an
iterative end-point fit algorithm as introduced by Ramer et
al. [5] is used. The result is shown in fig. 5e. The green line
segments approximate the distribution of the red minimum
points. Finally, the green line segments are refined by fitting
a line trough the minimum points of each line segment using
a least square estimator. The output of this processing step
are line segments with convex and concave labels, see fig.
6a.

D. Line Tracking

The convex and concave line segments are tracked over
time and stored in a map which has a fixed 3d world
coordinate system. The association step compensates the ego
motion between two consecutive frames by visual odometry
[7]. Line segments which are detected in a new frame are
associated to the closest existing line segment in the map,
assuming small ego motion estimation errors. To consider
only stable line segment tracks (=tracks) for the stair detec-
tion, the tracks in the map have two states, valid and invalid.
A track is considered valid if a minimum number of line
segment detections nmin within the preceding time period
Tp were associated to it, otherwise the track is invalid. The
geometric parameters of a valid track are position, length

(a) Detected 3d edges (b) Detected stair

Fig. 6: Detected 3d edges and fitted stair model

and orientation. The parameters of each track are filtered
by averaging the parameter values from all associated line
segments. New tracks are added to the map if an observed
line segment from a new image is not associated to an
existing track and fulfills a minimum distance dmin to all
existing tracks. Tracks are maintained in the map if leaving
the camera’s viewing field, while tracks in the viewing
field are erased without any associated line segments in the
preceding time period Tp. In fig. 8e tracked convex and
concave line segments are shown, the same track number
is indicated by temporal consistent colors.

E. Stair Model

The stair model is fitted from valid line segment tracks
with convex and concave labels, see fig. 8e. In general, stairs
can be described as a set of steps, whereas each step consists
of a pair of a convex and a concave line segment. At first,
single steps are modeled as a pair of a convex and a concave
line segment. Fig. 1 shows such a pair of line segments,
which we define as a step. Secondly, all detected steps are
combined in consecutive sets, which represent stairs. For
each step and stair detection step a minimal number of
features is used which contain the height and orientation
of the considered line segments and the shortest distance
relative to each other.

The constraints to consider a pair of a convex and a
concave line segment as a step are:
• the height difference is smaller than ∆hstep,
• the orientation difference of the line segments is smaller

than ∆ostep and
• if we can pair a line segment with several other line

segments, we choose the line segment with the most
appropriate dimensions and distance.

Two steps belong to the same stair if the following
constraints are fulfilled:
• the height difference of the convex line segment of one

step relative to the concave line segment of the other
step is smaller than ∆hstair,

• the orientation difference of these two line segments is
smaller than ∆ostair and

• if we can pair a step with several other steps, we
choose the step with the most appropriate dimensions
and distance.

The result of such a stair modeling can be seen in fig. 6b.
All detected steps are visualized as transparent red polygons,



Quantity Ours RGB-D [3] TPRS [17] SLG [17]
Height Error [cm] 0.12± 0.66 1.7± 1.4 0.42± 0.33 0.68± 0.54

Percent 0.8 8.9 6.0 9.7
Depth Error [cm] 0.24± 1.14 1.2± 1.6 1.17± 0.67 0.9± 0.61

Percent 0.85 4.2 6.5 5.0
Width Error [cm] 19.43± 10.8 17.3± 12.8 3.4± 1.95 2.25± 1.97

Percent 10.7 16.5 5.7 3.8
Pitch Error [◦] 0.09± 1.28 2.3± 1.9

Plane Error (parallel) 2.22± 2.17 1.14± 1.13
Plane Error (90◦) 4.97± 2.13 3.12± 1.47

TABLE I: Step modeling errors comparing the average error ± standard deviation (AVG±STD) of our method to an RGB-D
based method [3], and the lidar based methods Scan-Line Grouping (SLG), and Two-Point Random Sampling (TPRS) [17].

steps assigned to the same stair are connected by transparent
green polygons. Note that all inconvenient 3d line segments
shown in fig. 6a are rejected as step candidates, due to
insufficient geometric connections to other line segments or
being defined as invalid by line tracking.

IV. HARDWARE SETUP

The proposed stair detection algorithm is intended to
assist visually impaired people. A prototype of the system
is currently realized by a helmet, on which the sensors are
mounted, see fig. 2. A stereo camera rig is mounted on
the helmet with two Point Grey Flea2 cameras. The stereo
cameras have a resolution of 640 x 480 pixels, a focal length
of 360 pixels and a baseline of 18.3 cm.

An inertial measurement unit (IMU) is as well mounted
on the helmet (MTi-300-AHRS from XSENS). In the run-
ning system, the IMU is currently used to deliver a global
reference height axis, as described in section III-A. All
computations are done on a notebook, which is carried in
a backpack.

Dense disparity images are computed using semi-global
block matching, as introduced by Hirschmueller et al. [9].
The normal vectors in disparity space are computed using
integral images, see [11] and [10] for more information. The
run time for each step of the processing pipeline can be found
in table II.

Processing step Run time in [ms]
Rectification and stereo matching 38

Visual odometry 35
Normal computation 40
Surface orientation 5
Correlation costs 5.5
3d edge detection 20

Line tracking 0.11
Stair model 0.04

TABLE II: Run times of the proposed method.

By pipelining the three first processing steps which are
computationally most expensive our system runs at approx-
imately 10 Hz.

Our framework is realized in C++ and uses a standard
notebook with an 2.67 GHz dual core CPU, on which all
algorithms are computed.

V. RESULTS

The line tracking and stair detection step are initialized by
the following parameters:

nmin = 3 frames
Tp = 15 frames

dmin = 0.2 meters
∆ostep = ∆ostair = 10◦

∆hstep = 0.25 meters
∆hstair = 0.05 meters

For robustness reasons, the input line segments for track-
ing are restricted to observed line segments which can be
assigned to steps in the set of currently observed concave
and convex line segments. These constraints proved to be
sufficient to model stairs from detected sets of convex and
concave line segments. The parameters can be easily adopted
to work for other stair types, e.g. spiral stairs or stairs
considering steps with larger heights.

The evaluation of the proposed method considers ascend-
ing stairs which are approached and traversed. The stair
dimensions are estimated from the temporally filtered global
stair model. There is currently no publicly available stair de-
tection benchmark or data set which can be used to compare
the results on the same sequence. We apply our approach on a
typical outdoor stair and determine the estimated step height,
depth, width and pitch by the average error and standard
deviation. Table I compares the results of the proposed stereo
vision based method with three state of the art stair detection
methods, one using an RGB-D camera [3] and two using
lidar data [17]. The estimation of the step height, depth and
pitch outperforms the accuracy of state of the art approaches,
see table I. The step width is mainly underestimated due
to occlusions from the handrails or splitted line segments
resulting from depth discontinuities, see fig. 8d. Note that
the stair landing is detected as connecting area between the
two stairs. The estimated stair landing depth of 222 cm is
close to the ground truth depth of 223 cm. A reconstructed
complete stair model can be found in figure 7. The stair
estimation of the proposed method uses only noisy disparity
data from a stereo camera as compared to other approaches
using more accurate depth data from RGB-D cameras [3] or
laser scanners [17].

Result images of the evaluated outdoor stair are presented
in fig. 8. Each column shows the same stair scene for one



Fig. 7: Result of estimated global 3d stair model

time step. Visualized are the orientation images Iδ , the cost
images C1 and C2, the detected concave and convex line
segments (3d edges), the valid concave and convex line
segment tracks and the estimated stair model as introduced
in section III from the tracked line segments. Detected steps
in fig. 8f are visualized as transparent red polygons, green
polygons connect steps belonging to the same stair. Note that
all inconvenient 3d edges shown in fig. 8d are rejected as
step candidates. The stair model using tracked line segments
compensates missing and partly detected steps. Especially
in the near field, the line tracking approach merges the line
segments very accurately. All mis-associations made during
traversing the stair end up in invalid line segment tracks. All
steps that are close to the camera system are merged correctly
into a stair. The detected stair in column two of fig. 8f is
separated properly by the stair landing. For further example
stairs and visualizations, we reference to the attached video
file of this contribution.

Our method detects stairs that are orientated arbitrarily in
the image, as long as the concave and convex line segments
of the stair are visible.

VI. CONCLUSION AND OUTLOOK

In this contribution, we introduced a stair detection method
that is based on range data. A matched filter uses surface
normal orientations to fit convex and concave line segments
in the environment. These line segments are tracked over
time and are combined to step segments, which are further-
more merged to stairs. The experimental results show that
our method achieves robust detections, as can be seen in the
previous result section. Moreover a highly accurate model of
the traversed stair is estimated, which outperforms state of
the art stair detection methods. Disadvantages of line based
stair detection approaches based on texture information, like
false detections at pedestrian crosswalks or shadow regions
do not occur.

Further work is planned to replace the global reference
height axis from the IMU by a tracked surface normal vector
of the ground plane. The detection of descending stairs using
a matched filter for depth steps is currently in work as well as
a localization method, which uses the proposed line segment
tracking to realize a 3d SLAM.
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(a) Orientation images Iδ

(b) Cost images C1

(c) Cost images C2

(d) Detected 3d edges. Concave edges are visualized in green, convex edges in red.

(e) Tracked line segments, same color means same track number.

(f) Estimated stair model. Red polygons are detected steps, green polygons connect steps belonging to the same stair.

Fig. 8: Results of proposed stair detection approach
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