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Abstract— Road recognition from video sequences has been
solved robustly only for small, often simplified subsets of
possible road configurations. A massive augmentation of the
amount of prior knowledge may pave the way towards a
generation of estimators of more general applicability. This
contribution introduces Description Logic extended by rules
as a promising knowledge representation formalism for scene
understanding.

A Description Logic knowledge base for arbitrary road and
intersection geometries and configurations is set up. Logically
stated geometric constraints and road building regulations
constrain the hypothesis space. Sensor data from an in-vehicle
vision sensor and from a digital map provide evidence for
a particular intersection. Partial observability and diff erent
abstraction layers of the input data are naturally handled.

Deductive inference services – namely classification, entail-
ment, satisfiability and consistency – are then used to narrow
down the intersection hypothesis space based on the evidence
and the background knowledge, and to retrieve intersection
information relevant to a user, i.e. a human or a driver
assistance system. The paper concludes with an outlook towards
non-deductive inference, namely model construction, and pro-
babilistic inference.

I. M OTIVATION

Building on the term Image Understanding ([17]), we defi-
ne Intersection Understandingas the subtask of interpreting
an image of a road intersection that enables (at least) the
generation of a human-readable, qualitative scene descrip-
tion and an autonomous navigation through the intersection
according to traffic rules. The vast majority of current roador
intersection recognition systems solely deal with geometric
reconstruction. Moreover, the algorithms are restricted to
highly specialized domains, e.g. highways. The rare works
on intersections focus on one particular, non-complex type
of intersection ([12]).

Typically, these methods first extract contour and/or region
based cues (edges, their aggregation to lane markings, road
texture, . . . ) from images of an onboard vision sensor.
Based on these cues a generic road geometry model of
low dimensionality1 is instantiated. An additionally available
model of the vehicle dynamics can be used for tracking and
smoothing the parameter estimates over time (cf. [13] and
[15] for an overview).

1The still popular clothoid representation is often approximated by a
second or third order polynomial.
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Fig. 1. Inner city intersection 1(a) image taken by an onboard camera
with 50◦ opening angle, 1(b) map from land surveying office.

Despite more than 20 years of research these approaches
have failed in proving their scalability from niche solutions
to more general applicability. One possible explanation is
that an ill-posed estimation problem would then arise. This
argument is based on the following observations about inner-
city intersections (cf. Fig. 1):

• The abundance of existing intersection geometries ne-
cessitates a high-dimensional parameter space.

• A large part of the intersection does not enter the field
of view of a standard onboard camera during traversal.

• Dense traffic and inner-city infrastructure lead to a
massive amount of occlusion of relevant image clues.

• Frequently omitted markings on the intersection lead to
a lack of image cues.

• The presence of an abundance of unmodelled objects
feed as noise into the estimation process.

• The image features are of inferior quality, due to an
– on average – worse road quality, more variations
in marking shape and more rapidly changing lighting
conditions.

In brief, a reduced and noisy amount of features contrasts
with the necessity of a high dimensional parameter space.

The latter problem can only be adressed by appropria-
tely constraining a high-dimensional parameter space. Such
constraints can be derived from general domain knowledge
and from specific information about a particular intersection.
Due to the complexity of the domain – thus for reasons of
understandability, maintainability and extendability – an ex-
plicit formulation of this considerable amount of constraints
is preferable over an implicit hard-wiring in source code.



A. Knowledge Representation Formalisms

We introduceDescription Logic(DL, [1]) as a knowledge
representation formalism for intersection understanding. De-
scription Logic is a 2-variable fragment of First Order Logic.
It provides several advantages compared to other formalisms:

Most DLs are decidable, which means that sound, comple-
te, and terminating algorithms exist. This is a clear advantage
over theorem provers for full first-order logic or Horn clauses
with function symbols (e.g. PROLOG). The more recently
added expressivity on so-called concrete domains (like the
natural or real numbers), allows for a more natural integration
of quantitative constraints than earlier logic formalisms.

DL axioms are similar to human language which –after a
training period– allows for understandable and thus main-
tainable knowledge bases. Due to their nevertheless rigid
formal framework, the chance of semantic ambiguities is
reduced with respect to human-to-machine and machine-
to-machine communication. The integration of several DL
knowledge bases (desirable domains for road and intersection
understanding include marking types, traffic signs, traffic
participants, . . . ) is a common task, understood better for DL
(e.g. [3]) than for maybe any other representation formalism.

In contrast to purely geometric lane recognition algo-
rithms, information of different type and abstraction layer can
be fused within one coherent framework, as will be shown
in this contribution by fusing digital map and video data.

WhereasBayesian Belief Nets(BBN, [19]), the most
prominent representation from the probabilistic world, can
capture only propositional, i.e. variable-free, statements, DL
provides a clear-cut separation between general knowledge
(
”
A man with a child is a father.“) and the individuals in

the domain (
”
John is a man. Emily is John’s child.“). This

allows for modular and thus reusable knowledge bases, as
well as for more efficient coding of knowledge ([21], [4]).
Some DL systems allow to formulate complex queries on
the knowledge base (e.g.:

”
Retrieve all of John’s children!“),

which is impossible in purely propositional knowledge bases.
Additionally, in contrast to BBN, constraints involving lots
of input variables can be formulated without jeopardizing
performance.

In contrast todatabases, it can deal naturally with incom-
plete information due to its open world semantics2.

Open challenges in Description logics involve the re-
presentation of spatial relations among individuals, how to
deal with limited inference power due to the monotonicity
requirement, and how to incorporate probabilistic informa-
tion. Fortunately, each of these are active research areas
and promising approaches have recently appeared. These
problems will be adressed below.

B. Outline

After an introduction into Description Logic (Section
2) we develop a knowledge base for arbitrary roads and
intersections (Section 3). Geometric as well as semantical

2Open World semantics denotes that if something cannot be proven to be
true, then it is not automatically assumed false.

properties are covered. Using input data from a commercially
available digital map and from a video sensor, we deductively
perform instance classification for missing information (e.g.:

”
Is this lane a right turn lane?“), query the knowledge base

for further entailed information (
”
Which lane is the vehicle

on?“), and show how inconsistencies in the knowledge base
and in the sensor data can be detected (Section 4). Current
limitations of DL based reasoning and possible remedies for
them are discussed in Section 5.

II. D ESCRIPTIONLOGIC

The description logicALCQHIR+(D)− ([8]) is briefly
introduced. It augments the basic logicALC ([23]) with
qualified number restrictions (Q), role hierarchies (H), in-
verse roles (I), transitive roles (R+ ), and concrete domains
(D−). ALCQHIR+(D)− is supported by the DL reasoning
system RACER ([7]), which was used for implementing
the subsequently described knowledge base. RACER also
supports rules and all of the inference services described
below.

A. Concept and Role Descriptions

Atomic concepts and atomic roles are elementary descrip-
tions, denoted byAC andAR. Complex descriptions, denoted
by C andD, can be built inductively using concept and role
constructors according to the following syntax:

C, D −→ AC | ⊤ | ⊥ | ¬C | C ⊓ D |C ⊔ D | ∀R.C |

∃R.C| ∃≤nR.C | ∃≥nR.C

R −→ AR | R− (1)

The semantics of concept and role descriptions is defined
in terms of aninterpretation I, which consists of a non-
empty set∆I , called thedomainof I, and an interpretation
function. This function assigns to every atomic conceptAC
a setACI ⊆ ∆I and to every atomic roleAR a binary relation
ARI ⊆ ∆I × ∆I . The interpretation function is extended to
complex descriptions according to Table I.

Concept and role constructors

Name Syntax Semantics

Top ⊤ ∆I for concepts,∆I × ∆I for roles
Bottom ⊥ ∅
Conjunction C ⊓ D CI ∩ DI

Disjunction C ⊔ D CI ∪ DI

Negation ¬C ∆I \ CI

Value restr. ∀R.C {a ∈ ∆I | ∀b ∈ ∆I : (a, b) ∈ RI ⇒ b ∈ CI}
Exists restr. ∃R.C {a ∈ ∆I | ∃b ∈ ∆I : (a, b) ∈ RI ∧ b ∈ CI}
Qualified nr ∃≤nR.C {a ∈ ∆I | ||{x | (a, x) ∈ RI , x ∈ CI}|| ≤ n}
restriction ∃≥nR.C {a ∈ ∆I | ||{x | (a, x) ∈ RI , x ∈ CI}|| ≥ n}

Role InverseR− {(a, b) ∈ ∆I × ∆I | (b, a) ∈ RI}

TABLE I

SYNTAX AND SEMANTICS OF ALCQHIR+ .

Qualified number restrictions are only allowed for so-called
simple roles, that neither are transitive nor have any transitive
subroles.



B. Knowledge Bases
A DL knowledge base is a pair(T ,A), where T is a set

of terminological axioms, called aTBox, and A is a set of
assertional axioms, called anABox. The TBox contains intensional
general knowledge about the domain and is built through axioms
that describe general properties of concepts. The ABox captures
extensional knowledge that is specific to the individuals ofthe
domain of discourse.

Terminological Axioms

Name Syntax Satisfied if

(General) Concept inclusion C ⊑ D CI ⊆ DI

Concept equality C ≡ D CI = DI

Role inclusion R ⊑ S RI ⊆ SI

Assertional Axioms

Name Syntax Satisfied if

Concept assertion a : C aI ∈ CI

Role assertion (a, b) : R (aI , bI) ∈ RI

Semantic Equality a = b aI = bI

Semantic Inequality a 6= b aI 6= bI

TABLE II

ALCQHIR+ KNOWLEDGE BASEAXIOMS.

An interpretationI satisfiesa TBox T iff, for each axiom in
T , the condition in the right column of table II are met. Such an
interpretation is called amodelof T : I |= T .

Quantitative reasoning is supported by introducingconcrete
domains. INandIR are examples for concrete domains. They have
been introduced in [2], where an overview of the syntax and
semantics of the corresponding axioms can be found.

C. Inference Services
Various standard inference services are provided for DL TBoxes

(e.g. [1]):
• Satisfiability A conceptC is calledsatisfiablewith respect to

a TBox T iff there is a modelI of T whereCI 6= ∅.
• SubsumptionA conceptD subsumesa conceptC with respect

to a TBoxT iff CI ⊆ DI holds for each modelI.
• EquivalenceTwo conceptsC andD are equivalent iffCI =

DI holds for each modelI.
These reasoning services are implemented in most DL reasoning
systems. They are useful during the development of a knowledge
base to test whether a TBox

”
makes sense“.

With respect to ABoxes the following inference tasks are com-
mon:

• ConsistencyAn ABox A is consistentwith respect toT iff
there exists a model ofT that satisfies each assertion inA.

• Instance Checking/Entailment An ABox assertionα is
entailed by A, written A |= α, iff every model ofA also
satisfiesα.

• Instance Classification/Realization ProblemGiven an indi-
vidual a in A find the most specific concept of whicha is an
instance, writtenA |= a:C.

• Retrieval Given a conceptC find all individualsa such that
A |= a:C

• Conjunctive Query This task is similar to retrieval, but finds
tuples of individuals(a1, . . . , an) among which a set of stated
role and concept assertions must hold.

These tasks are common during usage of the knowledge base
within an application. Only some of the currently availableDL
systems support ABox reasoning, and of these, only few support
all of the tasks stated above.

D. Extension with Rules

So-called role chains are not supported inALCQHIR+(D)−.
Role chains are compositionsR1◦. . .◦Rn of roles. Axioms relating
three or more objects are thus not possible, e.g. there is no way
to statehasBrother ◦ hasSon ⊑ Uncle, i.e. that the brother of a
father is an uncle. Therefore, recently DL systems get augmented
with rules ([9]). With rules, the above fact can be expressedin a
first-order syntax:

hasFather(x,y) ∧ hasBrother(y,z) → Uncle(z) (2)

Rules are used extensively in the knowledge base developed in this
contribution.

III. ROAD NETWORK KNOWLEDGE BASE

In the sequel, a knowledge baseKB for road networks is
introduced, which is formalized in Description Logic. Its TBox
T describes general knowledge about road networks. The ABox
A initially captures partial information about a particularroad
or intersection acquired with onboard vehicle sensors. It is later
enhanced by new assertions obtained through ABox inference. The
description of the rule baseR is omitted here for brevity.

A. The TBox

The TBox of the road network knowledge base introduces
relevant concepts of a road network – namely roads, lanes, dividers
between roads, road markings and junctions – and the relations that
must hold between them.

1) Taxonomy:All atomic concepts are introduced and arranged
in a specialization hierarchy called a taxonomy, which is visualized
as a UML diagram in Fig. 2(a). Arrows denote inclusion axioms,
as e.g.

Highway ⊑ Road // All highways are roads. (3)

To denote that individuals of the superclass have to be a member
of at least one subclass, one can use acovering axiominstead:

// A road is either an autobahn,
// highway or an urban road.
Road ≡ Autobahn⊔ Highway ⊔ UrbanRoad

(4)

Disjointnessbetween subclasses can optionally be stated, too:

// The set of highways is disjoint from
// the set of urban roads and autobahns.
Highway ⊑ ¬UrbanRoad⊓ ¬Autobahn

(5)

2) Mapping atomic concepts to geometric primitives:
Fig. 2(a) shows that nearly allRoadNetworkElements are also
descendents ofGeometricEntity, from which three generic types
of geometric primitives –GE1, GE2 andGE3 – inherit. The three
types are visualized in Fig. 3. Their free parameters are elements
of the concrete domainIR. These types are pairwise disjoint but
no covering axiom is used. This way, a concept can be of no type,
which means that it is composed out of several geometric entities,
i.e. complex shapes can be built out of the primitive ones. A more
exhaustive description of a preliminary version of this geometry
model can be found in [12].
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Fig. 2. RoadNetwork TBox 2(a) Taxonomy, 2(b) partonomy. For clarity,
only direct parts are visualized, although part-of is transitive.
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Fig. 3. Geometric entities The three generic shapes that are used to
construct the road network.

3) Spatial representation:To capture the relative spatial
arrangement of scene elements, three types of spatial relations are
introduced (see Fig. 4): Thedegree of overlapof two individuals
is described using the common RCC8 representation ([22]). Their
relative orientation is coarsely discretized into three intervals of
the unit circle, namely parallel, perpendicular, and oblique. Their
relative positionis discretized using the eight cardinal directions.
The types are introduced as roles with the possible values being
their subroles. A description of the spatial arrangement ofone
individual with respect to another comprises three ABox role
assertions, one of each type. The set of subroles of each typeis
jointly exhaustive and pairwise disjoint(JEPD). Unfortunately, this
property cannot be modelled inALCQHIR+(D−). As a wor-
karound, the complement of each subrole is explicitly introduced
(e.g.notNTPP). Each individual pair is required to have either the

subrole or its complement stated, and to have exactly one non-
complement subrole of each type in total.
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Fig. 4. Spatial Relations 4(a) degreeOfOverlap using RCC8
relations, 4(b)relativeOrientation, 4(c) relativePosition. 4(b) is
defined wrt the first individual’s coordinate system. For 4(c), each
GeometricEntity has to supply its own

”
defintion of perspective“

as to what it considers north etc. of it. This is depicted herefor
GE1.

4) Constraints:Using the concept names and the spatial roles,
constraintsare formulated on the set of possible models. Without
constraints, arbitrary concept and role assertions could be asserted.
The types of constraints roughly fall into two categories:geometric
constraintsand road building regulations. A subset of geometric
constraints are part-of constraints (NTPP, TPP and their inverse)
which are arranged in apartonomy. The partonomy is visualized
in Fig. 2(b), and written in DL as follows:

// From all road network elements, only lanes
// dividers and arrows can be part of a Road.
Road ⊑ ∀NTPP.(Lane ⊔ Divider ⊔ ArrowMarking)

(6)

Cardinality constraintscan be imposed on the parts as well:

Road ⊑ ∃≥1NTPP.Lane⊓ ∃≤6NTPP.Lane (7)

Compositionsare parts that cannot exist without their wholes,
denoted by a black diamond ended arrow, written as:

// A lane is part of exactly one road.
Lane ⊑ ∃=1NTPP−.Road (8)

Besides the very basic geometric constraints captured in the
partonomy many more geometric constraints of often much more
complex nature must hold, which have to be left out for brevity.
One example is:

// An exit lane is connected longitudinally
// only to right or left turn lanes.
ExitLane ⊑ ∀ isLongitudinallyConnectedTo.
(RightTurnLane⊔ LeftTurnLane)

(9)

The role isLongitudinallyConnectedTo is asserted iff its parents
EC, II and LON hold. The latter is asserted if eitherN or S
are true (cf. Fig. 4). The roleisLaterallyConnectedTo is defined
analogously. From these,is[east|west|north|south]ConnectedTo
are derived with the obvious semantics.



The road building regulations comprise many rules that human
drivers have internalized and that are used when approaching an
unknown intersection. Few examples include:

// Only right turn lanes can be right of right turn lanes.
RightTurnLane ⊑ ∀ hasEastNeighbor.RightTurnLane

// All autobahns and highways are one way roads.
Autobahn⊔ Highway ⊑ OneWayRoad

// A one way road is defined as a road
// which has only one way lanes.
OneWayRoad ≡ Road ⊓ (∀NTPP.OneWayN⊔
∀NTPP.OneWayS)

// A one way road does not have a uturn lane.
OneWayRoad ⊑ ∀NTPP.¬UTurnLane

(10)

The rolehasNeighbor is asserted iffII and LAT holds, and if
both individuals are of the same type. A connectionEC is not
necessary. The subroles are derived analgously toisConnectedTo.

The hypothesis space that emerges from this combined
conceptual-geometrical intersection representation is by orders of
magnitude smaller compared to a traditional, purely geometric
representation, as the vast majority of hypotheses are elegantly ruled
out on the conceptual level using constraints. At the same time,
complex geometries are representable with sufficient accuracy, as
shown exemplarily for an inner-city area in [12].

B. The ABox

A non-stationary video camera and a commercially available
digital map along with positioning devices are used as input
devices. All are readily availabe in our experimental vehicles ([25],
[11]). However, arbitrary informative (in terms of the terminology
introduced by the TBox) sensors can be used, provided they
operate in a common coordinate frame. After a brief description
of the data registration, the mapping from map and video datato
ABox axioms is described.

1) Coordinate systems and data registration:All computa-
tions are done within a cartesian, vehicle-centered, two-dimensional
coordinate system in the road plane (assuming a locallyflat earth).
A common frame is needed to enable the computation of spatial
relations between objects as introduced in sec. III-A.3. Map data is
transformed using the common UTM projection from geographical
to cartesian – and thus length- and angle-preserving – coordinates,
and then applying a map matching algorithm as described in [10].
As this version did not deliver lateral position estimates within
the road, the ego lane has been manually assigned. However, lane
precise estimates will become available in the future.

Video input data is transformed by using a calibrated camera
wrt the vehicle coordinate system, and by additionally knowing
the camera’s height above ground and yaw angle.

2) Map input data:Digital maps are produced for navigation
purposes only, which means that the road network topology is
captured correctly, but not the geometry. Roads are represented in
the form of coarsely digitized straight line segments whosestart
and end coordinates coincide with junctions. Junctions aremerely
represented by a coordinate pair ([10]). Few more attributes are
available: the road class, ranging from freeway to pedestrian mall,
the allowed driving directions, and few more, which are not of
importance here. Current work on the map provider side involves
including the number of lanes per road.

This data is used to generate geometry patches as shown in Fig. 5.
At the moment, the geometry is generated according to some fixed
non-logic rules. Transferring this task to DL inference is the subject
of ongoing work. The rules implicitly used during generation of the

above described spline patches will then be explicated, too, as logic
rules like:

// A two lane road connected to a three lane road must
// contain (cf.Fig.4(a)) some GE2-shaped lane (cf.Fig.3).
Road ⊓ ∃=2NTPP.Lane ⊓ ∃=3isLongitudinally-
ConnectedTo.Lane ⊑ ∃NTPP.(Lane⊓ GE2)

(11)

This leaves room for uncertainty in the model, as, in this example
it is not hardwired whether theGE2-shaped lane is the rightmost
or the leftmost lane of that road.
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Fig. 5. Map Preprocessing A full-fledged geometry model as described
in [12] is generated, whose parameters are fed into the ABox.5(a) original
map, including the number of lanes, 5(b) shortening of the original roads
and pairwise insertion of additional roads in the middle (subsequently
called transition roads), 5(c) generation of lanes from roads, and generation
of transition lanes from transition roads pairwise betweenall connected
lanes (for clarity only those for lanel4.2 are visualized). In the course of
reasoning most of these individuals will be classified asNoTrespassing.
5(d) geometry generation for each lane and each lane transition by
assigning a geometric entity subconcept including concrete domain
values (Fig. 3) to each individual. All lanes areGE1. For clarity,
only few transition lanes have been visualized (severalGE1, one
GE2, and twoGE3)).

Each generated patchli anddj is then included in the ABox by
stating li:Lane and dj :Divider, respectively, and by adding their
types of geometric entity, e.g.:li:GE3, and the respective concrete
domain fillers.

Each roadrk is added by stating

rk : Autobahn // ∈ Autobahn, Highway, UrbanRoad
rk : TwoWayRoad // ∈ TwoWayRoad, OneWayRoad
(rk, l) : NTPP // for each lanel that is part ofrk

(12)
For the transition roadstri,k an axiom (tri,k, j) : NTPP−

is added additionally, wherej is a generated instance of type
Junction.

To state that our map knowledge is assumed complete we add
the following local closed world assumptions:

rn : ∃≤iNTPP.Road // with i = |R|
rn : ∃≤jNTPP.Lane // with j = |L|
rn : ∃≤kNTPP.Divider // with k = |D|
rn : ∃≤lNTPP.Junction // with l = |J |

(13)

The spatial relations of allGeometryEntity individuals with
respect to each other, as introduced in Section III-A.3, which have



been previously computed, are added to the DL via statementsof
the form (l4.i, l4.j : II) for all i, j, for example.

3) Video input data: Video-based object detections are
straightforwardly integrated in the ABox with axioms like,e.g.

a1 : StraightAheadArrow // a1 is newly introduced.
d3 : SingleDashedDivider (14)

and additional axioms stating the spatial relations to all other
GeometricEntities, like, e.g.

(a1, d3) : DC // a1 and d3 are disconnected,
(a1, d3) : II // parallel,
(a1, d3) : E // and d3 is east ofa1. ,

(15)

which have to be computed (automatically in a straightforward
manner) outside of the DL system. As few reasoning as possible
should be donewithin an object detection algorithm. For example,
don’t hastily concludeAutobahn from a detectedGuardRail.
Instead, exclusively state the detection result of specialised video
object detectors and leave the inference to the KB, where these
topics are dealt with more thoroughly. In this example, a guard
rail can occur on highways and even on urban roads.

It is worth mentioning that the ABox can be built incrementally
online, just as usually more data about the intersection will become
available during approach. Instead of recomputation of theABox
just an additional axiom has to be added.

IV. EXPERIMENTS

The knowledge base is denoted withKB = (T , A, R). T
is of the form described in sec. III-A,A is initially empty. The
description of the rule baseR has been omitted for brevity. After a
description of the features detected by the video sensor andthe
map, classical deduction is used to draw conclusions about the
properties of the intersection. At first, the types of several lanes
are deduced using instance classification. Then it is shown how the
ego lane of the vehicle is inferred using entailment. Eventually it is
demonstrated how both the sensor data and the domain knowledge
can be tested for inconsistencies.

A. Evidence
We are approaching the intersection depicted in Fig. 1 (land

surveying office ground truth map) and 5(a) (digital map). The
digital map is automatically processed to generate ABox axioms
as described in sec III-B.2.

The map matching correctly yields that the vehicle is onr4:

egovehicle : Vehicle // create new vehicle
(egovehicle, r4) : NTPP− // is inverse proper part of roadr4

(egovehicle, r4) : II // is parallel to roadr4

(16)
The object detectors described in [5] and [26] have processed

an image taken one second before the one shown in Fig. 1(a)
and detected the two dividers and the arrow shown in Fig. 6. The
following statements are thus additionally automaticallyadded to
the ABox:

arrow1 : StraightAheadArrow
divider1 : RoadCurb
divider2 : Marking20-50
// known spatial relations (Fig. 4)
// wrt all other geometric entities:
(arrow1, egovehicle) : II // parallel,
(arrow1, egovehicle) : S // south of,
(arrow1, egovehicle) : DC // and disconnected.
...

(17)

Fig. 6. Illustration of video-based object detectors.

B. Task 1: Determining lane types (Instance Classification)
Several assertions are immediately available afterclassifying

the individuals. Classification can be seen as a special caseof
entailmentwhere the entailed axiom is a concept assertion.

Results 1-4:

KB |= l4.1 : OneWayN ⊓ BicycleLane ⊓

StraightAheadLane

l4.2 : OneWayN ⊓ CarLane⊓ (18)

StraightAheadLane

l4.3 : OneWayS

l4.4 : OneWayS

All classification results can be automatically added to theABox.
Although only the classification results forLane individuals of road
r4 are given in Eq. 18, all ABox individuals, e.g. all dividersdj ,
are classified this way.

Results were given here without proof. To provide a better
understanding on how additional assertions are inferred, aproof
sketch for a particular entailment query is given in the next
subsection.

C. Task 2: Determining the vehicle’s ego lane (Entailment)
The ego lane of our vehicle is not determined by the positioning

device. However, the ego lane can be deduced from the available
domain knowledge and the sensor data. Querying for assertions
that areentailed in this knowledge base yields:

Result5:

// The vehicle is on lanel4.2.
KB |= (egovehicle, l4.i) : NTPP− , iff i = 2 .

(19)

Proof sketch:

The TBox of theKB contains the following statements:

// Marking50-20 is a divider for bicycle lanes.
Marking50-20 ⊑ ∃isLaterallyConnectedTo.BicycleLane

// This type of arrow only occurs on car lanes.
Arrow ⊑ ∀NTPP−.CarLane

// Bicycle lanes are not next to each other.
BicycleLane ⊑ ∀hasNeighbor.CarLane

(20)
These deductively lead to:

Result 5a:

// The driver’s lane is a car lane (fortunately :) ),
// and right of it, there is a bicycle lane.
KB |= egovehicle : ∃NTPP−.(CarLane ⊓
∃hasEastNeighbor.BicycleLane)

(21)

From the third axiom in Eq. 20 we know as well:



Result 5b:

// Right of the bicycle lane there can only be a car lane.
KB |= egovehicle : ∃NTPP−.(CarLane ⊓
∃hasEastNeighbor.(BicycleLane⊓
∀hasEastNeighbor.CarLane))

(22)

The remaining necessary TBox axioms are described only textually
for brevity: A lane with a straight ahead arrow is a straight ahead
lane. Right neighbors of straight ahead lanes are only straight
ahead or right turn lanes. Bicycle lanes do not occur betweenlanes
of the same turning lane type. Therefore,

Result 5c:

// Right of the bicycle lane can only be a right turn lane.
KB |= egovehicle : ∃NTPP−.(CarLane ⊓
∃hasEastNeighbor.(BicycleLane⊓
∀hasEastNeighbor.RightTurnLane))

(23)
Roadr1 is a one way road towards the junction. Therefore,r4

cannot have any right turn lane at all. Therefore,

Result 5d:

// There is no more lane right of the bicycle lane.
KB |= egovehicle : ∃NTPP−.(CarLane ⊓
∃hasEastNeighbor.(BicycleLane⊓
¬∃hasEastNeighbor))

(24)

From this, together with the closure assumption from Eq. 13 we
can deductively infer that the ego vehicle is a proper part of
(geometrically, concerning its projection on the road plane (see
sec. III-B.1)) lanel4.2. �

This consequence is confirmed by looking at the corresponding
land surveying office map form Fig. 1(b). As entailment is a
standard reasoning task this fact is obtained instantly with an
appropriate reasoner.

Likewise, many further assertions about the intersection are
entailed in the knowledge base. They can be viewed as inferred
constraints on the intersection hypothesis space. Those hypotheses
that have not been ruled out can then be tested using variantsof
the classical lane recognition methods described in the introduction.
An initial hypothesis testing algorithm has been developedin [12].

D. Task 3: Detecting Inconsistencies (Satisfiability)
Inconsistencies in both TBox and ABox are detected straightfor-

wardly by checking for TBox satisfiability and ABox conistency,
respectively. Defining a new TBox concept by stating

TwoWayAutobahnLane ≡
TwoWayLane⊓ ∃NTPP−.Autobahn (25)

or, alternatively, stating in the ABox, that

lane1 : TwoWayLane⊓ ∃NTPP−.Autobahn (26)

will immediately lead to an insatisfiable TBox in the former case
as TwoWayAutobahnLane will never have any instances, and to
an inconsistent ABox in the latter.

V. EXTENSIONS OF CLASSICAL LOGIC

A. Model Construction
Classical logic is confined to purelydeductive reasoning, which

poses limits to its expressivity. First, once a conclusion is sustained
by a valid argument, this argument can never be invalidated,no mat-
ter which new assertions are added. This is known asmonotonicity.
This contrasts the modern understanding of vision, that hypotheses
are be generated based on partially missing evidence viajumping to
conclusions([6]), which implies that the arrival of new information

will oftentimes lead to the withdrawal of hypotheses. This process
is also known asbelief revision. Second, deduction cannot create
new individuals. Transferred to scene interpretation, this amounts to
delivering a complete low-level a priori segmentation of the scene.
However, the past 50 years of research in computer and biological
vision have shown that a purely data-driven segmentation isnot
feasible, as already low-level segmentation is crucially dependent
on top-down input from higher processing levels ([14]).

In accordance with [18], [20], [24], we conclude that classical
deductive reasoning is not sufficient in general for real-world
scene interpretation. Instead, deductive and hypothetical reasoning
must be combined. This way, the soundness of deduction, as
demonstrated in this contribution, can be united with the more far-
reaching conclusions possible in non-monotonic reasoning. Logical
model constructioncan be seen as an instance of hypo-deductive
reasoning. From the model construction perspective, sceneinter-
pretation amounts to incrementally constructing a (partial) logical
model of the TBox axioms that is consistent with the ABox axioms
([18], [24]).

The development of a model construction algorithm that is
suitable for scene interpretation is the focus of ongoing work.
The model construction algorithm enhances the reasoning capa-
bilities described in this chapter byincrementallyhypothesizing
new individuals, i.e. lane patches in this example, which have not
been asserted in the ABox yet, based on the evidence and on
previous hypotheses. Additionally, theset of all models, i.e. the
set of all plausible intersection hypotheses in this example, can be
constructed if desired.

In general, a model construction algorithm proceeds in close
analogy to theTableau Calculusalgorithms that are used for
satisfiability testing of TBoxes and consistency testing ofABoxes
(cf. [1]). They apply a set of so-called consistency-preserving
completion rules to the original ABox. The presence of⊔ and
∃≤n symbols in the TBox triggers so-called non-deterministic rules
which split the ABox in a depth-first-search way. The process
stops when no more rules can be applied or when an obvious
contradiction occurs. In the first case the generated model satisfies
all TBox and all ABox axioms. The latter proves that the knowledge
base is inconsistent.

Although tableau calculi are suitable to scene interpretation as
new individuals are generated and as – in principle – the set of all
models of the knowledge base can be generated, some modifications
are necessary. Implementations of tableau calculi do not output
the model but a mere yes/no answer, they are highly optimised
and therefore produce rather

”
canonical models“, and they stop

after having found one model, preferring simpler ones. In scene
interpretation, a preference for a simple model makes no sense, and
in many cases it is desirable to return all models instead of just one.
[16] have shown an initial sketch of how a model constructioncould
be implemented on top of the RACER reasoner, using its available
inference services and query language.

B. Probabilistic Logic

Even though non-determinism is common in a DL knowledge
base due to the presence⊔ and∃≤n symbols and due to the open
world semantics, this is not sufficient in general to describe the
uncertainty in both the domain knowledge and the sensor data.
If an interpretation violates only one axiom of the KB, then by
definition it cannot be a model of the KB anymore. Instead, it
is desirable to ask for the

”
amount of entailment“ of a formula.

Future work will focus on using the developed knowledge base
with a probabilistic description logic reasoner (see e.g. [1], [16])
for an overview), additionally supplying TBox and ABox axioms
with attached probabilities which reflect the amount of uncertainty
in the respective statements.



VI. CONCLUSION

This contribution argues for a general paradigm shift towards a
stronger acknowledgement of the role of knowledge engineering
in real world high-level scene interpretation tasks. Up to date, no
satisfying knowledge representation and reasoning framework for
such estimation tasks exists.

We introduced Description Logic extended by rules as a know-
ledge representation formalism for the sensor-based understanding
of complex roads and intersections. It was demonstrated howhighly
incomplete sensor data, coming on various abstraction layers, can
be fused within one coherent and semantically sound framework.
Data can be processed iteratively on arrival, not requiringa recom-
putation of the hypothesis space. The stated domain knowledge is
extendable to other domains like traffic signs, traffic participants,
etc. Deductive reasoning was used to constrain and query the
intersection hypothesis space, and to detect inconsistencies in the
sensor data as well as in the stated domain knowledge.

In summary, the more recent developments in logic provide
a highly promising framework for developing, constrainingand
querying the large and complex hypothesis spaces that are typical
for image understanding tasks.

Future work includes refinement of the spatial relations, and
embedding the existing knowledge base and reasoning services in a
model construction framework, which is capable of hypothesizing
new individuals and of non-deterministic assertions, to incremental-
ly build the set of all logical models of an intersection. Eventually,
this framework will be ported to a probabilistic logic.
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[8] V. Haarslev and R. Möller. Practical reasoning in racerwith a concrete
domain for linear inequations. InProceedings of the International
Workshop on Description Logics (DL-2002), Toulouse, France, April
19-21, pages 91–98, 2002.

[9] I. Horrocks and P. F. Patel-Schneider. A proposal for an OWL rules
language. InIn Proc. 13th ACM International World Wide Web
Conference (WWW), 2004.

[10] B. Hummel. Dynamic and Mobile GIS: Investigating Changes in
Space and Time, chapter Map Matching for Vehicle Guidance. CRC
Press, 2006.

[11] B. Hummel, S. Kammel, T. Dang, C. Duchow, and C. Stiller.Vision-
based path-planning in unstructured environments. InProceedings of
the IEEE Intelligent Vehicles Symposium, pages 176–181, 2006.

[12] B. Hummel, Z. Yang, and C. Duchow. Kreuzungsverstehen –ein
wissensbasierter Ansatz.IT-Schwerpunktheft Fahrerassistenzsysteme,
1:5–16, 2007.

[13] V. Kastrinaki, M. Zervakis, and K. Kalaitzakis. A survey of video
processing technqiues for traffic applications.Image and Vision
Computing, 21:359–381, 2003.

[14] T. Lee, D. Mumford, R. Romero, and V. Lamme. The role of the
primary visual cortex in higher level vision.Vision Research, 38:2429–
2454, 1998.

[15] J. C. McCall and M. M. Trivedi. Video-based lane estimation and
tracking for driver assistance: Survey, system, and evaluation. IEEE
Transactions on Intelligent Transportation Systems, 7:1:20–37, 2006.
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