Description Logic for Vision-Based Intersection Understading

Britta Hummel
Institut fir Mess- und Regelungstechnik
Universitat Karlsruhe (TH)
D-76131 Karlsruhe, Germany
Email: hummel@mrt.uka.de

www.blue

Abstract— Road recognition from video sequences has been
solved robustly only for small, often simplified subsets of
possible road configurations. A massive augmentation of the
amount of prior knowledge may pave the way towards a
generation of estimators of more general applicability. Tlis
contribution introduces Description Logic extended by rules
as a promising knowledge representation formalism for scem
understanding.

A Description Logic knowledge base for arbitrary road and
intersection geometries and configurations is set up. Logaly
stated geometric constraints and road building regulatiors
constrain the hypothesis space. Sensor data from an in-vatie
vision sensor and from a digital map provide evidence for
a particular intersection. Partial observability and diff erent
abstraction layers of the input data are naturally handled.

Deductive inference services — namely classification, etilta
ment, satisfiability and consistency — are then used to narre
down the intersection hypothesis space based on the evidenc
and the background knowledge, and to retrieve intersection
information relevant to a user, i.e. a human or a driver
assistance system. The paper concludes with an outlook toves
non-deductive inference, namely model construction, and -
babilistic inference.

I. MOTIVATION

Building on the term Image Understanding ([17]), we defi-

ne Intersection Understandings the subtask of interpreting
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(b)

Fig. 1.

Inner city intersection
with 50° opening angle, 1(b) map from land surveying office.

1(a) image taken by an onboard camera

Despite more than 20 years of research these approaches
have failed in proving their scalability from niche solut®
to more general applicability. One possible explanation is
that an ill-posed estimation problem would then arise. This
argument is based on the following observations about inner
city intersections (cf. Fig. 1):

The abundance of existing intersection geometries ne-
cessitates a high-dimensional parameter space.

A large part of the intersection does not enter the field

of view of a standard onboard camera during traversal.
Dense traffic and inner-city infrastructure lead to a

an image of a road intersection that enables (at least) the
generation of a human-readable, qualitative scene descrip «
tion and an autonomous navigation through the intersection
according to traffic rules. The vast majority of current read
intersection recognition systems solely deal with geoimetr
reconstruction. Moreover, the algorithms are restricted t
highly specialized domains, e.g. highways. The rare works
on intersections focus on one particular, non-complex type
of intersection ([12]).

Typically, these methods first extract contour and/or negio
based cues (edges, their aggregation to lane markings, ro
texture, ...) from images of an onboard vision sensofr.

massive amount of occlusion of relevant image clues.
Frequently omitted markings on the intersection lead to
a lack of image cues.

The presence of an abundance of unmodelled objects
feed as noise into the estimation process.

The image features are of inferior quality, due to an
— on average — worse road quality, more variations
in marking shape and more rapidly changing lighting
conditions.

In prief, a reduced and noisy amount of features contrasts
with the necessity of a high dimensional parameter space.

Based on these cues a generic road geometry model oflhe latter problem can only be adressed by appropria-
low dimensionality is instantiated. An additionally available tely constraining a high-dimensional parameter spaceh Suc
model of the vehicle dynamics can be used for tracking arfgPnstraints can be derived from general domain knowledge

smoothing the parameter estimates over time (cf. [13] ar@nd from specific infprmation about_a particular intersatti
[15] for an overview). Due to the complexity of the domain — thus for reasons of

understandability, maintainability and extendability /- ex-
plicit formulation of this considerable amount of congttai

1The still popular clothoid representation is often appmaded by a f ) o - € s
is preferable over an implicit hard-wiring in source code.

second or third order polynomial.



A. Knowledge Representation Formalisms properties are covered. Using input data from a commeyciall
available digital map and from a video sensor, we dedugtivel
perform instance classification for missing informatiorg(e

scription Logic is a 2-variable fragment of First Order Logi »!S this lane a right turn lane?), query the knowledge base
It provides several advantages compared to other formaiisn{Or further entailed information,Which lane is the vehicle

Most DLs are decidable, which means that sound, compl@n?"), and show how inconsistencies in the knowledge base
te, and terminating algorithms exist. This is a clear advg@t and in the sensor data can be detected (Section 4). Current

over theorem provers for full first-order logic or Horn clags limitations of DL based reasoning and possible remedies for

with function symbols (e.g. PROLOG). The more recentljhem are discussed in Section S.
added expressivity on so-called concrete domains (like the Il. DESCRIPTIONLOGIC

natural or real numbers), allows for a more natural intégnat - . _ . .
of quantitative constraints than earlier logic formalisms . tThde dejcr;tpnon IOg':AﬁtﬁQgL?* (lp). (58]) 2'53 b”e.ftlﬁ]/
DL axioms are similar to human language which —after ch rollf.uge ' baugmetq St N asul: c;]g. e h('[ ) W
training period— allows for understandable and thus maiflUaMed number restric lonsq)), role hierarchies7), n-
Z rse rolesX), transitive roles £+), and concrete domains

tainable knowledge bases. Due to their nevertheless rig|d ~ a )
formal framework, the chance of semantic ambiguities i )- ALCQMHIR (D) IS supported by the_DL reasoning
stem RCER ([7]), which was used for implementing

reduced with respect to human-to-machine and machinﬁ%’ .
to-machine communication. The integration of several DIE e subsequently described kF‘OW'edge basgcﬂ% also.
knowledge bases (desirable domains for road and intepsectieUPPOrts rules and all of the inference services described
understanding include marking types, traffic signs, traﬁigelow'

participants, ...) is a common task, understood better for DA, Concept and Role Descriptions

(e.g. [3]) than for maybe any other representation formalis : . .
: - Atomic concepts and atomic roles are elementary descrip-
In contrast to purely geometric lane recognition algo:

ith inf i ¢ diff " d abstraction | tions, denoted byxC andAR. Complex descriptions, denoted
rithms, information ot différent type and abstraction lagan by C andD, can be built inductively using concept and role
be fused within one coherent framework, as will be show

in this contribution by fusing digital map and video data. Constructors according to the following syntax:
WhereasBayesian Belief Net¢BBN, [19]), the most

prominent representation from the probabilistic worldnca C,D — AC|T|L|—-C|CMD|CUD]|VR.C|

capture only propositional, i.e. variable-free, statetaeDL IR.C| 3<,R.C | I=nR.C

provides a clear-cut separation between general knowledge - B

(-A man with a child is a father.") and the individuals in

the domain ,(John is a man. Emily is John’s child.“). This The semantics of concept and role descriptions is defined

allows for modular and thus reusable knowledge bases, dsterms ofIaninterpretationI_, which consists of a non-
well as for more efficient coding of knowledge ([21], [4]). empty setA*, called thedomainof Z, and an interpretation

. function. This function assigns to every atomic concapt
Some DL systems allow to formulate complex QUeries OO et 47 ¢ AT and to every atomic roléR a binary relation
the knowledge base (e.gRetrieve all of John’s children!), AR < AT x AZ. The interpretation function is extended to

which is impossible in purely propositional knowledge tsase complex descriptions according to Table |I.
Additionally, in contrast to BBN, constraints involvingtto

We introduceDescription Logic(DL, [1]) as a knowledge
representation formalism for intersection understandirey

R — AR|R™ (1)

of input variables can be formulated without jeopardizing Concept and role constructors
pelrformincet.t(xi tab i deal nat I ith i Name Syntax Semantics
n contras atabasesit can deal naturally with incom-
. . ’S y . Top T AT for concepts AZ x AT for roles
plete information due to its open world semartics Bottom L 0

Open challenges in Description logics involve the re- ConjunctonCnD ¢ZnDZ
presentation of spatial relations among individuals, how t Disjunction CL D iiKJDII
; . : i, Negation —C C
deaIIW|th limited mferencg power due to the_ monotonicity |, " VR.C (0 e AT|Vbe AT - (ab) € BT = be CT)
requirement, and how to incorporate propablhstlc infofma gyists restr. IR.C~ {ac AT|3be AT : (a,b) € R Abe CT}
tion. Fortunately, each of these are active research areagualified nr 3<,R.C {a € AT |||{z|(a,z) € R,z € CT}|| < n}

and promising approaches have recently appeared. Thestestricton 3>,R.C {a € AT|||{z](a,z) € RT,z € C}|| > n}

problems will be adressed below. Role InverseR ™ {(a,b) € AT x AT |(b,a) € RT}
B. Outline TABLE |
After an introduction into Description Logic (Section SYNTAX AND SEMANTICS OF ALCOHZ 5+ .

2) we develop a knowledge base for arbitrary roads and
intersections (Section 3). Geometric as well as semantical
Qualified number restrictions are only allowed for so-ahlle

20pen World semantics denotes that if something cannot beeprto be ~ Simple roles, that neither are transitive nor have any itigas
true, then it is not automatically assumed false. subroles.



B. Knowledge Bases These tasks are common during usage of the knowledge base

A DL knowledge base is a paif7,.4), where T is a set within an application. Only some of the currently availalide
of terminological axioms, called &Box and A is a set of SyStéms support ABox reasoning, and of these, only few stippo

assertional axioms, called @Box The TBox contains intensional &l Of the tasks stated above.
general knowledge about the domain and is built throughrasgio

that describe general properties of concepts. The ABoxucept D. Extension with Rules
extensional knowledge that is specific to the individualsthud

domain of discourse. So-called role chains are not supportedALCOHZr+ (D).

Role chains are compositiois o. . .oR,, of roles. Axioms relating
three or more objects are thus not possible, e.g. there isayo w

Terminological Axioms to statehasBrother o hasSon C Uncle, i.e. that the brother of a
Name Syntax  Satisfied if father is an uncle. Therefore, recently DL systems get antgde
with rules ([9]). With rules, the above fact can be expresised
first-order syntax:

(General) Concept inclusion CCD ¢T C DZ

Concept equality C=D cT=pT
i i Z Z
Role inclusion RCS R°cS hasFather(x, y) A hasBrother(y, z) — Uncle(z) 2
Assertional Axioms Rules are used extensively in the knowledge base developisi
- contribution.
Name Syntax Satisfied if
Concept assertion a: C at e 0t
Role assertion (@b R (aF,07) € RT [1l. ROAD NETWORK KNOWLEDGE BASE
Semantic Equality —a =1b a; = bi In the sequel, a knowledge baséB for road networks is
Semantic Inequality a # b a” #b introduced, which is formalized in Description Logic. ItBadXx

T describes general knowledge about road networks. The ABox
TABLE Il A initially captures partial information about a particulesad

or intersection acquired with onboard vehicle sensorss llater
ALCQHI 7+ KNOWLEDGE BASEAXIOMS. enhanced by new assertions obtained through ABox inferéftee
description of the rule basg is omitted here for brevity.

An interpretationZ satisfiesa TBox 7 iff, for each axiom in A. The TBox
7, the condition in the right column of table Il are met. Such an The TBox of the road network knowledge base introduces
interpretation is called anodelof 7: Z = 7. relevant concepts of a road network — namely roads, laneisieds
between roads, road markings and junctions — and the netatiat
Quantitative reasoning is supported by introduciogncrete  must hold between them.
domains INand [k are examples for concrete domains. They have 1) Taxonomy:All atomic concepts are introduced and arranged
been introduced in [2], where an overview of the syntax aneh a specialization hierarchy called a taxonomy, which &usiized

semantics of the corresponding axioms can be found. as a UML diagram in Fig. 2(a). Arrows denote inclusion axipms
. as e.g.
C. Inference Services g
Various standard inference services are provided for DLXEBO Highway C Road // All highways are roads 3)
(e.g. [1]: - '
« Satisfiability A conceptC is calledsatisfiablewith respect to 1o denote that individuals of the superclass have to be a remb
a TBox 7 iff there is a modelZ of T whereC™ # 0. of at least one subclass, one can usmwering axiominstead:

o SubsumptionA cogceptDIsubsumea concepC with respect
to a_TBoxT iff C* C D* holds for each modet. o /I A road is either an autobahn,
« Equivalence Two conceptsC andD are equivalent ifilC* = /I highway or an urban road 4)

D~ holds for each modef. Road = Autobahn LI Highway U UrbanRoad
These reasoning services are implemented in most DL reagoni

systems. They are useful during the development of a kn@eled pisjointnesshbetween subclasses can optionally be stated, too:
base to test whether a TBaxnakes sense".

With respect to ABoxes the following inference tasks are com Il The set of highways is disjoint from
mon: /I the set of urban roads and autobahns. (5)
« ConsistencyAn ABox A is consisteniwith respect to7 iff Highway C —UrbanRoad 1 -Autobahn
there exists a model df" that satisfies each assertion.ih
« Instance Checking/Entailment An ABox assertiona is 2) Mapping atomic concepts to geometric primitives:
entailed by A, written A | «, iff every model of 4 also Fig. 2(a) shows that nearly aRoadNetworkElements are also
satisfiesa. descendents oGeometricEntity, from which three generic types

« Instance Classification/Realization ProblemGiven an indi- of geometric primitives -GE1, GE2 and GE3 — inherit. The three
vidual a in A find the most specific concept of whiehis an  types are visualized in Fig. 3. Their free parameters anmahs
instance, writtend = a:C. of the concrete domaidR. These types are pairwise disjoint but

« Retrieval Given a concepC find all individualsa such that no covering axiom is used. This way, a concept can be of ng type
AE aC which means that it is composed out of several geometritiesti

« Conjunctive Query This task is similar to retrieval, but finds i.e. complex shapes can be built out of the primitive ones. gem
tuples of individual§ a1, . . ., a,) among which a set of stated exhaustive description of a preliminary version of this metry
role and concept assertions must hold. model can be found in [12].
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GeometricEntity has to supply its owndefintion of perspective"
as to what it considers north etc. of it. This is depicted Here

RoadNetworke————Junction GE1
\ zj 1.6 _| ane #————ArrowMarking
Road< 4) Constraints:Using the concept names and the spatial roles,
—Divider constraintsare formulated on the set of possible models. Without
(b) constraints, arbitrary concept and role assertions coelddserted.

The types of constraints roughly fall into two categoriggometric
Fig. 2. RoadNetwork TBox 2(a) Taxonomy, 2(b) partonomy. For clarity, constraintsand road building regulations A subset of geometric

only direct parts are visualized, although part-of is titares constraints are part-of constraintdTPP, TPP and their inverse)
which are arranged in partonomy The partonomy is visualized
w2 in Fig. 2(b), and written in DL as follows:

/l From all road network elements, only lanes
/I dividers and arrows can be part of a Road. (6)
Road C VNTPP.(Lane LI Divider U ArrowMarking)

Cardinality constraintscan be imposed on the parts as well:

Road C 3>;NTPP.Lanen J<¢NTPP.Lane @)

GE3

Compositionsare parts that cannot exist without their wholes,

Fig. 3. Geometric entities The three generic shapes that are used télenoted by a black diamond ended arrow, written as:

construct the road network. .
/I A lane is part of exactly one road.

Lane C 3_;NTPP™.Road 8)

3) Spatial representation:To capture the relative spatial  gegides the very basic geometric constraints captured én th

arrangement of scene elements, three types of spatialor&daire 5rtonomy many more geometric constraints of often muchemor

introduced (see Fig. 4): Theegree of overlapf two individuals  ¢omplex nature must hold, which have to be left out for brevit
is described using the common RCC8 representation ([22girT  one example is:

relative orientationis coarsely discretized into three intervals of

the unit circle, namely parallel, perpendicular, and aliiqTheir Il An exit lane is connected longitudinally

relative positionis discretized using the eight cardinal directions. /1 only to right or left turn lanes.

The types are introduced as roles with the possible valuggbe ExitLane C VisLongitudinallyConnectedTo. 9)
their subroles. A description of the spatial arrangemenbioé (RightTurnLane U LeftTurnLane)

individual with respect to another comprises three ABoxerol

assertions, one of each type. The set of subroles of eachisypeThe roleisLongitudinallyConnectedTo is asserted iff its parents
jointly exhaustive and pairwise disjoifdEPD). Unfortunately, this EC, Il and LON hold. The latter is asserted if eith& or S
property cannot be modelled WLCOHZ,+ (D). As a wor- are true (cf. Fig. 4). The rolesLaterallyConnectedTo is defined
karound, the complement of each subrole is explicitly idtrmed — analogously. From thesés[east|west|north|south]ConnectedTo
(e.g.notNTPP). Each individual pair is required to have either theare derived with the obvious semantics.



The road building regulations comprise many rules that humaabove described spline patches will then be explicated asdogic
drivers have internalized and that are used when appraadhin rules like:
unknown intersection. Few examples include:

/I A two lane road connected to a three lane road must

/1 Only right turn lanes can be right of right turn lanes. /I contain (cf.Fig.4(a)) some GE2-shaped lane (Cf-Fi9~3z11)
RightTurnLane C V hasEastNeighbor.RightTurnLane Road M 3—;NTPP.Lane r3_sisLongitudinally-
. ConnectedTo.Lane C INTPP.(Lane 1 GE2)
/I All autobahns and highways are one way roads.
Autobahn LI Highway = OneWayRoad This leaves room for uncertainty in the model, as, in thisygxa

it is not hardwired whether th&E2-shaped lane is the rightmost

/I A one way road is defined as a road (10)  or the leftmost lane of that road.

/I which has only one way lanes.
OneWayRoad = Road M (¥ NTPP.OneWayNL
V NTPP.OneWayS)

/I A one way road does not have a uturn lane.
OneWayRoad C VNTPP.-UTurnLane

The role hasNeighbor is asserted iffll and LAT holds, and if
both individuals are of the same type. A connectie@ is not
necessary. The subroles are derived analgousig@onnectedTo.

The hypothesis space that emerges from this combined
conceptual-geometrical intersection representationyi®iders of
magnitude smaller compared to a traditional, purely gedmet
representation, as the vast majority of hypotheses arartlgguled
out on the conceptual level using constraints. At the same,ti L,
complex geometries are representable with sufficient acguras '
shown exemplarily for an inner-city area in [12].

=
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B. The ABox

A non-stationary video camera and a commercially available (d)

digital map along with positioning devices are used as input

devices. All are readily availabe in our experimental vidsiq[25], Fig- 5. Map Preprocessing A full-fledged geometry model as described

[11]). However, arbitrary informative (in terms of the térmology  in [12] is generated, whose parameters are fed into the AB@). original

introduced by the TBox) sensors can be used, provided théjap, including the number of lanes, 5(b) shortening of thigimal roads

operate in a common coordinate frame. After a brief dedoript and pairwise insertion of additional roads in the middleb&aguently

of the data registration, the mapping from map and video tata called transition roads), 5(c) generation of lanes frondspand generation

ABox axioms is described. of transition lanes from transition roads pairwise betwedinconnected
lanes (for clarity only those for lang > are visualized). In the course of

1) Coordinate systems and data registratioflt computa- ~ reasoning most of these individuals will be classified\thTrespa_ssing.
tions are done within a cartesian, vehicle-centered, timedsional 5(d) geometry generation for each lane and each lane i@msy
coordinate system in the road plane (assuming a lodaltyearty. ~ @SSigning a geometric entity subconcept including cosodemain
A common frame is needed to enable the computation of spati¥lues (Fig. 3) to each individual. All lanes a@E1. For clarity,
relations between objects as introduced in sec. IlI-A.3pMata is Only few transition lanes have been visualized (sev&@ll, one
transformed using the common UTM projection from geogremhi GE2, and twoGE3)).
to cartesian — and thus length- and angle-preserving — twdes,
and then applying a map matching algorithm as describedlh [1 = Each generated patéhandd; is then included in the ABox by
As this version did not deliver lateral position estimateghim  statingl;:Lane and d;:Divider, respectively, and by adding their
the road, the ego lane has been manually assigned. Howawer, | types of geometric entity, e.g.;:GE3, and the respective concrete
precise estimates will become available in the future. domain fillers.

Video input data is transformed by using a calibrated camera Each road is added by stating
wrt the vehicle coordinate system, and by additionally kimow

the camera’s height above ground and yaw angle. r : Autobahn /I € Autobahn, Highway, UrbanRoad
) r, : TwoWayRoad // € TwoWayRoad, OneWayRoad
2) Map input data:Digital maps are produced for navigation  (r,,1) : NTPP /I for each lanel that is part ofry,
purposes only, which means that the road network topology is (12)
captured correctly, but not the geometry. Roads are reptesen For the transition roadsr; an axiom (tr;x,j) : NTPP™

the form of coarsely digitized straight line segments whet®t is added additionally, wherg is a generated instance of type
and end coordinates coincide with junctions. Junctionsnaeeely  Junction.
represented by a coordinate pair ([10]). Few more attribute To state that our map knowledge is assumed complete we add
available: the road class, ranging from freeway to pedestmall, the following local closed world assumptions
the allowed driving directions, and few more, which are nbt o ) _ L
importance here. Current work on the map provider side sl rmn : 39“-.';_2?5;2;1 Z m:ﬂ Z.: ||lz||
including the number of lanes per road. T o<y codi =
. . . rn : 3<xNTPP.Divider /[ with k = |D|
This data is used to generate geometry patches as shown i Fig e : g
; ; . rn : 3<;NTPPJunction /[ with | = |J|
At the moment, the geometry is generated according to sorad fix =
non-logic rules. Transferring this task to DL inferencehis subject The spatial relations of allGeometryEntity individuals with
of ongoing work. The rules implicitly used during generatiaf the  respect to each other, as introduced in Section IlI-A.3 civtiave

(13)



been previously computed, are added to the DL via statenwénts
the form (l4.4,14.; : 1) for all 4, j, for example.

3) Video input data: Video-based object detections are

straightforwardly integrated in the ABox with axioms like.g.
a; : StraightAheadArrow  // al is newly introduced. (14) / Q
ds : SingleDashedDivider &

and additional axioms stating the spatial relations to dfleo

. . . Fig. 6. lllustration of video-based object detectors.
GeometricEntities, like, e.g.

(a1,ds3) : DC [l a1 and ds are disconnected,
,ds) : |l /I parallel, 15 .. e .
Egldég E gnd ds is east ofay. 7 (13) B. Task 1: Determining lane types (Instance Classification)

. ) . . Several assertions are immediately available affessifying
which have to be computed (automatically in a straightfedva the jndividuals. Classification can be seen as a special obse
manner) outside of the DL system. As few reasoning as p@ssibintajimentwhere the entailed axiom is a concept assertion.
should be donevithin an object detection algorithm. For example,

don't hastily concludeAutobahn from a detectedGuardRail. Regyits 1-4:
Instead, exclusively state the detection result of spiseidlvideo

object detectors and leave the inference to the KB, whersethe KB [ 4.1 :0neWayN M BicycleLane N
topics are dealt with more thoroughly. In this example, ardua StraightAheadLane
rail can occur on highways and even on urban roads.
gnway l4.2 : OneWayN M CarLane (18)
It is worth mentioning that the ABox can be built incremelytal StraightAheadLane
online, just as usually more data about the intersectiohbgtome ls.3 : OneWayS

available during approach. Instead of recomputation of ABex

just an additional axiom has to be added. la.4: OneWayS

All classification results can be automatically added toABex.
IV. EXPERIMENTS Although only the classification results fbane individuals of road

The knowledge base is denoted wiki3 = (7, A, R). T T4 aré given in Eqg. 18, all ABox individuals, e.g. all divideds,
is of the form described in sec. Ill-A4 is initially empty. The are classified this way. . .
description of the rule bas® has been omitted for brevity. After a ~ Results were given here without proof. To provide a better
description of the features detected by the video sensorttamd understanding on how additional assertions are inferreproaf
map, classical deduction is used to draw conclusions atimut tSketch for a particular entailment query is given in the next
properties of the intersection. At first, the types of sevéames Subsection.
are deduced using instance classification. Then it is shawnthe . - L, .
ego lane of the vehicle is inferred using entailment. Evelyitis - 1aSk 2: Determining the vehicle’s ego lane (Entailment)

demonstrated how both the sensor data and the domain krgevled The ego lane of our vehicle is not determined by the positigni

can be tested for inconsistencies. device. However, the ego lane can be deduced from the aleilab
domain knowledge and the sensor data. Querying for assertio
A. Evidence that areentailedin this knowledge base yields:

We are approaching the intersection depicted in Fig. 1 (lan

surveying office ground truth map) and 5(a) (digital map)eTh ﬁesultsz

digital map is automatically processed to generate ABoxrasi /I The vehicle is on lané; ». (19)
as described in sec IlI-B.2. KB = (egovehicle,ly.;) : NTPP™ Jiff i =2 .
The map matching correctly yields that the vehicle isrgn
P g vy " Proof sketch:
egovehicle : Vehicle I create new vehicle The TBox of the B contains the following statements:
(egovehicle,rs) : NTPP™ /[ is inverse proper part of roaes . . . )
(egovehicle,ry) : Il I/ is parallel to roadr, /I Marking50-20 is a divider for bicycle lanes.
(16) Marking50-20 C JisLaterallyConnectedTo.BicycleLane
The object detectors described in [5] and [26] have processe // This type of arrow only occurs on car lanes.
an image taken one second before the one shown in Fig. 1(a) Arrow C VNTPP~.CarLane
and detected the two dividers and the arrow shown in Fig. & Th I/ Bic Je lanes are not next to each other
following statements are thus additionally automaticaljded to bicy . )
. BicycleLane C VYhasNeighbor.CarLane
the ABox: (20)
arrow, : StraightAheadArrow These deductively lead to:
divider, : RoadCurb
dividers : Marking20-50 Result 5a:
/I'known spatial relations (Fig. 4). /I The driver’s lane is a car lane (fortunately :) ),
/I'wrt all other geometric entities: 17 /I and right of it, there is a bicycle lane.
(arrows, egovehicle) : || /I parallel, KB &= egovehicle : INTPP~ (CarLane 1 (@1)
(arrow, egovehicle) = S II'south of, JhasEastNeighbor.BicycleLane)

(arrown, egovehicle) : DC /I and disconnected.
From the third axiom in Eg. 20 we know as well:



Result 5b: will oftentimes lead to the withdrawal of hypotheses. Thisgess
/I Right of the bicycle lane there can only be a car lane is also known adelief revision Second, deduction cannot create
KB = egovehicle : INTPP™ (CarLane M ' new individuals. Transferred to scene interpretatiors #mounts to

goves iy ) (22)  delivering a complete low-level a priori segmentation of ttene.
JhasEastNeighbor.(BicycleLane 1 ; -
VhasEastNeighbor.Carl ane)) However, the past 50 years of research in computer and lxalog
g ' vision have shown that a purely data-driven segmentationois

The remaining necessary TBox axioms are described onlyatixt feasible, as already low-level segmentation is cruciaépehdent

for brevity: A lane with a straight ahead arrow is a straighead on top-down input from higher processing levels ([14]).

lane. Right neighbors of straight ahead lanes are onlygétrai  In accordance with [18], [20], [24], we conclude that claasi

ahead or right turn lanes. Bicycle lanes do not occur betia®es deductive reasoning is not sufficient in general for reatldvo

of the same turning lane type. Therefore, scene interpretation. Instead, deductive and hypothetiesoning
must be combined. This way, the soundness of deduction, as

Result 5c: demonstrated in this contribution, can be united with theerfar-

/I Right of the bicycle lane can only be a right tumn lane. reaching conclusions possible in non-monotonic reasorhiogical
KB = egovehicle : INTPP~.(CarLane M model constructiorcan be seen as an instance of hypo-deductive

reasoning. From the model construction perspective, scgre
pretation amounts to incrementally constructing a (pBrtamical
(23) model of the TBox axioms that is consistent with the ABox axto

Roadr; is a one way road towards the junction. Therefore, ([18], [24]).

JhasEastNeighbor.(BicycleLane N
VYhasEastNeighbor.RightTurnLane))

cannot have any right turn lane at all. Therefore, The development of a model construction algorithm that is
suitable for scene interpretation is the focus of ongoingkwo
Result 5d: The model construction algorithm enhances the reasonipg-ca

bilities described in this chapter biyncrementally hypothesizing
new individuals, i.e. lane patches in this example, whictehaot
. . (24) been asserted in the ABox yet, based on the evidence and on
Bherl]sEastNelg_htr)]cl))r.(BlcycIeLane|‘| previous hypotheses. Additionally, theet of all modelsi.e. the
—JhasEastNeighbor)) set of all plausible intersection hypotheses in this examgan be

From this, together with the closure assumption from Eq. £ wconstructed if desired.
can deductively infer that the ego vehicle is a proper part of In general, a model construction algorithm proceeds ineclos
(geometrically, concerning its projection on the road plasee analogy to theTableau Calculusalgorithms that are used for
sec. llI-B.1)) lanels 2. O satisfiability testing of TBoxes and consistency testingABloxes
This consequence is confirmed by looking at the correspandir(cf. [1]). They apply a set of so-called consistency-presey
land surveying office map form Fig. 1(b). As entailment is acompletion rules to the original ABox. The presence Lofand
standard reasoning task this fact is obtained instanthh vaih  J<, symbols in the TBox triggers so-called non-deterministies
appropriate reasoner. which split the ABox in a depth-first-search way. The process
stops when no more rules can be applied or when an obvious
Likewise, many further assertions about the intersectiom acontradiction occurs. In the first case the generated madisffies
entailed in the knowledge base. They can be viewed as inferr@ll TBox and all ABox axioms. The latter proves that the knedge
constraints on the intersection hypothesis space. Thgsetigses base is inconsistent.
that have not been ruled out can then be tested using vagénts  Although tableau calculi are suitable to scene interpi@tass
the classical lane recognition methods described in thiedattion.  new individuals are generated and as — in principle — thefsall o
An initial hypothesis testing algorithm has been developed2].  models of the knowledge base can be generated, some madifiat
. . . e are necessary. Implementations of tableau calculi do ngpubu
D. Task 3: Detecting Inconsistencies (Satisfiability) the model but a mere yes/no answer, they are highly optimised
Inconsistencies in both TBox and ABox are detected strioght and therefore produce rathgcanonical models®, and they stop
wardly by checking for TBox satisfiability and ABox conistgn  after having found one model, preferring simpler ones. lansc
respectively. Defining a new TBox concept by stating interpretation, a preference for a simple model makes nsesemd
in many cases it is desirable to return all models insteadsifgne.

/I There is no more lane right of the bicycle lane.
KB [ egovehicle : INTPP™.(CarLane N

TwowayAutobahnLane = (25)  [16] have shown an initial sketch of how a model constructionld
TwoWayLane 1 3NTPP™.Autobahn be implemented on top of theARER reasoner, using its available
or, alternatively, stating in the ABox, that inference services and query language.

lane; : TwoWayLane M aNTPP ™~ .Autobahn (26)

will immediately lead to an insatisfiable TBox in the formerse B- Probabilistic Logic
as TwoWayAutobahnLane will never have any instances, and to

an inconsistent ABox in the latter. Even though non-determinism is common in a DL knowledge

base due to the presenceand 3<,, symbols and due to the open

V. EXTENSIONS OF CLASSICAL LOGIC world semantics, this is not sufficient in general to describe
. uncertainty in both the domain knowledge and the sensor. data
A. Model Construction If an interpretation violates only one axiom of the KB, thep b

Classical logic is confined to pureljeductive reasoningvhich  definition it cannot be a model of the KB anymore. Instead, it
poses limits to its expressivity. First, once a conclus®sustained is desirable to ask for theamount of entailment’ of a formula.
by a valid argument, this argument can never be invalidatednat- Future work will focus on using the developed knowledge base
ter which new assertions are added. This is knowmesotonicity  with a probabilistic description logic reasoner (see elg, [16])
This contrasts the modern understanding of vision, thabthgses for an overview), additionally supplying TBox and ABox amis
are be generated based on partially missing evidencgiviping to  with attached probabilities which reflect the amount of utaisty
conclusiong[6]), which implies that the arrival of new information in the respective statements.



VI. CONCLUSION
This contribution argues for a general paradigm shift talsea

[12]

stronger acknowledgement of the role of knowledge enginger [13]

in real world high-level scene interpretation tasks. Up &abed no
satisfying knowledge representation and reasoning fraevior
such estimation tasks exists.

[14]

We introduced Description Logic extended by rules as a know-

ledge representation formalism for the sensor-based staaeting
of complex roads and intersections. It was demonstratedhiginy
incomplete sensor data, coming on various abstractiorrdaygan

[15]

be fused within one coherent and semantically sound framewo [16)

Data can be processed iteratively on arrival, not requiaimgcom-
putation of the hypothesis space. The stated domain kngeléd
extendable to other domains like traffic signs, traffic p#pants,

etc. Deductive reasoning was used to constrain and query tHe]

intersection hypothesis space, and to detect inconsisteit the
sensor data as well as in the stated domain knowledge.

In summary, the more recent developments in logic provid

a highly promising framework for developing, constrainiagd

querying the large and complex hypothesis spaces that pieaty

for image understanding tasks.

8]

Future work includes refinement of the spatial relationsy an[19]

embedding the existing knowledge base and reasoning ssrvia
model construction framework, which is capable of hypaitieg
new individuals and of non-deterministic assertions, tvémental-
ly build the set of all logical models of an intersection. Bitelly,
this framework will be ported to a probabilistic logic.
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