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Abstract— Estimating the ground plane is often one of the
first steps in geometric reasoning processes as it offers easily ac-
cessible context knowledge. Especially unconstrained platforms
that capture video from egocentric viewpoints can benefit from
such knowledge in various ways. A key requirement here is
keeping orientation, which can be greatly achieved by keeping
track of the ground. We present an approach to keep track
of the ground plane in cluttered inner-urban environments
using stereo vision in real-time. We fuse a planar model fit in
low-resolution disparity data with the direction of the vertical
vanishing point. Our experiments show how this effectively
decreases the error of plane attitude estimation compared to
classic least-squares fitting and allows to track the plane with
camera configurations in which the ground is not visible. We
evaluate the approach using ground-truth from an inertial
measurement unit and demonstrate long-term stability on a
dataset of challenging inner city scenes.

I. INTRODUCTION

A fundamental requirement for any robotic system which
aims at perceiving and understanding unknown environments
is the ability to acquire information about the coarse scene
structure. Being able to distinguish salient foreground objects
from navigable background space constitutes one of the
challenging tasks for such systems. Navigable space can
often be seen as a continuous surface in a limited area
around the point of view. This especially holds in structured
environments. Consequently, the ground surface is often
expressed through geometric models. These representations
offer simple but effective context knowledge which can
be incorporated into subsequent reasoning steps, as e.g.
demonstrated in [1]. In this work we treat the measuring and
tracking of such model from a free moving stereo camera
system.

In mobile robotics plane parameter tracking is most fre-
quently treated from mono-vision by tracking sparse features.
The homography induced by the surface seen from different
viewpoints is usually estimated to this end [2] and tracked
with particle [3] or Kalman filters [4]. Sometimes the interest
is not the plane itself but the camera motion [5], [6].

Using stereo vision or depth data, ground surface estima-
tion is often found as preprocessing step towards free-space
estimation or obstacle detection, where regions of interest
are created based on the elevation over ground.

Surface modelling is an important building block in the
context of autonomous vehicles to estimate drivable free-
space. A popular method was introduced by Labayrade et al.
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Fig. 1: Two typical inner-urban street scenes.

using the v-disparity [7], a disparity row histogram in which
planar surfaces can be obtained by 2D line fitting. In its plain
form it requires to compensate the camera roll beforehand,
which makes it difficult to apply in unconstrained camera
setups. When vehicle fixed camera attitude is given, the
necessary adoptions to compensate changes in roll and pitch
over time are comparably small, but often more expressive
geometric models like splines [8] or clothoids [9] are fitted
here due to the larger range of interest.

In more unconstrained setups planar surfaces or ground
planes are usually fitted in the disparity domain [10], [11],
or can also be estimated directly from stereo images [12].
When the camera motion is small enough, the last known
plane parameters are a sufficient starting point to find the
new parameters by refinement [13]. In a similar setting to
ours, [14] assumes small camera roll and uses the v-disparity
domain to find ground support points for a subsequent least-
squares plane fit. All these approaches still require at least
a portion of the ground to be visible in every estimation
step. Strong camera motion is not taken into consideration,
tracking plane parameters only succeeds as long as inter-
frame camera pose changes are small enough and the ground
is still the dominant plane.

In this work we consider vision systems that perceive the
environment from an egocentric viewpoint. In our case this
is a calibrated stereo camera mounted close to a person’s
head. There are various challenges of such unconstrained
platforms that existing approaches usually do not deal with:
First, camera motion is too strong to use the last known
estimate as initial guess for parameter optimization as in
[13], [12]. Secondly, a bad camera elevation angle often leads
to invisibility of the ground for many consecutive frames.
Approaches that require the ground to be the dominant plane
cannot deal with such situation and also fail in cases of
total occlusion due to objects and scene clutter. Our goal
is to estimate and track the ground from a dense but low-
resolution stereo disparity image under these conditions.



The next section gives an overview of the components
we use to achieve this goal. In Section III we explain our
filter framework which fuses all information into the ground
plane estimate. We evaluate the approach in Section IV on
datasets of cluttered inner-urban scenes with ground-truth
measurements from an inertial measurement unit.

II. SYSTEM

We model the ground as a planar surface, which appears
to be a valid assumption in our scenarios, considering a
limited range of interest of around 15m. To obtain a param-
eter prediction with strong camera movement we estimate
the camera motion by visual odometry. We then use two
complementary measurements to correct the prediction. First,
we find an optimized plane using a robust least-squares fit in
disparity data. Secondly, we estimate the vertical vanishing
direction, which coincides with the normal vector of the
(non-inclined) ground plane in a calibrated camera. This sec-
ond measurement allows us to carry out a correction without
the ground plane being actually visible. The idea is probably
most similar to [15], here the vanishing directions are used
to constrain a homography estimation from omnidirectional
images. The individual steps are detailed in the following.

A. Visual Odometry

The process of estimating the motion of a camera solely
from image data is commonly referred to as visual odometry
(VO). The general goal is to find the transformation in all six
degrees of freedom that relates the camera poses of frame
k − 1 and k. Various standalone implementations exist, an
overview can be found in [16].

In this work we employ libViso2 [17]; the frame to frame
transformation is provided as a translation vector t and a
3x3 rotation matrix R which can be written as an affine
transformation T =

[
R t
0T 1

]
. Since this estimation is done

incrementally it is inevitably subject to drift.

B. Iterative Least-Squares plane fitting

We represent a plane in uvδ space as

αun + βvn + γ − δ = 0 (1)

using normalized image coordinates un = u−cu
f , vn = v−cv

f ,
with camera focal length f and principal point (cu, cv).

The initial ground plane is found using the RANSAC
scheme by repeatedly sampling planes through 3 random
points. A plane is evaluated by counting the support points
with point-to-plane distance |αun+βvn+γ−δ| smaller than
a disparity margin ε around the plane.

Having obtained an initial solution we can optimize the
parameters using a robust iterative least-squares estimator.
The set of uvδ plane support points is selected by validating
the plane equation |αun + βvn + γ − δ| ≤ ε. The optimized
uvδ-plane parameters are then result ofαβ

γ

 = (HTH)−1HTy (2)

with H being the measurement matrix [un1..n
vn1..n

1] and
y the corresponding disparity measurements. We apply the
least-squares estimation a few iterations until no considerable
update in the parameters remains.

C. Vanishing point estimation

Given a calibrated camera system, lines in 3D-space are
projected to lines in the image plane. The intersection of
projected parallel space lines is known as vanishing point.

In the calibrated camera case, each vanishing point defines
a direction vector originating from the camera principal point
cu, cv . If we assume a non-inclined ground plane, the vertical
vanishing direction coincides with the normal vector of the
ground plane.

We estimate this vanishing point following the approach of
Tardif [18]. Based on a Canny edge detector, edge crossings
are suppressed and connected points extracted by flood fill
region growing. The edge hypotheses are split into straight
segments. The remaining segments longer than 30px are
fitted with a line model and constitute the edge list ξ.

From ξ we seek the subset of edges ξvert, which support
the expected direction of the vertical vanishing point. We
initialize this direction with the current ground plane normal
vector n. Once the vanishing point is initialized we predict
its direction using the visual odometry rotation R between
frame k and k − 1 as

n−V P,k = R nV P,k−1 (3)

To evaluate the support of an edge ξj for a given vanishing
point nV P we define its error as the orthogonal distance
Dj(nV P , ξj) of one of the line endpoints to the line connect-
ing the vanishing point with the edge centroid [18]. All edges
with D < εV P are considered when updating the vanishing
point through minimizing

n+
V P,k = min

nV P

∑
ξj∈ξvert

Dj(nV P , ξj) (4)

Internally we represent the vanishing direction nV P with
spherical coordinates (θ, ϕ) and also perform minimization
in this domain.

III. FILTER

The aim of our filter framework is to fuse all measure-
ments described in the previous section. Note that these
input features are selected in such a way that they provide
stochastically independent and complementary information
about the ground plane. A recursive estimator is desired to
enable access to the current best estimate and retain real-
time capabilities. A Kalman filter fullfills these requirement
and is chosen here. However, we need to fuse measurements
in camera coordinates (plane fit) with measurements in
world coordinates (vanishing direction, egomotion T ), the
transformation between which is non-linear. Hence, we apply
an extended Kalman filter (EKF) with state transition and
observation model

xk = f (xk−1,uk, wk) , (5)
zk = h (xk, vk) , (6)



xk ∈ Rn being state of the system at time tk with associated
measurements zk ∈ Rm and f (·) and h (·) being the non-
linear process and measurement functions with wk and vk
the process and measurement noises.

Our system state x = [θ, ϕ, d]T consists of the ground
plane normal n in spherical coordinates θ, ϕ and the
orthogonal camera to plane distance d in Euclidean
XY Z space.

Prediction We use the visual odometry transformation T
between last frame k − 1 and current frame k to obtain the
predicted plane parameters for the current view. An XY Z-

plane pk−1 =

[
n
d

]
transforms via

pk =
(
T−1

)T
pk−1, (7)

where (
T−1

)T
=

[
R 0

(−RTt)T 1

]
. (8)

The according process function f (·) uses T as control
input and is calculated as

x−k = f([θ, ϕ, d]T, T ) (9)

= gsph

((
T−1

)T
g−1sph

(
[θ, ϕ, d]T

))
(10)

where gsph (·) transforms the Euclidean plane representa-
tion into spherical coordinatesθϕ

d

 = gsph

([
n
d

])
=

 arccos(nz)
atan2(ny, nx)

d

 (11)

Measurement prediction The current state prediction x−k is
used as starting point for the iterative least-squares estimation
as described in section II-B. This requires to transform x to
normalized uvδ plane parameters [α, β, γ] via

αβ
γ

 = −Bf
d

n = guvδ

θϕ
d

 = −Bf
d

sin (θ) cos (ϕ)sin (θ) sin (ϕ)
cos (θ)


(12)

with stereo baseline B and camera focal length f .
Correction From (2) we obtain a measurement
mLS = [α, β, γ]T. The vanishing point estimation according
to Section II-C results in a measurement mV P = [θ, ϕ]T.

Using guvδ(x−k ) as filter measurement prediction we apply
a correction step with mLS . The vanishing direction mea-
surement mV P is directly applied as additional correction
step. Alternatively both can be combined in one step. As
long as the camera elevation w.r.t. to the ground plane stays
below a fixed angle (in our setup 75◦, generally depending
on the vertical camera opening angle) the ground plane is
still visible and a least-squares ground plane measurement
can be obtained. In this case we correct the state using both
measurements. Whenever the camera is tilted further away
we only consider mV P to correct the ground plane attitude.

Fig. 2: Measurement setup for parameter variance estimation. Left:
plane support points are coloured green, edges supporting the
vertical vanishing point are highlighted pink. Right: Corresponding
disparity image at half-resolution.

We validate the correction by setting a validation gate
around e2 = rTS−1r with update residual r and measure-
ment prediction covariance S.

IV. EXPERIMENTS

Our experimental setup consists of a calibrated stereo rig
with a baseline of around 18 cm and wide-angle lenses of
3.5 mm focal length mounted on a helmet. Having real-
time applicability on a mobile platform in mind we capture
images with 640x480px at 30 fps. We use libViso2 [17]
to estimate the camera motion and acquire the disparity
with off-the-shelf estimators like the OpenCV semi-global
matching (SGBM) at half resolution (320x240px). Visual
odometry and disparity estimation are done parallel with
around 15 fps, the subsequent vanishing point estimation and
least-squares fitting are carried out with the same rate on
an i7 dual-core notebook with 2.4GHz. All experiments are
done in real-time, i.e. frames are skipped when processing
is slower than the capture rate of 30 fps.

A. Process and Measurement noise

In order to parameterize the process and measurement
noise wk and εk of the EKF we empirically estimate the
measurement variances of the least-squares parameter fit
for α, β, γ, the vanishing point direction θV P , ϕV P and
the uncertainty in estimated camera motion in a set of
experiments.

For the uvδ-plane fitting we re-estimate the plane parame-
ters 1000 times from a fixed camera position (see Figure 2),
using the same initial solution for the support point selection.
In the same manner we obtain variances for θV P , ϕV P by
re-evaluating (4) from an initial solution.

For a uvδ-plane fitted in a half-resolution SGBM disparity
image the parameters vary with
σα = 0.038 σβ = 0.045 σγ = 0.016.
The vanishing point direction varies with
σθV P

= 0.0007 σϕV P
= 0.0004.

The process noise needs to cover the uncertainty in
parameter prediction using the estimated camera motion.
While there is no straight forward uncertainty estimation for
each single visual odometry estimation, we approximate its
standard deviation of rotation and translation by evaluating
short sequences on the KITTI [19] odometry dataset and
compare it to groundtruth data. We find
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Fig. 3: Ground plane parameters (θ, ϕ, d) predicted by visual
odometry without correcting drift. Dashed lines are the IMU ground
truth, solid lines the predicted parameters.

σR = 0.00073 σt = 0.046.
Using process noise distributed with σR for θ and ϕ and

σt for the distance parameter d puts much weight onto the
prediction. In situations, in which the actual uncertainty is
larger this quickly leads to tracking-loss, since the drifting
prediction cannot be corrected fast enough. Due to our
unconstrained platform the accumulated odometry error adds
up much higher than in the KITTI benchmark used for
evaluation, we therefore increase the process noise to σR =
0.001 and σt = 0.05.

B. Evaluation against IMU Ground-Truth

We mounted an inertial measurement unit (IMU) close to
the camera setup in order to evaluate the accuracy of the
ground plane attitude (θ and ϕ) estimation. The IMU used
is an Xsens MTi-300 which fuses the sensor measurements
internally into a global orientation in form of a rotation
matrix RIMU . From RIMU we can extract the vector of
gravity, which corresponds to our estimated ground plane
normal. As long as the unit is exposed only to short trans-
lational accelerations as in our case, the gravity referenced
IMU readings can be considered free of drift and are precise
enough to be used as basis for comparison here. The IMU is
externally calibrated to the left camera through a rotation M ,
which allows to determine the vector of gravity in camera
coordinates nIMU as the third row of MRIMU . We apply
(11) to convert it to the spherical representation.

We captured a dataset of 4740 frames at 30 fps along with
the IMU orientation for every camera frame. Some example
frames are shown in Figure 6.

Filter Prediction: Figure 3 shows the parameter prediction
using visual odometry. After initializing the ground plane
using RANSAC in frame 3000 we predict the parameters
but do not carry out any correction. The parameter drift
becomes obvious after a few seconds. The drift in attitude
leads to a strong drift in the distance parameter d, which is
caused by the straight horizontal translation that is applied
to the camera. If this drift is not corrected, the support point
selection for least-squares fitting quickly becomes erroneous
and eventually the plane track gets lost.

TABLE I: Absolute angular deviation in degrees from IMU ground-
truth for different disparity estimators compared to conventional
least-squares plane fitting as baseline.

θ ϕ
SGBM1 LS baseline 1.25± 1.04 2.04± 1.21
Filter LS + VP
SGBM 0.64± 0.54 0.53± 0.69
libElas2 0.50± 0.40 0.52± 0.52
libToast2 [20] 0.82± 0.62 0.54± 0.65
libToast2 w/o subpix 0.81± 0.65 0.53± 0.59

θ
θLS baseline

−3 +3

ϕ ϕLS baseline

−3 +3

Fig. 4: Distribution of angular error in θ and ϕ with and without
inclusion of vanishing direction. The roll parameter ϕ benefits most,
since objects in lateral direction often disturb the least-squares fit.

Filter Correction: For each filter update we measure the
absolute deviation in degrees from the IMU ground truth
for both attitude parameters. We evaluate the tracking over
the whole sequence of 4740 frames with different disparity
estimators, Table I shows the mean and standard deviation.
As baseline for comparison we use the mere least-squares
plane fit on the predicted plane as filter measurement, this
corresponds to conventional ground plane fitting methods
as in [10], [11] or [14]. The results after adding the ver-
tical vanishing direction are listed in the box below. Both
attitude parameters benefit significantly from the additional
measurement, particularly the roll parameter ϕ becomes
more accurate. Figure 4 shows the distributions of parameter
deviations, where this also becomes apparent. This effect can
be explained by different facts. First, the ground plane is
often occluded by cars or buildings in lateral direction which
disturb the least-squares fit due to imprecise support point
selection. Secondly, the planar surface assumption often does
not hold perfectly, e.g., when walking on a slightly elevated
pavement, resulting in tilted measurements. See Figure 5 for
an example. This section of the dataset lasts around 1000
frames. The absolute errors here are 1.57◦ for θ and 3.08◦ for
ϕ with the baseline approach and decrease to 0.73◦ for θ and

1http://opencv.org/
2http://www.cvlibs.net/software/libelas/

ϕϕLS baseline

−3 +3

Fig. 5: Effect of planar surface model violation with and without
vanishing direction measurement. Ground plane support points are
coloured green and the plane is overlayed schematically. The IMU
ground-truth virtual horizon is drawn in red, the measured virtual
horizon in green. The according error distribution for a sequence
of 1000 frames around the depicted scenario is shown on the left.
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Fig. 6: Ground plane parameters (θ, ϕ, d) for the evaluation dataset corrected with our filter combining least-squares ground plane fit (LS)
and vanishing direction (VP). The top row contains exemplary frames from the sequence.

0.41◦ for ϕ after adding the vanishing direction. Finally, the
filtered parameters for the whole dataset are plotted in Figure
6.

C. City dataset

To test the long-term stability we ran the ground plane
estimation on a dataset consisting of 45 minutes walking
through inner-urban scenes, which was mostly captured on
narrow side-walks between house facades and cars, but also
contains some vast spaces with persons and objects fre-
quently occluding the free view onto the ground. The lighting
conditions were challenging with considerably over- and
underexposed image areas that lack disparity measurements.
Figures 7, 8 and 9 contain some example shots. The ap-

Fig. 7: Example shots from the city dataset.

proach enables the system to keep track of the ground plane
throughout the whole sequence (except for major violations
of the continuous, non-inclined surface assumption, as e.g.
on stairways).

The dataset we used for quantitative comparison in Section
IV-B does not contain scenes with total occlusion or the
ground plane out of view. This is different here and leads
to various situations in which the baseline least-squares
approach looses track. In the right scene of Figure 8 a passing
car blocks the view onto the street for a couple of frames, the
disparity clutter causes the plane to drift away. The vanishing
direction effectively helps to keep the correct attitude in such
cases. Figure 9 demonstrates a sequence with the ground out
of view due to bad camera inclination. The drift in prediction

Fig. 8: Typical failure examples without vanishing point correction.



Fig. 9: Sequence with ground plane not in free view due to camera
inclination. Only the vanishing direction is considered here to
correct the plane parameters.

during this situation is too strong to remeasure the plane
successfully afterwards again, when the vanishing direction
is not considered. Our filter approach dismisses the erroneous
plane fit and uses only the vanishing direction in such case.

V. CONCLUSION

In this work we present an approach to track a planar
ground plane from an unconstrained stereo camera platform
in inner-urban environments. The proposed framework is
able to deal with challenging situations in which existing
approaches fail. These situations include strong camera mo-
tion and frequent invisibility of the ground due to bad camera
orientation or heavy occlusions.

We propose to take visual odometry into the tracking loop
in order to obtain a parameter prediction for the current
estimate. To correct the prediction drift we combine two
complementary measurements: A traditional least-squares
plane fit in disparity data when the ground is visible,
augmented by the direction of vertical scene structures to
provide a measurement of the ground plane normal vector.
Note that the direction of vertical scene structures does not
depend on the visibility of the ground and can therefore be
extracted even if the ground is occluded or out of sight.
Moreover, even if the ground is visible and a least-squares
fit can be calculated the additional feature of vertical scene
structures provides a second, stochastically independent cue
for estimation of the ground plane and thus, improves the
ground plane estimation accuracy. On a sequence of cluttered
inner-urban street scenes we underpin this by comparing our
results quantitatively to ground-truth taken from an inertial
measurement unit and successfully test the long term stability
on a 45 min sequence without loosing track of the ground.

Current work focuses on extending the framework to
unstructured environments and situations which violate the
non-inclined and continuous ground surface assumption, as
for instance in case of drop-offs or stairways.
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