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Abstract: In recent years catadioptric systems, consisting of lenses and mirrors, have gained increasing popularity for the
task of environmental perception. However, focusing of such systems is a common problem as it is often not
considered during the design process of the optical system.
This paper presents a novel approach to address focus in the design of optics with rotational symmetry. The
approach does not only adress the construction of catadioptric systems but can also be used to calculate
conventional optics. The approach is based on the calculation of the first order approximation of meridional and
sagittal focus using differential geometry. Additional conditions like a single-viewpoint can be considered as
well. The derived equations are combined to a set of ordinary differential equations that is used to calculate the
shape of the optical system via numerical integration. The design concept has been verified by multi-chromatic
ray tracing simulations.

1 INTRODUCTION

In the field of computer vision, environmental percep-
tion is an important task. For this, the possibility to
capture a large field of view is often desirable. This
can be performed using either ultra-wide-angle lenses
or catadioptric systems consisting of both, lenses and
mirrors (Benosman and Kang, 2001). For the task of
capturing 360◦ panoramic images catadioptric systems
are more advantageous as their field of view can be
influenced in a wider range.
However, a big problem of today’s catadioptric sys-
tems is their focusing as this is not considered during
system design. Instead common designs only deal
with the geometric mapping that describes the relation
between image points and corresponding lines of sight
(Hicks and Bajcsy, 2000; Stürzl and Srinivasan, 2010).
Neglecting wave effects, the light transport through
an optical system can be described using light rays
(Malacara and Malacara, 2003). The geometric map-
ping is defined by the principal rays which pass
through the center of the aperture.
To adress focusing we have to deal with beams of rays.
The rays of a single beam can be characterized as me-
ridional, sagittal or skew. For systems with rotational
symmetry, the rays that lie in the meridional plane
spanned by the principal ray and the optical axis are
called meridional rays. The sagittal rays are the rays
that propagate in the sagittal plane that is perpendicular

to the meridional plane and contains the principal ray
(see Figure 1). The sagittal plane changes whenever
the principal ray is reflected or refracted. Rays that are
neither meridional nor sagittal are called skew.

Figure 1: Reflection of a principal ray (black) at a surface
of revolution R (blue) obtained by rotating a curve C (t)
around the z-axis. r1 and r2 denote the direction vector of
the incident and reflected ray. The surface’s normal vector
at the intersection point P is colored blue. The red plane is
the meridional plane and one of the sagittal planes is shown
in green. The red and green curve are the corresponding
meridional and sagittal intersection curve respectively.



In general the focus of the meridional rays differs from
that of the sagittal rays and hence not all rays of a
beam focus in one single point. This effect is called
astigmatism (see Figure 2).

Figure 2: Simulated defocus blur of a single mirror optic
attached to a conventional lens optic. The black dot in each
sub-image marks the image center. The middle plot shows
spots of several beams of rays along the radial image axis
that can be understood as blur kernels dependent on the
position. Related sample images with vertical and horizontal
stripes visualize the defocus blur. At the meridional focus
point the rays of one beam focus in radial direction, at the
sagittal focus point they focus in circumferential direction.

Baker and Nayar introduce the problem of defo-
cus blur for catadioptric systems (Baker and Nayar,
1999). Swaminathan uses caustics to describe the fo-
cus (Swaminathan, 2007). However both approaches
only deal with meridional focusing, leaving the sagittal
focusing disregarded. Furthermore, the results are not
used in a constructive way to improve the shape of the
optic.
This paper presents an analytical way to calculate both
meridional and sagittal focusing in a first order ap-
proximation using differential geometry and Fermat’s
principle.
A common approach when designing conventional op-
tical systems is to use an iterative scheme of ray tracing
simulations (Glassner, 1989) followed by draft rating
using a so called merit function. In doing so, an initial
system draft can be optimized until a minimum of the
merit function has been found (Smith, 2004). However,
this approach is time-consuming and the quality of the
optimal draft depends on the number of parameters
used to describe the surfaces.
This paper presents a novel approach to design focus-
ing optics that directly uses the analytical description
of meridional and sagittal focus. In addition, relations
for the geometric mapping can be considered - for
example to ensure a single-viewpoint which is essen-
tial to be able to remap the image to other projection
models without knowledge about the scene depth. All
equations are combined to a system of ordinary dif-
ferential equations describing the shape of the optical
system. This ODE system can be solved quickly via
numerical integration using standard methods like the
Runge-Kutta methods without the need of ray tracing.

2 DESCRIPTION OF FOCUSING
AT BOUNDING SURFACES

The analytical description of focusing at refracting and
reflecting surfaces (referred to as bounding surfaces)
is a central point of this paper. This section shows
how the focusing characteristic of a beam of rays can
be calculated using Fermat’s principle. A first order
approximation of a beam’s focusing characteristic is
given by its meridional and sagittal focus point. These
focus points describe where rays focus that propagate
within the meridional plane and sagittal plane respec-
tively. They can be calculated in closed form using the
intersection curve of surface and corresponding plane
(see Figure 1).

2.1 Intersection of Bounding Surface
and Meridional/Sagittal Plane

In the following, we examine a surface of revolution
R which is defined by rotating a curve

C (t) = (0, ρ(t), ζ(t))T (1)
around the z-axis (optical axis). To calculate the focus-
ing induced by surface R using Fermat’s principle, we
need its intersection curves with meridional and sagit-
tal plane. Without loss of generality we can assume
x = 0 for the meridional plane. The intersection point
of a principal ray and surface R can be expressed as
P = C (τ). The normalized direction vectors of the
incident and refracted principal ray at this point P are
defined as r1 = (0, r1y, r1z)

T and r2 = (0, r2y, r2z)
T re-

spectively. In the following, derivatives with respect
to a certain parameter are marked with this parameter
as a subscript, arguments are omitted for the sake of
legibility, e.g. ρt := ∂ρ(t)

∂t

∣∣∣
t=τ

.
At each intersection point P we can define the meri-
dional intersection curve and the sagittal intersection
curve. The meridional intersection curve is equiva-
lent to the curve C (t) itself. Its second order Taylor
approximation at P with curve parameter u is given as

M (u) = P+

 0
ρt u+ 1

2 ρtt u2

ζt u+ 1
2 ζtt u2

 . (2)

The second order Taylor approximation of the sagittal
intersection curve can be calculated using its mirror
symmetry to the meridional plane and the Taylor series
of C (t) at the intersection point. This yields:

S(u) = P+


u

1
2

r1y ζt

ρ(r1z ρt−r1y ζt)
u2

1
2

r1z ζt
ρ(r1z ρt−r1y ζt)

u2

 . (3)

A detailed derivation is omitted due to lack of space.



2.2 Determination of Focus

Given the meridional and sagittal intersection curves,
the corresponding focus points can be calculated using
the laws of geometrical optics. Fermat’s principle is
a compact formulation of these laws which states that
rays of light traverse the path of stationary optical
path length (Hecht, 2001). The optical path length
is defined as the product of geometrical length and
refractive index of the surrounding medium.
In a first order approximation a beam of meridional
rays neighboring the principal ray focuses in one point.
This point is called the meridional focus point and
lies on the straight line given by the principal ray. In
an equivalent way a beam of sagittal rays focuses in
the sagittal focus point. Thus, given the principal ray,
the focus points can be expressed in terms of their
distances to the surface.

Figure 3: Sketch of the geometric relations used for the
application of Fermat’s principle. The sketch shows the
planar meridional case. When dealing with sagittal focus,
the rays do not lie within a plane and the problem has to be
handled in 3-dimensional space.

To obtain a description that is also adequate for paral-
lel rays (intersecting at infinity), we use the inverse
Euclidean distance k between surface and focus point
(see Figure 3). Applying Fermat’s principle the value
of k can be calculated depending on surface curvature
and refractive indices of the adjoining media.
Under the assumption that the incident rays focus in
the virtual focus point F1, they must all have the same
phase (in terms of wave optics) at a circle of arbitrary
radius R around F1. Hence it is sufficient to examine
the optical path length between the intersection with
such a circle and the focus point F2. This optical path
length can be written as

w(u) = n1 [R−a1(u)]+n2 a2(u) (4)

with the refractive indices n1 and n2 as well as the
geometric distances a1(u) and a2(u).

For the principal ray to pass though point F2, Fer-
mat’s principle says that the corresponding optical
path length must be stationary, so

wu|u=0
!
=0. (5)

For the neighboring rays to pass through point F2,
additionally condition (5) must be satisfied in a small
neighborhood which is equivalent to

wuu|u=0
!
=0 (6)

2.2.1 Meridional Focus

As the meridional focus points F1m and F2m lie on the
principal ray, their positions can be expressed as

F1m = P+
1

k1m
r1 and F2m = P+

1
k2m

r2 (7)

with k1m and k2m denoting their inverse Euclidean dis-
tance to the intersection point.
Given the local quadratic approximation of the meridi-
onal intersection curve M (u) the optical path length
for the neighboring meridional rays can be written as

w(u) = n1R−n1
∣∣M (u)−F1m

∣∣ (8)

+n2
∣∣M (u)−F2m

∣∣ ,
where |.| denotes the Euclidean norm, i.e.:∣∣M (u)−F1m

∣∣2 =(ρt u+
1
2

ρtt u2−
r1y

k1m

)2

(9)

+

(
ζt u+

1
2

ζtt u2− r1z

k1m

)2

With (7) the focus points lie on the principal ray. As
the principal ray fulfills the laws of geometric optic
condition (5) is satisfied by definition. To satisfy condi-
tion (6) we have to evaluate the second order derivative
of (8) with respect to u at u = 0. After some longer
arithmetic computation this yields:

n1

[
k1m (ρt r1z−ζt r1y)

2− (ρtt r1y +ζtt r1z)
]

(10)

−n2

[
k2m (ρt r2z−ζt r2y)

2− (ρtt r2y +ζtt r2z)
]

!
=0.

This description of meridional focus is equivalent to
the one gained using caustics (Swaminathan, 2007).

2.2.2 Sagittal Focus

As in the meridional case the sagittal focus points
F1s and F2s lie on the principal ray. With the inverse
Euclidean distances k1s and k2s their position can be
expressed as

F1s = P+
1

k1s
r1 and F2s = P+

1
k2s

r2. (11)



Given the local quadratic approximation of the sagittal
intersection curve S(u), the optical path length for the
neighboring sagittal rays can be expressed equivalent
to (8). With the sagittal plane spanned by r1 and ex
condition (6) yields:

n1

[
ζt

ρ(r1z ρt − r1y ζt)
− k1s

]
(12)

−n2

[
ζt (r1y r2y + r1z r2z)

ρ(r1z ρt − r1y ζt)
− k2s

]
!
=0.

A full derivation is omitted due to lack of space. If we
use the sagittal plane spanned by r2 and ex to calculate
the intersection curve and focusing, we get:

n1

[
ζt (r1y r2y + r1z r2z)

ρ(r2z ρt − r2y ζt)
− k1s

]
(13)

−n2

[
ζt

ρ(r2z ρt − r2y ζt)
− k2s

]
!
=0.

Using the law of geometrical optics, the equations (12)
and (13) can be converted into each other by some
arithmetic computation.
Note that ρtt and ζtt do not influence the sagittal focus-
ing directly, but only its change dependent on t.

3 CONSTRUCTION SCHEME
FOR OPTICAL SYSTEMS

The analytical description of the change of focus in-
duced by a bounding surface given by (10) and (12)
will now be used to design optical systems.

3.1 Parametric Description

In analogy to the last section, systems with rotational
symmetry can be described with a set of planar curves
C i(t i) with i = 1 . . .N corresponding to N bounding
surfaces. One can choose a parametrization with a
common curve parameter t for all curves C i that is
defined in a way that a certain value of t is related to
a certain principal ray (see Figure 4). Such a parame-
terization is the basic step to describe the shape of an
optical system using differential equations.
The parameterization gets unique by the definition of
the incident principal rays. Here we use two planar
curves O(t) and A(t), where the rays emanate from
O(t) and pass through A(t).
To ensure the validity of parameterization the tangent
vectors C i

t (t) have to be chosen according to laws of ge-
ometrical optics. Each tangent vector depends only on
the direction vectors of incident and reflected/refracted
ray at the corresponding bounding surface. With func-
tions gi(t) and hi(t) dependent on preceding, current

Figure 4: A set of planar curves C i(t) can be used to describe
the shape of an optical system with rotational symmetry.
The curves O(t) and A(t) are used to describe the incident
principal rays. ϕ(t) denotes the exit angle of the principal
rays.

and subsequent intersection point and scaling func-
tions pi(t) we can write the tangent vectors C i

t (t) as

C i
t (t) = (0, ρ

i
t , ζ

i
t)
T = pi · (0, gi, hi)T. (14)

To determine the meridional intersection curve (2) we
need to know the second order derivative of C i(t) with
respect to t. If we derive (14) w.r.t. t, we get:

C i
tt(t) =

 0
ρi

tt
ζi

tt

=

 0
pi

t gi + pi gi
t

pi
t hi + pi hi

t

 . (15)

From a physical point of view, it is obvious that focus-
ing is directly related to the curvature κi(t). With (14)
and (15) the curvature can be written as:

κ
i =

ρi
t ζi

tt −ρi
tt ζi

t[(
ρi

t
)2

+
(
ζi

t
)2
] 3

2
=

gi hi
t −hi gi

t

pi
[
(gi)2 +(hi)2

] 3
2
. (16)

So in fact, the curvature is independent on pi
t and we

can set it to zero in (15). Note that gi
t and hi

t are depen-
dent on p j(t), with j ∈ {i−1, i, i+1}.
The scaling function p1(t) is related to the curvature
of curve A(t) and hence cannot be chosen freely. The
functions gN and hN are related to the principal ray’s
exit angle ϕ(t) and hence κN is influenced by ϕt(t) as
well. In summary, we now have a consistent descrip-
tion of a set of parametrized curves C i(t) with common
parameter t describing the path of the principal rays
and a parameter vector

p(t) = (p2, . . . , pN ,ϕt) (17)

that influences the curvatures κi at every position t.



3.2 Propagation of Focusing Parameters

With (10) and (12) we are able to calculate the change
of focusing at a single bounding surface. As the para-
meters km and ks are defined relative to a certain inter-
section point Pi they have to be remapped to the next
intersection point Pi+1 before applying these equations
for the next surface. In the following k+ denotes the
position of a focus point (meridional or sagittal) after
this remapping. With the Euclidean distance s between
the two reference points the propagation rule for the
focus point description is:

1
k+

=
1
k
− s. (18)

In order to propagate the change of sagittal focusing de-
pendent on t, which is influenced by the surfaces’ cur-
vatures, we need the first order Taylor approximation
of (18). With the linear approximations k(t)≈ k0 +ktt
and s(t)≈ s0 + stt we get:

k+(t)≈ k+0 + k+t t =
k0

1− s0 k0
+

kt + st k0
2

(1− s0 k0)2 t. (19)

In an alternating manner of calculation of focusing at
a bounding surface and propagation of the correspond-
ing parameters to the next surface, we can calculate
the object sided focusing parameters km, ks and ks,t .
As already mentioned, ks cannot be influenced directly
via the surfaces’ curvatures.
If we want to focus to infinity, we have to satisfy

km
!
=0 and ks,t

!
=0 (20)

and in addition initially ensure that ks = 0.

3.3 Single-Viewpoint Condition

Additional conditions can be satisfied if the optical
system design has enough degrees of freedom. For
example we can demand a single-viewpoint, which
means that all object sided principal rays intersect in
one point V = (0, 0, v)T on the optical axis. A single-
viewpoint is necessary if we want to remap a captured
image to other projection models like the cylindrical
projection without knowledge of scene depth. In order
to satisfy the single-viewpoint condition, the exit angle
ϕ(t) must satisfy

ϕ(t) = arctan
(

ζN− v
ρN

)
. (21)

So we have to demand

ϕt(t)−
ρN ζN

t − (ζN− v)ρN
t

(ρN)2 +(ζN− v)2

!
=0. (22)

3.4 Combined Root Finding Problem

With (20) and (22) we have three root finding prob-
lems that share a common parameter vector (17). The
task of finding the corresponding parameter vector can
be formulated as a multi-dimensional nonlinear least
squares problem. To do so, we simply sum up the
squared conditions. Such a nonlinear least squares
problem can be solved using the Levenberg-Marquardt
algorithm. Starting with an initial guess, this algorithm
combines the Gauss-Newton algorithm with gradient
descent to robustly find a local minimum. This local
minimum should also be the global minimum with a
sum of squared errors equal to zero. If the value at the
local minimum is non-zero the initial root finding prob-
lem was not solved properly and we have not found a
valid solution.
In general there exists more than one global mini-
mum. A different minimum corresponds to a different
shape of the final system and often comes along with
a flipped inside-outside characteristic.

3.5 Final ODE system

The parameter vector (17) and the equations (14) and
(22) define a set of differential equations for ρi, ζi and
ϕ (i = 2...N). Given appropriate initial values, this
system of ordinary differential equations can be solved
via numerical integration with standard methods like
the Runge-Kutta methods.
It has to be mentioned that a valid solution cannot
be found for all sets of initial values. Sometimes it
is simply not possible to satisfy the conditions or the
solution’s range of validity is not sufficiently large.
However, for appropriate initial values the calculation
of the optical system is very fast.

4 SIMULATION RESULTS

In the last section we presented a construction scheme
for optical systems that directly considers meridional
and sagittal focus as well as a single-viewpoint. This
sections shows ray tracing results for a system draft
that was calculated using this scheme. Ray tracing
was performed using the spline interpolated numerical
ODE solution. Material characteristics leading to the
chromatic dispersion are considered as well.
As the construction scheme currently does not con-
sider chromatic aberration we limited the refracting
entry and exit surface in a way that the principal rays
traverse these perpendicularly. To bundle the beams of
rays on the image sensor we use two standard achro-
matic lenses (see Figure 5).



An additional aperture controls the amount of incom-
ing light and higher order defocus blur.
The optical system was calculated for a 1/2.5” sensor
with 8.8 MP. This sensor has a pixel pitch of 1.55 µm.
The partially mirrored main lens has a diameter of
approximately 55 mm and was calculated to be man-
ufactured from PMMA. The vertical field of view is
approximately 17◦.

Figure 5: Optical design consisting of two standard achro-
matic lenses, an aperture and a mirror lens. The shape of
the partially mirrored main lens was calculated using the
presented design approach. Reflecting surfaces are colored
green, refracting surfaces red. The principal ray of each
beam of rays is shown in black, the other corresponding me-
ridional rays are shown in gray color. All incident principal
rays intersect in the single-viewpoint V.

Figure 6 shows the simulated defocus blur and chro-
matic aberration at different radial sensor positions.
The spot sizes using an aperture diameter of 1 mm are
even below the very small pixel size of 1.55×1.55 µm
and let us expect a sharp image.

Figure 6: Simulated defocus blur of inner, middle and outer
beams of rays relating to the image radius. Raytracing was
performed for wavelengths of 500 nm (blue), 550 nm (green)
and 650 nm (red). The colored crosses in each subplot show
the sensor positions of different rays emanating from single
object points at infinity.

5 SUMMARY AND CONCLUSION

In this paper we presented a novel approach to
design focusing optics based on differential geometry.
For this, an analytical description of meridional
and sagittal focusing was derived using Fermat’s
principle. The approach considers focusing as well
as geometric constraints. These are combined to
a multi-dimensional root finding problem, whose
solution is found using the Levenberg-Marquardt
algorithm. In an iterative manner of solving the root
finding problem and numerical integration the shape
of the optical system is calculated.
A big advantage of this design approach compared to
common approaches based on numerical parameter
optimization is that the shape of the bounding surfaces
is not restricted by a fixed number of parameters used
to describe them.
An exemplary optical draft was analyzed by means of
a multi-chromatic ray tracing simulation.
Future research will focus on the consideration of
chromatic effects arising from refracting surfaces.
This would overcome the limitation that refracting
surfaces have to be traversed perpendicularly to avoid
chromatic aberration.
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