
Run-time Adaptation to Heterogeneous Processing Units for Real-time Stereo Vision

Benjamin Ranft

FZI Research Center for Information Technology

Karlsruhe, Germany

ranft@fzi.de

Oliver Denninger

FZI Research Center for Information Technology

Karlsruhe, Germany

denninger@fzi.de

Abstract—Todays systems from smartphones to workstations
are becoming increasingly parallel and heterogeneous: Pro-
cessing units not only consist of more and more identical
cores – furthermore, systems commonly contain either a
discrete general-purpose GPU alongside with their CPU or
even integrate both on a single chip. To benefit from this
trend, software should utilize all available resources and adapt
to varying configurations, including different CPU and GPU
performance or competing processes.

This paper investigates parallelization and adaptation strate-
gies using dense stereo vision as an example application –
a basis e. g. for advanced driver assistance systems, but also
robotics or gesture recognition. At this, task-driven as well as
data element- and data flow-driven parallelization approaches
are feasible. To achieve real-time performance, we first utilize
data element-parallelism individually on each processing unit.
On this basis, we develop and implement further strategies
for heterogeneous systems and automatic adaptation to the
hardware available at run-time. Each approach is described
concerning i. a. the propagation of data to processors and its
relation to established methods. An experimental evaluation
with multiple test systems and usage scenarious reveals advan-
tages and limitations of each strategy.

Keywords-multicore processing; parallel programming; sche-
duling algorithm; image processing

I. INTRODUCTION

When capturing images with a standard camera, depth

information of the scene is in most cases lost. Stereo vision

is the process of recovering 3D structure from images of two

side-by-side cameras, making it an important basis for en-

vironmental perception. Its applications include emergency

braking assistants [1] or human-machine interfaces [2], both

of which plausibly require real-time performance. However,

it is computationally demanding to estimate a distance for

ideally every pixel of high resolution images.

Serial or badly scaling implementations of stereo vision

are not likely to benefit much from current or future proces-

sors, because power consumption and memory bandwidth

limit the latters’ clock frequencies [3]. Instead, applications

must make use of the continuosly growing number of

parallel processing units. Fortunately, image processing –

including most stereo vision algorithms – is usually well-

suited for large-scale data element-parallelism: In the most

simple case, identical operations can be carried out for each

pixel independently. For such workloads graphics processing

data
flow

task
data

element

Figure 1. Parallelization approaches offered by our application

units (GPUs) often outperform multi-core CPUs with single

instruction, multiple data (SIMD) capabilities w. r. t. frame

rates and energy efficiency [4], [5], although there are

exceptions [6]. CPUs in contrast stand out at sequential or

heavily branching tasks, but are also generally required to

run an operating system and control GPUs. Consequently

heterogeneous systems offering several CPU cores together

with one or more GPUs as co-processors will probably be-

come increasingly common. This requires computationally

intensive applications to:

• efficiently utilize different systems by supporting mul-

tiple CPU cores, SIMD capabilities and GPUs, and by

implementing algorithms suitable for each architecture

• take into account the memory model of a heterogeneous

system, which – in contrast to shared memory systems –

may resemble distributed systems in terms of increased

coordination and data transfer efforts

• dynamically adapt to varying target system perfor-

mance due to different hardware, algorithm charac-

teristics and competing processes, since it would be

hard and inflexible to statically define or pre-compute

adequate scheduling schemes

This paper extends the work of [4] – its contribution

consists of the realization of especially the third above-

named aspect. Its remainder is organized as follows: Related

work w. r. t. parallelization and adaptation approaches as well

as comparable stereo vision implementations are presented

in section I.A, while section I.B describes the hardware

architectures and programming interfaces used in our test

systems. Section II will summarize the algorithms and

the device-specific data element-parallelism of our stereo

vision implementation. On this basis, section III introduces

different strategies to simultaneously utilize and adapt to

multiple heterogeneous processing units, and relates them

to our application’s parallelization approaches shown in

Figure 1. Section IV conducts an experimental evaluation

of the proposed approaches. Section V concludes the paper

and gives an outlook to future works.

A. Related Work

Even before the trend towards GPU computing, mainly

video games were able to distribute the task of 3D rendering

across 2 - 4 GPUs. Today’s corresponding implementations

offer two common modes of operation [7]: At split frame

rendering each GPU processes a partition of every frame

whose size is determined by the complexity of its content.

In contrast, alternate frame rendering assigns each frame to

one of the GPUs via round-robin, which requires cooperating

devices to be very similar or identical for efficient operation.

Beyond this wide-spread yet specific application, there has

been notable research towards cooperatively using heteroge-

neous processing units for general-purpose computations: [8]

determines an optimal workload distribution ratio between

CPU and GPU during initialization, while [9] includes

multiple different GPUs and exploits its task’s tree-like

dependency structure to increase efficiency – both confirm

the importance of adapting to the target system at run-

time. More generally, programming heterogeneous hardware

can be simplified by unifying the interface to architecture-

specific code and automatically handling inter-device data-

transfers [10], or by enabling applications intended specif-

ically for nVidia GPUs to run on those by AMD and on

multi-core x86-CPUs as well [11].

Concerning stereo vision as our sample application, avail-

able open-source implementations differ w. r. t. both algo-

rithms and parallelization: [12] reduces complexity via a

sparse prior on depth information and uses SIMD instruc-

tions of x86-CPUs. Despite the lack of any parallelization,

[13] has inspired our CPU implementation because of its

computational efficiency. An early and well-optimized GPU

implementation of stereo vision was presented by [14].

However, we found the OpenCV library [15] to be the most

suitable benchmark for this paper: If built accordingly, it

extensively uses SIMD instructions and supports multiple

CPU cores via Intel Threading Building Blocks as well

as GPUs via nVidia C for CUDA. Figure 2 shows typical

results of its stereo vision algorithms, while Table I lists

their respective frame rates on our test systems1. Our algo-

rithms2 are comparable to the C++ classes cv::StereoBM and

1please see section I.B for their specifications
2to be desribed in detail in section II

left input image

cv::StereoBM (CPU)

cv::gpu::StereoBM GPU

cv::StereoSGBM (CPU)

Figure 2. Stereo vision results of the OpenCV library: Purple encodes
close, light blue distant objects.

Table I
STEREO VISION FRAME RATES OF THE OpenCV LIBRARY

Teebaum PC9F

cv::StereoBM (CPU) 47.76 47.22

cv::gpu::StereoBM GPU 146.12 91.93 27.38

gpu/stereo multi.cpp 226.21 42.43

cv::StereoSGBM (CPU) 3.45 2.14

cv::gpu::StereoBM GPU except for the filtering of interme-

diate results: OpenCV’s GPU version hardly filters at all,

while the CPU version discards most results on the ground

because of their high ambiguity. The sample application

gpu/stereo multi.cpp utilizes two GPUs by statically parti-

tioning the results to be computed into equal halves - this has

proven to be beneficial to identical GPUs, but unfavorable

for significantly different ones. Finally cv::StereoSGBM im-

plements the slower yet popular semi-global matching [16].

B. Test Systems and Hardware Architectures

On the one hand this section introduces our specific test

systems in order to allow interpretation and reproduction of

the presented results. On the other hand it describes features

and programming interfaces of the underlying hardware

architectures, which are relevant to the following sections.

Table II shows the two heterogeneously equipped systems

used for our experiments: Teebaum is a workstation with two

identical performance-level CPUs and GPUs each. Despite

its high power consumption under full load, similar systems

Table II
TEST SYSTEMS SPECIFICATIONS

processor
model

core count
and frequency

memory size
and bandwidth

Teebaum

Intel Xeon
E5645 (2x)

2x 6
2.4 GHz

2x 6 GB
2x 32.00 GB/s

nVidia GeForce
GTX 470 (2x)

2x 448
607 MHz

2x 1.25 GB
2x 133.9 GB/s

PC9F

AMD Phenom II
X6 1090T

6
3.2 GHz

8 GB
21.33 GB/s

nVidia GeForce
GTX 460

336
675 MHz

1 GB
115.2 GB/s

nVidia GeForce
GT 430

96
700 MHz

1 GB
28.8 GB/s

are successfully used in research prototype vehicles, e. g. au-

tonomous cars [17]. An alternate view on common desktop

PCs is provided by PC9F, which combines a single six-core

CPU with both a performance- and an entry-level GPU.

Each of the CPUs is compatible with the x86-64 architec-

ture and several generations of SIMD instruction sets. The

latter enable the simultaneous calculation up to 16 values per

core, so a CPU’s potential degree of parallelism is notably

higher than its number of cores might suggest. Additionally,

Teebaum’s CPUs offer Hyper-Threading, i. e. a second set

of registers per core to quickly switch contexts between

idle and waiting threads. Other relevant properties of recent

CPUs, like their comparably large and implicitly managed

caches, have already been described in [4]. Regarding pro-

gramming interfaces, we exploit data element-parallelism via

OpenMP [19] and the GNU C compiler’s SIMD intrinsics,

which are compatible to Intel’s [18]. The Boost.Thread

library – wrapping POSIX threads and mutexes [20] on

Linux – enables data flow- and task-parallelism.

At general-purpose GPU computing, the most common

programming interfaces are OpenCL [21] and C for CUDA

[22], with wrappers available for other languages [23].

CUDA is well-integrated with OpenCV, thus saving funda-

mental programming work for computer vision applications.

The GPUs of our test systems contain between 96 and 448

scalar cores. These are however not completely independent:

Groups of 32 are each hosted on one streaming multi-

processor (SM) and can only execute identical instructions

simultaneously while branching needs to be serialized. Even

though each core is scalar, we will show how to achieve

parallelism via SIMD within a register (SWAR) [24]. In

order to hide latencies, GPUs demand a degree of parallelism

much higher than their number of cores [22]. Their limited

amount of registers and on-chip caches per thread needs to

be sparingly used and in some cases explicitly managed by

programmers.

II. ALGORITHMS AND DATA ELEMENT-PARALLELISM

Practically all stereo vision implementations consist of

a sequence of independent processing steps rather than a

single function. We have already presented our approaches

Figure 3. Device-specific partitioning scheme for CPU cores (purple) and
SMs of GPUs (green)

to exploit parallelism for either CPUs or GPUs in [4], and

will therefore only summarize them to the extent required

for understanding the heterogeneous methods in section III.

There are two important common properties of the fol-

lowing processing steps: A given result pixel is generally

independent from its neighbors, and only local regions of

interest (ROI) of the input images need to be read in order to

compute it. Nevertheless, efficient parallel algorithms share

intermediate results, and their implementations account i. a.

for cache locality. Figure 3 depicts the device-specific parti-

tioning schemes derived from these conditions: The typical

row-major memory layout of images is in favor of horizontal

partitions, each of which is processed on an individual CPU

core. In contrast, GPU partitions have a fixed size which

is determined by the resources available on a single SM

and required by each algorithm. Partitions are successively

assigned to SMs until none are left.

A. Undistortion and Rectification

Removing lens distortion from camera images allows to

apply the pinhole camera model [25] for mathematically

simple re-projection of pixels back to their 3D coordinates.

Additionally, rectification virtually adjusts focal lengths and

aligns image planes, such that every spot of the scene

appears at the same row within the left and right image –

this drastically reduces the complexity of the later matching

step. The corresponding parameters can be obtained by off-

line calibration [26] and used to compute static lookup

tables (LUT). These are applied in conjunction with bi-linear

interpolation to map camera pixels to rectified pixels:

Irect(x, y) = Icam (LUTx(x, y), LUTy(x, y))

At this step, our code wraps OpenCV on both CPU and

GPU: The code for the former is a well-optimized single-

core implementation, which we extended towards multiple

cores by applying the partitioning scheme mentioned above.

Its GPU code is already parallel by design and utilizes the

hardware texturing units for very fast interpolation. Hereby,

this processing step’s impact on running time becomes

secondary and further optimization is not required.

superimposed left and right images after rectification

left image after background subtraction

filtered depth map

Figure 4. Intermediate and final results of our stereo vision method

B. Background Subtraction

A given object may appear differently bright on the left

and right images due to variations in exposure, aperture and

gain of each camera. This potential cause of errors can be

mitigated by applying a high-pass filter, i. e. by blurring the

image with a Gaussian kernel (σ = 3.0 px) and subtracting

it from the original one:

IBS(x, y) = Irect(x, y)−

⌈3σ⌉∑

j,k=⌊−3σ⌋

Irect(x+ k, y + j)
e−

k2+j2

2σ2

2πσ2

OpenCV makes use of the fact that this filter is separable, but

does not apply any further optimizations or CPU paralleliza-

tion. Consequently, running times are within the same order

of magnitude as the actual stereo matching step. On both

target architectures, we approximate the filter coefficients

by integers and scale them such that their sum equals 256.

Together with 8-bit images, this has several advantages:

• No floating point conversions are required.

• Normalization of the sum term is possible via bit-

shifting instead of slow integer division.

• 16-bits are sufficient for intermediate sums, allowing

each CPU or GPU core to compute 8 or 2 horizontally

neighboring pixels via SIMD or SWAR respectively.

As an example of SWAR, the following C code performs a

pair-wise addition and normalization as specified above3:

uint16_t pixel[2], sum[2];

(uint32_t)&sum += *(uint32_t*)&pixel;

(uint32_t)&sum = 0x00FF00FF &

(*(uint32_t*)&sum >> 8);

3For the addition to be correct, no bit must be carried from the lower to
the upper word, i. e. the 16-bit types must not overflow. The logical AND
is required to set bits shifted from the upper into the lower word to zero.

results
w.r.t. left

results
w.r.t. right

left
image

right
image

single-pass
matching

tmpl cand

results
w.r.t. left

results
w.r.t. right

standard
matching

tmpl cand

standard
matching

tmpl cand

left
image

right
image

Figure 5. Modes to obtain matching results w. r. t. both left and right image

Since every such group of pixels can be computed in-

dependently, multi-core and whole-GPU parallelization is

straightforward – GPU partitions are sized 64× 24 px here.

C. Stereo Matching and Filtering

After rectification, the distance Z of a given object

depends on the focal length f of the cameras, the baseline

width B between them and the disparity ∆x, i. e. the

difference in pixel columns at which the object appears in

each of the stereo images:

Z(x, y) =
fB

∆x(x, y)

Our method of choice for densely estimating ∆x is block

matching, as it allows efficient parallel implementations with

an easily cacheable memory footprint [4]. Descriptively, this

method tries to recognize small template windows from one

image within a set of candidates from the other image.

Mathematically, the sum of absolute differences (SAD)

between template and candidate window is minimized:

∆xtmpl(x, y) = argmin
∆x

SADtmpl(x, y,∆x)

SADtmpl(x, y,∆x) =
∑

j,k∈window

|Itmpl(x+ k, y + j)−

Icand(x+ k −∆x, y + j)|

Similar to a mean filter, the complexity of computing adja-

cent SADs can be made independent from window size via

running sum tables [4], [13].

Alongside these advantages, the resulting disparities often

contain some errors and therefore require filtering. Since

both the left and right image can be used as template and

the respective other as candidate, requiring both results to

be consistent has proven most effective:

∆xleft(x, y)
!
= −∆xright (x−∆xleft(x, y), y)

As Figure 5 indicates, this does not neccessarily require two

standard matching steps with switched input image roles:

Alternatively, optimal ∆xleft and ∆xright may be found in

a single pass by interpreting each SAD w. r. t. both left and

right image:

SADleft(x, y,∆x) = SADright(x−∆x, y,∆x)

Both our CPU and GPU implementations apply the above

algorithmic simplifications and the initially-mentioned parti-

tioning scheme across multiple cores and SMs [4]. However,

improvements on this previous work include the following:

• 8x SIMD on CPUs and 2x SWAR on GPUs are used

to evaluate multiple values of ∆x simultaneously.

• We deviate from the initial scheme by partitioning both

horizontally and vertically: Even though cache locality

is in favor of horizontal partitions, our implementation

saves cache size for narrower vertical ones. Section

IV.A will show that this is important to scaling across

more than a few CPU cores.

III. STRATEGIES FOR HETEROGENEOUS SYSTEMS

As a foundation for this sections, we will review [27]’s

categorization of parallelism and relate it to the presented

task of stereo vision via Figure 1:

• Indirectly, data element-parallelism has already been

introduced above. Given a single processing step, it

generally refers to the decomposition of its result into

items to be computed simultaneously. For most of our

stereo vision algorithms, this pattern can be applied

even to single pixels, even though Figure 1 only in-

dicates independent image columns for simplicity.

• Data flow-parallelism may occur if input or interme-

diate data passes through a series of processing steps:

Transferred to our application, the nth image pair

may already be rectified on one device while others

perform background subtraction on pair n−1 and stereo

matching on pair n− 2 respectively.

• Task parallelism in general denotes the availability of

separate jobs to be computed independently. A stereo

vision job consists of applying all processing steps to

a single pair of images. Therefore, task- and data flow-

parallelism are similar with regard to multiple work

items being processed at a time, but differ by exclu-

sively assigning every device to either a processing step

or a work item.

For each of these categories, the following sub-sections

describe a method to apply it to multiple heterogeneous pro-

cessors, including algorithmic requirements and adaptation

strategies. Figure 6 visualizes the way each strategy maps

to a different category.

A. Partitioning

Partitioning extends data element-parallelism across dif-

ferent devices and is therefore most comparable to the

previously-mentioned split frame rendering: Only one item

is computed at a time, but work is distibuted among k partic-

ipants. This allows dependencies between consecutive work

items, but also requires splitting and re-combining an item

to be efficiently possible. By cutting images horizontally, the

latter is simple for our application.

partitioning
task

(image
pairs)

data
element
(pixels)

data flow
(processing steps)

pipelining
task

(image
pairs)

data
element
(pixels)

data flow
(processing steps)

demand-based allocation
task

(image
pairs)

data
element
(pixels)

data flow
(processing steps)

Figure 6. Mapping of parallelization categories to heterogeneous devices:
Each color indicates an individual processor.

Assuming that throughput is maximized by avoiding

idle processors, an optimal partitioning scheme allows all

processors to finish their partitions at the same time. To

automatically achieve this state, our implementation initially

assigns an equally-sized fraction rj = 1/k of the 1st

work item to each device j ∈ [1, k]. The corresponding

running times tj are regularly measured and used to calculate

ij = rj/tj , i. e. the extrapolated throughput of full work

items per device. This noisy measure is finally tracked by a

discrete PT1 smoothing filter with damping α ∈ [0, 1] and

used to calculate the ratios for partitioning the next work

item:
îj = αîj + (1− α)ij ri =

îj∑k

j=1
îj

Obviously these calculations need to be done by a central

instance which schedules tasks in a push-based fashion.

B. Pipelining

Pipelining is a standard method to utilize data flow-

parallelism. We have already investigated it for homoge-

neous multi-core systems in [4] and found it to be advan-

tageous on a 48-core x86-server and a 64-core embedded

platform. Algorithmically, pipelining only requires at least

one processing step per device. Concerning implementations

however, if k participating processors do not share their

memory, every full work item needs to be copied at least

k−1 times. Furthermore, the assignment of processing steps

0

50

100

150

200

Xeon E5645 with SIMD no SIMD Phenom II X6 1090T with SIMD no SIMD
fr

a
m

e
 r

a
te

 [
H

z
]

 1
 (

 1
x
1
)

 2
 (

 1
x
2
)

 3
 (

 1
x
3
)

 4
 (

 2
x
2
)

 5
 (

 1
x
5
)

 6
 (

 2
x
3
)

 7
 (

 1
x
7
)

 8
 (

 2
x
4
)

 9
 (

 3
x
3
)

1
0
 (

 2
x
5
)

1
1
 (

 1
x
1
1
)

1
2
 (

 3
x
4
)

1
3
 (

 1
x
1
3
)

1
4
 (

 2
x
7
)

1
5
 (

 3
x
5
)

1
6
 (

 4
x
4
)

1
7
 (

 1
x
1
7
)

1
8
 (

 3
x
6
)

1
9
 (

 1
x
1
9
)

2
0
 (

 4
x
5
)

2
1
 (

 3
x
7
)

2
2
 (

 2
x
1
1
)

2
3
 (

 1
x
2
3
)

2
4
 (

 3
x
8
)

0%

20%

40%

60%

80%

number of threads (image partitioning)o
v
e

rh
e

a
d

 f
o

r
ri

g
h

t
im

a
g

e
 r

e
s
u

lt
s

Figure 7. Scaling of the CPU stereo matching step (top); overhead of additionally computing results w. r. t. the right image (bottom)

to devices potentially is a complex optimization problem for

which we cannot yet offer a complete and automated solu-

tion. With our application having three processing steps and

our experiments using two or three devices however, there

are only a total of six possible pipelining configurations.

From these, we heuristically select the one minimizing the

largest idle time among all devices.

C. Demand-based Allocation

By finally exploiting task-parallelism, demand-based al-

location is a generalized form of alternate frame rendering

with a major difference: Instead of actively pushing work

items to devices via round-robin or any other fixed or pre-

computed pattern, it implements a queue which passively

waits for any device to complete its current job and pull

a new one. Because jobs should ideally be processed in-

dependently, dependencies between consecutive work items

are not impossible but still disadvantageous. An advantage is

that computational load is automatically balanced between

differently performing devices without any central instance.

IV. EXPERIMENTAL EVALUATION

This section will evaluate the previously proposed me-

thods in two stages: Initially we present the performance

of our implementations in an architecture-specific way and

investigate the effects of the optimizations discussed in

section II. On this basis, we apply the strategies for utilizing

and adapting to heterogeneous processing units introduced

in section III. All experiments have been conducted with

[12]’s publicly available data set sized 1344 × 391 px and

∆x ∈ [0, 112).

Table III
EFFECT OF VERTICAL AND HORIZONTAL PARTITIONING ON CPU

MATCHING STEP FRAME RATES

Teebaum

partitions frame rate [Hz]

1x24 128.69

2x12 169.33

3x8 179.03

4x6 177.53

6x4 169.41

8x3 113.73

12x2 84.87

24x1 59.39

PC9F

partitions frame rate [Hz]

1x6 39.31

2x3 41.31

3x2 38.47

6x1 32.06

A. Architecture-specific Optimization

We will focus on the single processing step of stereo

matching here for two reasons: It accounts for the majority

of our application’s running time, and most of the insights

found at it may be transferred to the simpler previous and

subsequent steps. Figure 7 visualizes several aspects of our

CPU implementation4:

• Both test systems scale almost linearly up to their actual

number of cores. Table III however shows that a good

compromise between cache locality (i. e. horizontal

partitions) and required cache size (vertical partitions)

needs to be found in order to achive this scaling.

• SIMD is very effective on the Xeon platform, while the

Phenom II must emulate two instructions [4], [28].

• Additionally placing threads on Teebaum’s 13th to 24th

virtual HyperThreading cores has a strong impact on

4With previous and subsequent steps not included, frame rates should
not be interpreted as those of a final application. Compard to running times
however, they give an improved impression on scaling across multiple cores.

0

75

150

225

300

GTX 470 GTX 460 GT 430

fr
a

m
e

 r
a

te
 [
H

z
]

w
it
h

o
u

t
S

W
A

R

64 128 256 512 1024

0%

100%

200%

300%

400%

threads per streaming multiprocessoro
v
e

rh
e

a
d

 f
o

r
ri

g
h

t
im

a
g

e
 r

e
s
u

lt
s

0

75

150

225

300

fr
a

m
e

 r
a

te
 [
H

z
]

w
it
h

 S
W

A
R

Figure 8. Effect of the number of threads without (top) and with 2x
SWAR (middle) of the GPU stereo matching step; overhead of additionally
computing results w. r. t. the right image (bottom)

performance, so obviously their initialization overhead

outweighs the compensation of occasional idle states.

• Finding the disparity map ∆xright in addition to

∆xleft within a single matching pass increases running

times by only 20 to 60 %, which is clearly preferable

to a separate second pass with switched image roles.

Since single SMs of a GPU cannot be disabled, scaling is

not directly observable here. Nevertheless, Figure 8 allows

several interesting observations to be made:

• A SM always computes 64 × 48 = 3072 px of

results using a specified number of threads. Each of

them initializes one SAD from scratch and then ef-

ficiently derives several neighbors via running sum

tables. Fewer threads therefore cause less initialization

overhead, while more of them help hide latencies. A

clear optimum of 512 can be found for all GPUs tested.

• 2x SWAR increases performance by about one third.

• While iterating over the possible range of ∆x, its so

far best values w. r. t. the template image can be kept

in thread-private registers. In contrast, those w. r. t. the

candidate image need to be accessed by concurrent

threads via atomic operations. Expectedly, ∆xleft and

∆xright should be determined by separate GPU passes.

0

50

100

150

200

250
GTX 470 GTX 470 Xeon E6545

w
o

rk
 i
te

m
 t
h

ro
u

g
h

p
u

t
[H

z
]

s
in

g
le

 d
e
v
ic

e

s
in

g
le

 d
e
v
ic

e

s
in

g
le

 d
e
v
ic

e

p
a
rt

it
io

n
in

g

p
a
rt

it
io

n
in

g

p
ip

e
lin

in
g

p
ip

e
lin

in
g

s
ta

ti
c
 a

llo
c
a
ti
o
n

d
e
m

a
n
d
-b

a
s
e
d
 a

llo
c
a
ti
o
n

s
ta

ti
c
 a

llo
c
a
ti
o
n

d
e
m

a
n
d
-b

a
s
e
d
 a

llo
c
a
ti
o
n

0

25

50

75

100

125
GT 430 GTX 460 Phenom II X6 1090T

w
o

rk
 i
te

m
 t
h

ro
u

g
h

p
u

t
[H

z
]

Figure 9. Stereo vision frame rates of different heterogeneous paralleliza-
tion strategies for Teebaum (top) and PC9F (bottom): Stacked bars indicate
the contribution of each processor to the overall performance.

B. Run-time Adaptation to Heterogeneous Processing Units

It is finally time to go beyond specific processors or single

processing steps and evaluate the presented strategies for

utilizing and adapting to heterogeneous processing units.

Common boundary conditions of our experiments include

the use of SIMD and SWAR in every possible processing

step and the interpretation of the available CPU cores as a

single device. Stereo matching results w. r. t. left and right

image are obtained from one CPU but two GPU passes.

For each of our test systems, Figure 9 shows frame rates of

various configurations: Supplementarily, that of each single

device is given as a baseline. The previously-introduced

strategies partitioning, pipelining and demand-based alloca-

tion are applied twice each – using only GPUs as well as

using both GPUs and CPUs. Static allocation implements

a round-robin scheduling for comparison with our demand-

based method. Several conclusions can be drawn:

• Partitioning maintains a reasonable scaling especially

for GPUs, which proves the overhead of splitting and

re-combining images to be low. CPUs however tend to

become less efficient when working on small partitions.

• Pipelining throughput is notably limited by its slowest

stage, which regularly forces other processors to idle.

The additional latencies due to frequent memory trans-

fers can be mitigated to some extent by overlapping

them with computations [22].

• Demand-based allocation especially benefits different-

ly-performing devices, but also causes no measurable

overhead when being applied to identical processors.

Conclusively, all of the proposed adaptive strategies are able

to improve throughput. Latency however can by design be

decreased solely by partitioning, at which all processing

power is focused on a single work item. This is only a minor

advantage over pipelining and demand-based allocation,

considering the frame rates in connection with the fact that

at most three image pairs are processed at a time.

In order to gain further insights on adaptation, Figure 10

plots the automatically adjusted partitioning ratios rj of all

devices for 800 consecutive work items. A steady state is

already reached after about 20 items, but may be disturbed

by short phases of competing CPU utilization e. g. by the

operating system. Halfway throughout the sequence we

purposefully applied additional load on the primary GPU

by starting the nbody example from the CUDA SDK: On

Teebaum, its work is completely taken over by the other

similarly-performing devices, while PC9F’s fastest proces-

sor still keeps contributing to stereo vision significantly.

V. CONCLUSIONS AND OUTLOOK

We have presented parallel implementations of dense

matching-based stereo vision for both multi-core CPUs and

GPUs. Relevant optimizations w. r. t. both algorithms and im-

plementations have been explained, verfied and interpreted.

Our implementations are able to meet real-time constraints

and to compete with OpenCV, a widely-used and well-

optimized computer vision library. Furthermore, we have

introduced and experimentally evaluated three strategies for

cooperatively utilizing heterogeneous processors for general-

purpose computations. Especially partitioning and demand-

based allocation have proven to effectively adapt to our test

systems at run-time. Because the strategies require partially

oppossing properties from algorithms, at least one or two

are likely to be suitable for many parallel computing tasks.

Future works will focus on two different aspects: Algo-

rithmically, we are investigating alternatives to the proposed

filtering method which do not demand both left and right

matching results – especially GPU performance will benefit

if the second matching pass can be avoided. Concerning

the source code associated with this paper, the proposed

parallelization strategies added a noteworthy amount of com-

plexity. Since these strategies are transferable to many other

tasks offering independent jobs or partitionable work items,

it seems reasonable to encapsulate them in a separate library.

Here both an object-oriented syntax and a domain-specific

language could simplify the source code of applications.

0%

20%

40%

60%

80%

100%

GTX 470 GTX 470 Xeon E5645

work item

0 200 400 600 800

0%

20%

40%

60%

80%

100%

GTX 460 GT 430 Phenom II X6 1090T

work item

Figure 10. auto-adaptation of partitioning ratios to a competing GPU
application for systems A (top) and B (bottom)

REFERENCES

[1] Continental AG, Two Eyes Are Better Than One – The Stereo
Camera. www.conti-online.com/generator/www/com/en/
continental/pressportal/themes/press releases/
3 automotive group/chassis safety/press releases/
pr 20110504 stereo camera en,version=2.html, May 2011.

[2] M. Elmezain, A. Al-Hamadi, and B. Michaelis, Real-Time
Capable System for Hand Gesture Recognition Using Hidden
Markov Models in Stereo Color Image Sequences. International
Conference in Central Europe on Computer Graphics, Visual-
ization and Computer Vision Proceedings, February 2008.

[3] K. Asanovic et al., The Landscape of Parallel Computing
Research: A View from Berkeley University of California at
Berkeley Technical Report No. UCB/EECS-2006-183, Decem-
ber 2006.

[4] B. Ranft, T. Schönwald, and B. Kitt, Parallel Matching-based
Estimation – a Case Study on Three Different Hardware Ar-
chitectures. IEEE Intelligent Vehicles Symposium, May 2011.

[5] D. Delling et al., PHAST: Hardware-Accelerated Shortest Path
Trees. Microsoft Research Technical Report MSR-TR-2010-
125, September 2010.

[6] R. Bordawekar et al., Believe it or Not! Multi-core CPUs Can
Match GPU Performance for FLOP-intensive Application!.
IBM Reseach Report RC25033, April 2010.

[7] NVIDIA Corporation, SLI Best Practices.
developer.nvidia.com/sli-best-practices, February 2011.

[8] J. Singh, and I. Aruni, Accelerating Smith-Waterman on Het-
erogeneous CPU-GPU Systems. International Conference on
Bioinformatics and Biomedical Engineering Proc., May 2011.

[9] A. Nere, A. Hashmi, and M. Lipasti, Profiling Heterogeneous
Multi-GPU Systems to Accelerate Cortically Inspired Learning
Algorithms. IEEE International Parallel and Distributed Pro-
cessing Symposium Proceedings, May 2011.

[10] R. Ferrer et al., Optimizing the Exploitation of Multicore Pro-
cessors and GPUs with OpenMP and OpenCL. International
Workshop on Languages and Compilers for Parallel Computing
Proceedings, October 2010.

[11] G. Diamos, A. Kerr, S. Yalamanchili, and N. Clark, Ocelot:
A Dynamic Compiler for Bulk-Synchroneous Applications in
Heterogeneous Systems. International Conference on Paral-
lel Architectures and Compilation Techniques Proceedings,
September 2010.

[12] A. Geiger, M. Roser, and R. Urtasun, Efficient Large-Scale
Stereo Matching. Asian Conference on Computer Vision Pro-
ceedings, November 2010.

[13] P. Azad, T. Gockel, and R. Dillmann, Computer Vision:
Principles and Practice. Elektor Electronics, 2008.

[14] D. Gallup, J. Frahm, and J. Stam, CUDA Stereo.
www.cs.unc.edu/˜gallup/cuda-stereo, February 2012.

[15] G. Bradski, The OpenCV Library. Dr. Dobb’s Journal of
Software Tools, 2000.

[16] H. Hirschmüller, Stereo Processing by Semi-Global Matching
and Mutual Information. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, volume 30(2), February 2008.

[17] A. Geiger, M. Lauer, F. Moosmann, B. Ranft, H. Rapp,
C. Stiller, and J. Ziegler, Team AnnieWAY’s entry to the Grand
Cooperative Driving Challenge 2011. IEEE Transactions on
Intelligent Transportation Systems, to be published.

[18] Intel Corporation, Intel C++ Intrinsics Reference. soft-
ware.intel.com/sites/products/documentation/studio/composer/
en-us/2011/compiler c/index.htm#intref cls/common/
intref overview.htm, December 2011.

[19] OpenMP Architecture Review Board, OpenMP Application
Program Interface Version 3.1. www.openmp.org/wp/openmp-
specifications, July 2011.

[20] B. Nichols et al., Pthreads programming: A POSIX standard
for better multiprocessing. O’Reilly, 1996.

[21] Khronos OpenCL Working Group, The OpenCL Specification.
www.khronos.org/registry/cl, November 2011.

[22] NVIDIA Corporation, NVIDIA CUDA C Programming
Guide. developer.nvidia.com/cuda-toolkit-41, December 2011.

[23] A. Klöckner, PyCUDA: Even Simpler GPU Program-
ming with Python. GPU Technology Conference Proceedings,
September 2010.

[24] R. J. Fisher, General-Purpose SIMD within a Register: Par-
allel Processing on Consumer Microprocessors. PhD thesis,
Purdue University, January 2003.

[25] R. Hartley and A. Zisserman, Multiple View Geometry in
computer vision, second edition. Cambridge University Press,
2008.

[26] J.-Y. Bouguet, Camera Calibration Toolbox for Matlab.
www.vision.caltech.edu/bouguetj/calib doc/index.html, July
2010.

[27] T. Mattson, B. Sanders, and B. Massingill, Patterns for
parallel programming. Addison-Wesley, 2004.

[28] Advanced Micro Devices Inc., SSEPlus Project Overview.
sseplus.sourceforge.net/SSEPlus.pdf, May 2008.

