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Abstract—Accurate localization is a fundamental component

of driver assistance systems and autonomous vehicles. For path-

constrained motion a map offers significant information and

assists localization with valuable information about the evolution

of the kinematic vehicle states. We propose natural parameterized

cubic spline curves to approximate the true motion constraints,

in particular the centerline of individual road lanes or rail

tracks. Vehicle kinematics are modeled in one dimensional curve

coordinates. Since map information is subject to uncertainties

a probabilistic treatment is a prerequisite to obtain consis-

tent localization results. The proposed probabilistic curvemap

(PCM) and the close map-to-vehicle relation enable a straight

forward derivation of measurement update equations without

additional map matching steps and offer themselves to classical

filter techniques. Incoming sensor measurements are used for a

simultaneous vehicle localization and a local PCM update around

the current vehicle position. Thus, every revisit of a location

reduces uncertainty in the local PCM. Moreover, when no prior

information is provided in the PCM, extrapolation is carried out

to handle these situations with incomplete maps. The proposed

filter is validated through simulations and real world railway

experiments.

Index Terms—Cubic Splines, Simultaneous Localization and

Mapping (SLAM), Probabilistic Curvemap (PCM).

I. INTRODUCTION

L
OCALIZATION is a key capability of driver assistance
systems and autonomous vehicles. Incorporating prior

information about dynamic behavior and measurement model
both have a strong impact on the performance of vehicle
localization algorithms [1], [2]. Assumptions on road- or track-
constrained motion may augment significant information to the
localization process for ground vehicles. Restricting vehicle
position on one dimensional curves is natural for numerous
applications, e.g. for passenger cars that are constrained on
road lanes or track-bounded railway vehicles. Moreover, a
correct and up-to-date map of the road network must be per-
manently available to realize a road map assisted localization
and to obtain localization results [3], [4], [5], etc. Finally,
gross violations of the path constraint indicate exceptions
from normal operation, thus their detection offers important
information to initiate appropriate exception handling.

Several concepts have been proposed to assist localization
of moving vehicles using roadmap information [6]. A key
difference of the concepts is the level of map integration into
the localization filter: The map matching methods presented
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in [7] process the available sensor observations and constrain
the resulting estimate onto the map in a post filter processing
step. Hence the map is considered as ground truth. In contrast,
a second group of algorithms obtains pseudo-measurements
of the map, which are considered as data from an additional
static sensor [8]. The approaches subsumed in a third group
directly integrate the available roadmap within the filtering
step. In particular the approaches presented in [4] and [9] make
use of a 1D representation of the vehicle kinematics in arc-
length coordinates. This integration strategy is adapted in the
present proposal. In combination with arc-length parameter-
ized curvemaps it enables analytical transformations between
measurement- and state-space and therefore guarantees con-
sistent observation equations.

Realistic motion constraints depend on construction rules
and vehicle dynamics: Roads or tracks are commonly com-
posed of a sequence of geometric primitives to enable comfort-
able driving without abrupt variations in lateral acceleration.
Often polygonal models [3], [10], [11] or clothoids [12] are
applied to approximate the centerline of each road lane or rail
track. In this contribution smooth third order spline curves
are proposed. We show that this modeling strategy overcomes
systematic interpolation errors and has similar characteristics
as B-Splines used in [13] to model road course. It yields highly
accurate approximation results, both for strongly curved and
straight sections of variable length. Last but not least the model
allows a consistent integration into the estimation process.

Any digital map is corrupted by topological and geometrical
uncertainty due to generic surveying and mapping processes
that contain measurement and approximation steps [5]. Topo-
logical inconsistencies arise from the fact that map features,
e.g. junctions, have been missed or simplified during map cre-
ation. Geometrical uncertainty originates from the geometric
displacement of map features that are caused by error-prone
mapping steps. This contribution focuses on a probabilistic
treatment of geometric map uncertainty. For that reason only
single segments within the network of motion constraints are
considered and a correct vehicle-to-segment (e.g. lane) asso-
ciation is assumed to be known. A detection of lane changing
maneuvers, as proposed in [14], could extend the proposed
strategy to multi lane scenarios with unknown association.

A probabilistic model is required for a systematic treatment
of the geometric map errors. In [4] the roadmap supports
the proposed vehicle localization with uncertainty informa-
tion for each single road segment. This contribution extends
this concept: The presented probabilistic curvemap (PCM)
offers continuous uncertainty information along each map
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element. The resulting problem to locate the vehicle and
update the PCM with incoming sensor measurements exhibits
many similarities to a fundamental problem in robotics, the
simultaneous localization and mapping problem (SLAM). In
SLAM the robot acquires a map of its environment while
simultaneously localizing itself relative to the map [15]. A
survey that summarizes work on that problem is presented
in [16]. A consistent SLAM solution employs the extended
Kalman filter (EKF) [17]. It has successfully been adapted to
vehicle localization in [18] and is applied within the proposed
framework.

Fig. 1. Concept of recursive localization assisted by probabilistic curvemap
(PCM): Observations, e.g. from GPS or odometer are fed into the localization
filter together with current vehicle kinematic and PCM states. Within the filter
the map- and the vehicle-states are adapted simultaneously. As illustrated in
the lower series the map segments and their uncertainties are adapted in the
vicinity of the traveling vehicle.

In order to follow the paradigm of EKF-SLAM, an appropri-
ate model for curve-constrained motion has to be developed.
The main contribution of this proposal is the deduction of a
probabilistic model that combines the vehicle motion and the
curve constraint in one state. Based on that model mapping
is conducted, while the vehicle is traveling and localization
is performed. The result is an estimate that simultaneously
represents the map and the vehicle state, as visualized in Fig. 1.
A Kalman filter parameter update of spline curves and their
covariances based on GPS observations has been presented
in prior work [19]. We extend this approach by incorporating
additional observations and a kinematic vehicle model. Hence,
the map does not only contribute to improve localization
but map and localization are processed to mutually improve
one another. During the map update procedure the geometric
map parameters are adapted locally around the current vehicle
position. The map accuracy increases and the overall precision
of the map assisted localization is continuously improved, each
time a measurement is assigned to a certain map element.

The remainder of this paper is structured as follows: Sec. II
introduces the fundamental concept of PCM interpolation with
cubic spline curves. Sec. III focuses on vehicle kinematics
and presents the selected motion model in curve coordinates.
In Sec. IV the recursive estimation of vehicle kinematics and
PCM is described step by step. The compact curve represen-
tation enable a wide range of opportunities to integrate sensor

measurements. In particular, the integration of speed, position
and heading observations is presented. Additionally, a method
is proposed to handle map growing situations by extrapolating
the available map and adding new states to the map parameter
vector. Several simulations of a scenario with a vehicle that
is already assigned to a certain map element are presented in
Sec. V to verify the proposed approach. Finally, the methods
are validated within a real world train positioning system.
The results are presented in Sec. VI. Section VII summarizes
the proposed method and draws conclusions. Throughout this
contribution the derivative with respect to time is denoted by ẋ
while the derivative with respect to curve parameter is denoted
by x�.

II. PROBABILISTIC CURVEMAP (PCM)
Polynomial concepts played a crucial role for interpolation

but are nowadays of more theoretical value: Faster and more
accurate methods have been developed [20]. Those methods
are piecewise polynomial, but still rely on the classical poly-
nomial concepts. A prominent class for piecewise polynomial
interpolation are cubic spline curves, that are used throughout
this proposal to approximate the true progression of road lanes
or track segments.

A general distinction is drawn between local and global
cubic splines. In contrast to local cubic splines or hermite
splines, the slopes at the supporting points of global cubic
splines are not specified, but are instead computed from
imposed continuity conditions [21]. The latter is chosen to
approximate motion constraints imposed by road lanes or
rail tracks precisely. Two properties of global cubic splines
support that choice: Commonly roads or tracks are struc-
tured to enable a comfortable driving with low lateral jerk.
Therefore, the variation of the road curvature is smooth. As a
consequence accurate interpolation can be obtained by a two
times continuously differentiable model. Global cubic splines
implicitly fulfill this requirement. When the interpolation of a
given set of supporting points along the motion constraints is
carried out over-fitting effects have to be avoided. Amongst
all twice continuously differentiable functions that interpolate
a set of supporting points and satisfy the same end conditions,
the global cubic spline s(l) yields the smallest norm of the
approximative strain energy

E =
�

[s��(l)]2dl, (1)

which corresponds to a minimization of curvature energy [20].
The result is a curve progression with minimal oscillations in
between the supporting points.

A. Interpolating Paths with Global Cubic Splines
The interpolation is carried out stepwise, based on a given

set of supporting points pi = (px,i, py,i)T for i = 0, . . . , n.
The first step is to determine a curve parameterization for
each supporting point pi. In chord-length parameterization a
parameter ui is calculated in a recursive manner, following the
equation

ui+1 = ui + �pi+1 − pi�, (2)
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with u0 = 0 and i = 0, . . . , n− 1. Each geometric segment is
interpolated with a planar curve

si(u) =
�
ax,i + bx,i∆ui + cx,i∆u2

i + dx,i∆u3
i

ay,i + by,i∆ui + cy,i∆u2
i + dy,i∆u3

i

�
, (3)

where u denotes chord-length and ∆ui = u − ui with ui ≤
u < ui+1. The global curve s(u) is composed piecewise by
the curve segments si(u). It interpolates the supporting points
and satisfies a set of smoothness conditions. The geometric
parameters are calculated for the x- and y-component of s(u)
separately. The next paragraph presents the calculations for the
x-component. The values for the y-component are extracted
in an analogous manner.

The unknown parameters are evaluated based on the sup-
porting points px,i and the unknown second derivatives at the
supporting points, the so called moments mx,i = mx(ui):

ax,i = px,i (4)

bx,i =
px,i+1 − px,i

hi
− hi(2mx,i + mx,i+1)

6
(5)

cx,i =
mx,i

2
(6)

dx,i =
mx,i+1 −mx,i

6hi
(7)

with hi = ui+1 − ui and i = 0, . . . , n − 1 [22]. The yet
unknown moments are calculated by imposing the condition
of first-derivative continuity at the inner supporting points.
Postulating linearity of the second derivative and integrating
twice combined with the continuity condition of the first
derivatives yields

himx,i + 2(hi + hi+1)mx,i+1 + hi+1mx,i+2 =
6

hi+1
(px,i+2 − px,i+1)−

6
hi

(px,i+1 − px,i) (8)

for each interval [ui−1, ui] [22] [23]. Since the moments at
the first and the last supporting point disappear, due to the
additionally chosen natural end conditions [21], the resulting
set of n − 1 equations is uniquely solvable and yields the
inner moments mx,i. Once the moments mx,i are known for
all supporting points px,i, the parameters of the piecewise
polynomials are calculated according to (4) to (7).

The resulting curve s(u) is given in chord-length rather than
arc-length parameterization and the parameterization error e =
l − u increases along the arc-length

l = f(u) =
� u

0
�s�(τ)�dτ (9)

of the spline curve.
To enable a stable integration of one-dimensional kinematic

states into the spline curve a re-parameterization to arc-length
parameterization is conducted. Principally, the arc-length pa-
rameterization of s(u) can be calculated in two steps. The
first step is to evaluate the inverse of (9) to obtain chord-
length as function of arc-length: u = f−1(l). Substitution
of the inverse into s(u) yields an arc-length parameterized
curve s(l) = s(f−1(l)). In general, this equation does not
offer an analytical solution but the arc-length parameterization
has to be approximated using numerical methods.

Throughout this proposal the approximating technique pre-
sented in [24] is adapted: Initially the arc-length values for the
supporting points pi are calculated, according to

li+1 = li +
� ui+1

ui

�s�(τ)�dτ, (10)

in a recursive manner. Through a final processing of supporting
points pi and corresponding arc-length values li an approxi-
mate arc-length parameterized curve s(l) is calculated.1

B. Linear Gauss-Markov Model of the Spline Map

Based on the recursive formulation presented in the last
section a linear Gauss-Markov model is formulated. A similar
model has been proposed in [26] for machine tool calibration.
Again, we restrict ourselves to the first component sx. Let the
polynomial coefficients be arranged in column vectors

ax = [ax,0 . . . ax,n−1]T (11)
...

...
dx = [dx,0 . . . dx,n−1]T. (12)

Additionally the x-components of the supporting point vectors
pi are grouped according to:

qx = [px,0 . . . px,n]T. (13)

As shown in the Appendix A the recursive equations (4) to
(7) and (8) can be rewritten in linear matrix formulation as

ax = Aqx cx = Cqx

bx = Bqx dx = Dqx
, (14)

yielding the coefficients of the piecewise defined polynomials.
For a known curve parameter l the corresponding curve

segment i is defined through li ≤ l < li+1. The masking
vector ki is designed to select the corresponding component
function from vector sx(l) according to

sx(l) = k
T
i · sx(l) =





...
0
1
0
...





T

·





...
sx,i−1(l)
sx,i(l)

sx,i+1(l)
...




. (15)

Substitution of the spline component vector function sx(l)
with the analytical expression in (14) and transformation of
the equation

sx(l) = k
T
i sx(l)

= k
T
i [ax + bx∆li + cx∆l2i + dx∆l3i ]

= k
T
i [Aqx + Bqx∆li + Cqx∆l2i + Dqx∆l3i ]

= k
T
i [A + B∆li + C∆l2i + D∆l3i ]qx

:= g
T(l, l)qx (16)

1The shape of s(l) slightly differs from s(u) because of the nonlinear
characteristics of the transformation that has been applied to u0, . . . , un to
obtain l0, . . . , ln [25].
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yields a linear relationship2 between the x-component support-
ing point vector qx and the function value sx for the parameter
value l with l = [l0 . . . ln]T.

For the second component one yields an analogue linear
relationship between the component function sy(l) and the y-
component supporting point vector

sy(l) = g
T(l, l)qy. (17)

In conclusion, the whole process of spline curve parameter
calculation of s(l) = [sx(l) sy(l)]T for a given set of
supporting points is expressed by a linear vector equation:

s(l) =
�
g

T(l, l) 0

0 g
T(l, l)

�
·
�
qx

qy

�
= G(l, l) · xm, (18)

where all spline supporting points are subsumed in qx and
qy [19].

The parameter vector xm is assumed to be a Gaussian
distributed random variable3, with

xm ∼ N (x̂m,Pmm). (19)

Due to the linear transformation in (18), the vector s(l) is also
Gaussian distributed, with

s(l) ∼ N (ŝ(l),Pss(l))
∼ N (G(l, l) x̂m,G(l, l)Pmm G

T(l, l)). (20)

The dependency of the parameter vector l in G(l, l) is skipped
in the sequel to keep the notation uncluttered.

C. First Derivative of the Spline Map

The derivation of the tangent vector t(l) = s
�(l) as a

function of the arc-length is straight forward and will be ap-
plied to design a state-to-measurement relationship for course
observations.

A linear relationship between the geometric map parameter
vector xm and the tangent vector t(l) = [tx(l) ty(l)]T is
derived from (18)

t(l) =
�
(gT(l))� 0

0 (gT(l))�

�
xm = G

�(l)xm (21)

with

(gT(l))� = k
T
i [B + 2C∆li + 3D∆l2i ], (22)

whereas the tangent vector is always normalized �t(l)� = 1
for arc-length parameterized curves [20]. Following the rea-
soning above, t(l) is again Gaussian distributed

t(l) ∼ N (t̂(l),Ptt(l))
∼ N (G�(l) x̂m,G�(l)Pmm (G�(l))T) (23)

and can be calculated for given arc-length position.

2Strictly, the parameter separation in (16) is not perfect because of the
dependency of the supporting point parameter values li on the supporting
point positions according to (10). Due to its insignificant influence this
interrelationship is neglected in this approach.

3Beside the central limit theorem this assumption is mainly motivated
through the resulting analytical properties. In general other distributions can
also be used.

D. Evaluation of Approximation Errors
The calculated curve s(l) is an approximation of the true

trace in two senses: The shape of s(l) is an approximation of
the shape of the true trace and the curve s(l) is approximately
arc-length parameterized. Both error sources are interdepen-
dent and are highly related to the arc-length distance between
adjacent supporting points ∆l = li+1 − li. A reasonable
choice for ∆l may be derived form a study of the overall
approximation accuracy. Therefore a set of S-shaped test traces
with varying curvature have been approximated with global
cubic splines.

For a given trace the discrete Fréchet distance dfr to the
approximated spline curve is calculated initially.4 In order to
evaluate the performance of the arc-length approximation the
maximum arc-length error

emax = max
l

{l −
� l

0
�s�(τ)�dτ} (24)

is calculated. If the minimum curve radius r is known Fig. 2
allows to pre-estimate the approximation errors for a given
distance ∆l. Thus, an appropriate choice of ∆l can directly be
conducted for a given curve radius and admissible uncertainty.

Fig. 2. Fréchet distance dfr and arc-length error emax between trace and
cubic spline curve as function of distance between adjacent supporting points
∆l = li+1 − li for three different curve radiuses r1, r2 and r3.

III. CURVE CONSTRAINED MOTION MODEL

The design of the kinematic vehicle model conducted in
an appropriate coordinate frame serves to predict the vehicle
states from one time step to the next. This choice has signifi-
cant impact on the performance of vehicle localization [2] and
has to be adapted vehicle specific.

A. Motion Model in Local Curve Coordinate Frame
Object tracking is conventionally formulated in global

Cartesian coordinates. If a PCM is given, an elegant formu-
lation is provided in local curve coordinates. While classical

4The Fréchet distance measures the similarity between two curves. It takes
into account the location and ordering of the points along the curves [27].
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models in Cartesian coordinates allows the vehicle to reach
every position in the plane measurement space, a description in
local curve coordinates results in a vehicle that is constrained
to the given PCM. Assuming the PCM to be known, the
local curve model summarizes the past history of the system
sufficiently and predicts future positions more precisely. Local
curve coordinates constrain the mean of the dynamic states to
remain on the path, while time- and measurement updates are
calculated. Therefore a post-filter map matching step to project
the estimate onto the map can be avoided [28].

In this proposal the kinematic states of a moving vehicle
are modeled in local curve coordinates, combining arc-length
position and arc-length position derivatives

xd,k = [lk l̇k . . . l(n)
k ]T. (25)

B. Discrete Wiener Process Acceleration Model
Numerous models to predict position and its uncertainty of

a moving vehicle are reported in literature. Throughout this
approach the Discrete Wiener Process Acceleration (DWPA)
model [1] is chosen and arc-length position lk, arc-length
velocity l̇k and arc-length acceleration l̈k are grouped in the
vehicle state vector, as xd,k = [lk l̇k l̈k]T, i.e. motion is
inherently constrained on the PCM. The transition equation
of the third order state equation is given by

xd,k+1 = Fdxd,k + Γdµk (26)

with

Fd =




1 T 1

2T 2

0 1 T
0 0 1



 and Γd =




1
2T 2

T
1



 . (27)

In this model the white noise µk is the acceleration increment
during the k-th sampling period. It is assumed to be a zero-
mean white sequence µk ∼ N (0, σ2

µ). The only design
parameter σµ should be selected of the order of the magnitude
of the maximum acceleration increment ∆a over a sampling
period T . A practical range is 0.5∆a ≤ σµ ≤ ∆a [1].

IV. SIMULTANEOUS LOCALIZATION AND MAPPING

Throughout the presented approach the kinematic states of
a moving vehicle xd,k are modeled in local curve coordinates
and the geometrical spline map information is subsumed by
xm,k as outlined in Sec. II and Sec. III. Altogether the
resulting state vector contains both components and is assumed
to be a Gaussian distributed random variable, with mean and
covariance

x̂k =
�
x̂d,k

x̂m,k

�
and Pk =

�
Pdd,k Pdm,k

P
T
dm,k Pmm,k

�
. (28)

After the state x0 is initialized, an EKF is applied to update
the entire state xk in a time update and a measurement update
step. When the vehicle travels beyond the last supporting point
map extrapolation is performed, before a re-parameterization
and a re-sampling step completes one processing loop. It is
worth noting that the proposed algorithm handles the initial
mapping of unknown areas and a map update in areas of
existing but uncertain maps in a unified framework.

Fig. 3. Tangential PCM initialization based on the first available sensor
reading z0 = [pT

0 tT
0 v0]T and a fixed distance ∆l. The PCM is constructed

as s0(l) = G(l)xm,0.

A. State Vector Initialization

The initial state vector x0 is composed of a kinematic
and a static component. It is based upon the first available
observation z0. Each measurement zk consists of three main
components. The position pk and the direction tk are both
given in global Cartesian coordinates. In contrast, speed vk is
measured in direction of movement in local curve coordinates.
Each measurement zk = [pT

k t
T
k vk]T is assumed a Gaussian

random variable zk ∼ N (ẑk,Rk) with known covariance.
Measurement and system noise are assumed to be uncorre-
lated.

Two main cases can be distinguished for state vector ini-
tialization: If an explicit assignment to a certain map element
characterized by xm,0 is given, orthogonal projection of the
first available measurement z0 onto that element yields xd,0. If
no map element is provided it has to be initialized, too. Based
on the position measurement p0 three supporting points are
calculated in direction of the first tangent observation t0 and
form the initial map state

xm,0 =




I −∆l I 0

I 0 0

I ∆l I 0



 z0 +




I

0

I



wtan, (29)

with ∆l denoting the arc-length between adjacent supporting
points, as shown in Fig 3. The white noise term wtan ∼
N (0, σ2

tanI) is added to explain model errors that occur in
curved sections, where the assumption of tangential extrapo-
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lation does not hold.

B. EKF Update
Throughout the following subsection the state update pro-

cess during one time interval T is described step by step. The
superscript (.)+ is used to identify variables that have been
updated within the current subsection while it is omitted at
the end of the subsection.

The core of the proposed recursive localization and mapping
problem is solved with the EKF, an approximation of the
Bayes filter [29]. Assuming a third order kinematic model in
local curve coordinates and a static map, the system equation
can be written as

xk = Fxk−1 +Γµk−1 =
�
Fd 0

0 I

�
xk−1 +

�
Γd

0

�
µk−1. (30)

This defines the prediction step of mean and covariance of the
state vector computed in a KF [30].

A transformation of local arc-length coordinates to global
measurement coordinates is performed to update the cur-
rent state estimate xk with incoming measurements zk =
[pT

k, tT
k, vk]T. The mathematical relation between both coordi-

nate frames is given by the natural parameterized spline curve
as presented in Sec. II. The nonlinear observation equation
ẑk = h(xk) + wk can be written as

ẑk =




sk(lk)
tk(lk)

l̇k



 + wk =




G(lk)xm,k

G
�(lk)xm,k

l̇k



 + wk, (31)

which requires the use of an EKF. The error sources for
the measurement uncertainty are assumed to be uncorrelated
and white, zero-mean distributed Gaussian random sequences
wk ∼ N (0,Rk).

Given the linear relation between the measurement and
the map parameters, linearization is only necessary for the
dynamic state components. Based on its Jacobian the EKF
measurement update equations adjust the predicted estimate
with new incoming measurement information. While the mea-
surement update is calculated the arc-length position esti-
mate l̂+k are fixed on the PCM. In parallel the geometric
parameters are adapted to position and course measurement.
The update yields a smooth adaption of the curve progression,
according to the minimum-curvature-property [20] of cubic
spline curves. The process is visualized in Fig. 4.

C. PCM Extrapolation
Analogue to time-prediction of the dynamic components of

the state vector a geometric prediction is performed when
the vehicle leaves the defined state space, limited by the
total arc-length of the available PCM. Tangential geometric
extrapolation is employed, if the current arc-length position
estimate reaches the end of the spline map, l̂k > ln. At first,
a new supporting point is augmented to the state vector. The
distance ∆l is set to a fixed value, with ∆l = ln+1 − ln. The
tangentially extrapolated point is then given as

pn+1 = s(ln) + ∆l t(ln) + wtan, (32)

Fig. 4. Measurement innovation of state vector xk with measurement zk: The
mean position of the vehicle l̂k is updated while the curve progression ŝk(l)
is adapted in parallel. The result is a smooth convergency to the observation,
marked with (.)+. For visualization purposes the mean tangent observation t̂k

and the corresponding predicted course measurements ŝ�
k(l̂k) = t̂k(l̂k)

before and after the update step are linear shifted to a random origin at
p = [100 250]T. The velocity adjustment is plotted separately, too. The
lower plots illustrate the local decrease of geometric uncertainty of the PCM.

where the white noise wtan ∼ N (0, σ2
tanI) is added with

large variance to explain the high uncertainty model errors
that occur in unknown curved road sections. Using (18) and
(21) yields

pn+1 = G(ln)xm,k + ∆l G�(ln)xm,k + wtan

= [G(ln) + ∆l G�(ln)]xm,k + wtan

:= U(ln)xm,k + wtan. (33)

The state vector xk is augmented by the new supporting point
pn+1, according to x

+
k = [xT

k p
T
n+1]T. Thus extrapolation can

finally be written as

x
+
k =




I 0

0 I

0 U(ln)



 ·
�
xd,k

xm,k

�
+




0

0

wtan



 . (34)

Mean and covariance of the extrapolated state vector can
now be calculated employing calculations on Gaussian random
variables [31].

D. PCM Re-Parameterization
During the measurement update of the system state vector

the supporting point positions, subsumed in xm,k are adjusted,
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while the arc-lengths li are assumed to be constants. Although
actual arc-lengths will change only moderately during map
adjustment, these need to be updated to avoid drift accumula-
tions.

Initially the exact arc-length is calculated for each vertex
based on the current mean run of the spline curve sk(l)

l+i+1 = l+i +
� li+1

li

�ŝ�k(τ)�dτ. (35)

Calculation of the curve s
+
k (l) based on the updated set of

supporting points xm,k and corresponding curve parameters
l+0 , . . . , l+n yields an arc-length parameterized curve.5

E. PCM Re-Sampling
In order to obtain a constant curve approximation quality

the arc-length distances between adjacent supporting points are
reset to the initially chosen value ∆l. This is achieved through
sampling the curve sk(l) at the arc-length values l+i+1 = l+i +
∆l with i = 0, . . . , n. While doing so the first supporting point
parameter value has to remain unchanged l0 = l+0 . The new
state vector is given by

x
+
k =





xd,k

sk(l+0 )
...

sk(l+n )




=





I 0

0 G(l+0 )
...

...
0 G(l+n )




·
�
xd,k

xm,k

�
. (36)

Again the matrix formulation of the re-sampling step in (36)
is a linear transformation of a Gaussian random variable
and mean and covariance of the new state vector can be
calculated directly. Fig. 5 visualizes the re-sampling process.
For a reasonable re-sampling s

+
k (l) ≈ sk(l) and hence l

+ = l

hold.6

V. SIMULATIONS

The presented SLAM algorithm was assessed in numerical
simulations to verify filter performance under specified con-
ditions. In particular it is examined to what extent different
types of corrupted initial maps, e.g. noisy or biased, affect the
results.

A. Simulation Setup
At first the true run of the motion path is generated within

realistic curvature values. Third order kinematics with a zero
mean process noise acceleration sequence of varying variances
σ2

d are chosen to approximate the maneuvering behavior of
different vehicles. Based on this ground truth typical sensor
error characteristics are taken into account to generate the
measurement input for the presented filter algorithm.

According to typical railway or country road scenarios,
maps of different quality levels are generated based on the true

5Strictly speaking the parameters l+i are also random variables. Due to the
smooth, weak non-linear characteristics of (35) passing through the mean of
the current curve estimate is sufficient in the presented framework.

6The errors that are caused during the re-sampling step are negligible
compared other error sources and are therefore not regarded as single error
sources.

Fig. 5. In the left column the mean progression and the probabilistic curve
are given for a supporting point distance of ∆l = 200m. The re-sampling
result for ∆l = 40m is depicted in the right column.

progression, while the minimum radius is set to rmin = 40m.
Afterwards, each supporting point position pi is corrupted
with normal distributed white noise and an additional fixed
offset ∆p according to

p̂i = pi + ∆p + N (0, σ2
p · I) (37)

to compute the elements of the initial map state vector xm,0.
It is worth noting that our method also allows to set xm,0

empty, when no initial map knowledge is available.
Following the analysis of Section II-D the arc-length dis-

tance between adjacent supporting points is set to ∆l = 20m.
For the considered traces, this choice guarantees a maximal
approximation error of 0.3m as depicted in Fig. 2.

Now measurements are generated based on the the simulated
vehicle motion along the true curve progression. Therefore
the true values zk = [pT

k t
T
k vk]T are corrupted with

additive zero mean white noise of known covariance R =
diag(1.0m 1.0m 0.1m 0.1m 0.05m/s)2.

B. Performance Evaluation
During the simulation 10 runs are executed successively.

The final map parameters of run j are passed over to run
j + 1. To evaluate the absolute quality of the filter estimate
the position error

ek,j = �pk − ŝk(l̂k)�j (38)

is computed at each time step k during every run j.
Additionally the Fréchet distance dfr,j between the final

mean map estimate ŝ(l) and the true progression is calculated
before and after each total run j, as presented in Sec. II-D.

To evaluate filter consistency the normalized innovation
squared (NIS)

�k,j = (ẑk − h(x̂k))T(HkPkH
T
k + Rk)−1(ẑk − h(x̂k))|j (39)
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Fig. 6. Column-wise simulation results for three different filter initializations: While σd was always set to 0.4m/s2 and σp was fixed to 7.5m during all
runs, the map offset ∆d additionally corrupted the true map in the second column with a value of ∆d = [0.0 15.0]Tm. In the third column no initial map
was given at all. The first and the second row give respectively position errors and the normalized innovation squared (NIS) to evaluate the absolute behavior
and filter consistency compared to the 95% probability region for three selected runs. The lowest row presents the Fréchet distance dfr,j after each run.

is computed [1]. Under the hypothesis that the filter is
consistent for nz = 5 degrees of freedom, where nz is
the dimension of the measurement vector z, the normalized
innovation squared � should be a chi-squared random variable.
During a single test run a maximal sum of 6 out of 100 values
are allowed to be outside the 95% probability region, while
the 5%-tail point is approximately χ2

5(0.95) = 11.1 in that
case.

Fig. 6 depicts the simulation results for three different
scenarios columnwise. During the presented scenarios we set
σd = 0.4m/s2 for fixed sampling time T = 1s. The first row
gives the resulting vehicle position error ek,j for three runs
out of a total number of 10 and in the second row the NIS
values again for the same runs. In the third row the Fréchet
distance is plotted before and after each run.

In the first scenario, presented in the first column, the true
map was corrupted according to (37) with ∆p = [0.0 0.0]Tm
and σp = 7.5m. Caused by the sequential use of the map
an improvement of the geometric map information yields an
increase of the vehicle localization accuracy while less than 3
NIS values fall outside the 95% region, which is acceptable for
a consistent estimator. During the second scenario a constant
noise with a standard deviation of σm = 7.5m and additionally
a map bias with ∆p = [0.0 15.0]Tm corrupts the initial map
estimate according to (37). Caused by the biased initialization
nearly all NIS values during the first run fall outside the 95%
region. The sequential use of the PCM compensates that initial

map bias ∆p and a consistent behavior renders possible in
later runs. The Fréchet distance decreases and in parallel the
map estimate converges towards the true curve progression.
Simultaneously, the resulting vehicle localization accuracy
improves continuously and filter consistency is obtained in
addition due to the increasing map quality. In the last scenario
an exploration of a totally unknown area is simulated. The
filter is still consistent and the improvement of the map causes
a better performance during a sequential use of new map
segment as shown in the third column of Fig. 6.

Tab. I and Tab. II present the results of several additional
scenarios. In particular the time average position error ej and
the time average normalized innovation squared �j are given
for the initial and the final run of each series of runs over a map
segment. Additionally, the improvement in the map estimate
is evaluated by the initial and the final Fréchet distance dfr,j .

The filter performance is always reasonable during the
evaluated scenarios. Even for changing initial map errors
and vehicle dynamic behaviors as presented in Tab. I the
final map estimate always converges towards the expected
approximation error. In the majority of cases a decrease of
all recorded position errors can be observed, while exceptions
are caused by randomly generated measurement series. Caused
by a refinement of the available PCM the corresponding map
uncertainty decreases, what results in a slight rise of the
calculated NIS values, in some cases. For biased map initial-
izations in Tab. II the filter is typically mismatched during the
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TABLE I
SCENARIOS WITH NOISY INITIAL MAPS

σp = 5.0m σp = 7.5m σp = 10.0m

∆p = [0.0 0.0]Tm ∆p = [0.0 0.0]Tm ∆p = [0.0 0.0]Tm

ej �j dfr,j ej �j dfr,j ej �j dfr,j

initial run j = 1 1.2600 1.2962 17.6207 1.2238 1.4105 11.0147 2.1793 5.0963 31.8155
σd = 0.2m/s2

final run j = 10 2.4958 2.5781 0.6718 2.4046 3.4067 0.2998 1.1566 2.2959 0.6018

initial run j = 1 1.1477 1.3480 12.9426 1.8087 3.9980 12.5567 2.3977 1.2219 26.0882
σd = 0.4m/s2

final run j = 10 0.2926 2.1919 0.2226 0.2641 1.8637 0.4894 0.3065 1.7507 0.3954

initial run j = 1 2.0554 1.4505 9.9086 1.8840 1.5053 11.5093 3.1673 3.4365 12.6254
σd = 0.6m/s2

final run j = 10 1.6610 2.8705 0.4641 0.3833 1.9838 0.3956 0.4900 2.0543 0.4218

TABLE II
SCENARIOS WITH NOISY AND BIASED OR WITHOUT INITIAL MAP

σp = 7.5m σp = 7.5m -

∆p = [0.0 10.0]Tm ∆p = [0.0 15.0]Tm -

ej �j dfr,j ej �j dfr,j ej �j dfr,j

initial run j = 1 4.8810 34.8544 26.8952 5.5775 20.6083 29.9128 1.4720 3.0160 -
σd = 0.2m/s2

final run j = 10 0.8518 2.6901 1.3118 0.5353 2.7855 1.8158 0.2301 2.1650 0.3136

initial run j = 1 1.7791 1.7421 21.5615 0.7214 1.2308 26.9683 2.4969 2.5932 -
σd = 0.4m/s2

final run j = 10 1.1116 2.3694 0.5402 0.6638 1.8489 0.8086 0.4105 2.4384 0.7038

initial run j = 1 0.9455 1.5500 19.5185 4.8275 22.6060 33.2470 4.3616 35.9339 -
σd = 0.6m/s2

final run j = 10 0.6500 2.1626 0.3588 0.4702 1.7745 1.2414 2.8359 13.8504 6.6901

first runs but still ends up in a consistent behavior while the
map quality improves more slowly compared to the unbiased
scenarios. Exploration scenarios with a dynamic behavior up
to σd = 0.4m/s2 show a reasonable filter performance. For
larger values of σd model limitations result in an inconsistent
filter performance. All over the obtained performance indicates
that the Gaussian assumptions of the relevant quantities seem
to be reasonable for a system according to the specifications
given.

In summary, the simulations show that the proposed filter
handles typical kinds of map initializations errors successfully.
In case of noisy or biased map scenarios the performance
is convincing, due to the steadily increasing localization
accuracy. Even in absence of an initial map available filter
performance is still satisfying up to a certain degree of
dynamic vehicle behavior.

VI. EXPERIMENTS

A real world railway experiment is processed to validate
filter performance in real world and to quantify the influence
of modelling errors. The motion of rail vehicles is tightly
constrained on their tracks. Hence, the proposed method is
ideally suited for railway scenarios. Compared to an auto-
motive environment, railway systems allow to validate the
proposed PCM assisted localization strategy for two main
reasons: Caused by the mechanical track guiding the accuracy
of track following while repeatedly passing a certain track
segment is very high and driver- or situation-dependent lateral

offsets are nonexistent. Additionally, a high precision reference
map is available for the chosen test area [32]. Based on that
ground truth the deviation between the estimate and the true
track is computed.

A. Experimental Setup
An integrated navigation system [1] is mounted in the

gravity center of the test vehicle. It consists of two main
components: The first component is a dead-reckoning inertial
navigation system (INS). Altogether it contains six sensors,
namely three accelerometers and three gyroscopes, that mea-
sure acceleration and rotational rate of the vehicle. The second
component is a GPS receiver to cope with the unbounded
growing position drift of the INS. For details about the
underlying principles and algorithms see [33] or [34].

The navigation solution and their covariances are converted
to Universal Transverse Mercator (UTM) coordinate system, a
two dimensional Cartesian coordinate system [33] [35]. Based
on the transformed output of the integrated navigation system
the presented estimation is computed.7

B. Performance Evaluation
During the experiment three map segments of varying length

in between 2 and 4 kilometers are chosen and 12 runs are
7In general an expansion of the SLAM states with the states of the

integrated navigation system might enhance the performance of the proposed
method. In order to emphasize the possibility to replace that particular sensor
system we kept both systems separated.
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Fig. 7. Row-wise simulation results for three different test areas, plotted in the left column. In the second column the squared position innovation for three
selected run are visualized exemplarily and in the third column the lateral geometric map errors are subsumed in a box plot.

executed successively. Again the final map estimate of run j
is passed over to run j + 1.

The results for three different map segments are visualized
row-wise in Fig. 7. In the first column a map gives the exact
test areas in UTM coordinates. In the second column the
resulting squared measurement residuals for three selected
runs are presented and in the third column a box plot visualizes
the signed map error for sampled positions along the final
estimate after each run.

Because all three test areas are situated in a densely wooded
mountainous region, challenging GPS conditions result from
multi-path and shadowing effects. Due to imperfect error
models within each available integrated navigation system this
causes an underestimation of the covariances of the estimated
navigation solution. As a consequence the resulting geometric
map errors slightly exceed the theoretical values computed
in Sec. II-D and the simulative results presented in Sec. V.
Caused by local (e.g. 6. run in area 1) or global (e.g. 12. run
in area 2) mismatched outputs of the integrated navigation
solution the squared position innovation is biased in the
corresponding time intervals. Presumably, the true position
error was smaller because of the precise map information, that
was already available during the mentioned runs.

Overall, the geometric map quality obtained is sufficient to
enable precise localization even in situations with moderate
accuracy of the available navigation solution. Moreover, the
map estimate converged to its final precision already after 3
to 4 runs and additional runs do not improve the results any
further.

VII. CONCLUSION

The main contribution of this proposal is a novel simulta-
neous localization and mapping strategy for moving vehicles
in case of tightly curve-constrained, i.e. 1D, motion. In that
context curvemaps offer a wide range of invaluable informa-
tion; hence they are a key component of the presented map
assisted localization method.

The proposed probabilistic curvemap (PCM) enables an
explicit representation of geometric map information and its
local uncertainty. Combined with a 1D model of the vehicle
kinematics in curve coordinates a simultaneous localization
and mapping without additional map matching renders possi-
ble: As soon as a new observation is available, a simultaneous
update of the kinematic vehicle state and the geometric map
parameters is carried out in one filter step. Due to negligi-
ble nonlinearities in the observation equations an extended
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Kalman filter is appropriate and yields consistent performance.
During subsequent time and measurement updates and in
particular during sequential use of the corrected PCM, the
adapted map improves the localization accuracy step by step.
Moreover PCM re-sampling is implemented to guarantee con-
stant interpolating properties. A tangential extrapolation model
generates new map segments in situations with incomplete
maps. The update strategy and the chosen global spline curves
yield a dense covariance matrix of the combined vehicle and
map state.

The presented PCM-assisted localization framework is use-
ful for a broad variety of scenarios in intelligent transportation
systems and autonomous vehicles. Different sets of available
sensor information with varying characteristics can be pro-
cessed. Experiments in simulations as well as in real world
railway vehicles demonstrate the method allows for iterative
mapping of railway tracks with a precision of some 10cm with
a vehicle position error of typically less than one meter. The
focus of further work will be on other measurement principles,
additional motion models and observations. Moreover, the
framework will be extended from single segments to road-
or track networks, multi lane road scenarios and the arising
vehicle-to-lane association problem.

APPENDIX A
MATRIX CALCULATIONS

The linear matrix equations in (14) are derived from the
conditions in (4) to (7) and the system of equations in (8).
Initially the moments vector mx = [mx,0 . . . mx,n]T is
defined. Arranging the 4n equations in (4) to (7) in matrix
notations yields the following terms

ax = A1qx bx = B1qx + B2mx

cx = C1mx dx = D1mx
(40)

while the matrices are given by

A1 =





1 0 0 · · · 0
0 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 0





B1 =





−1
h1

1
h1

0 · · · 0
0 −1

h2

1
h2

· · · 0
...

. . . . . . . . .
...

0 · · · 0 −1
hn−1

1
hn−1





B2 =





−2h1
6

−h1
6 0 · · · 0

0 −2h2
6

−h2
6 · · · 0

...
. . . . . . . . .

...
0 · · · 0 −2hn−1

6
−hn−1

6





C1 =





1
2 0 0 · · · 0
0 1

2 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1
2 0





D1 =





−1
6h1

1
6h1

0 · · · 0
0 −1

6h2

1
6h2

· · · 0
...

. . . 0
. . .

...
0 · · · 0 −1

6hn−1

1
6hn−1




.

Completing the system of equations in (8) with the determined
values for the moments at the spline endings mx,0 = mx,n = 0
and rearranging the n equations in matrix notation yields

Mmx = Lqx (41)

with the two matrices

M =





1 0 0 · · · 0
h1 2(h1 + h2) h2 · · · 0
...

. . . . . . . . .
...

0 · · · hn−2 2(hn−2 + hn−1) hn−1

0 · · · 0 0 1





L =





0 0 0 · · · 0
6
h1

(−6
h1

+ −6
h2

) 6
h2

· · · 0
...

. . . . . . . . .
...

0 · · · 6
hn−2

( −6
hn−2

+ −6
hn−1

) 6
hn−1

0 · · · 0 0 0




.

Because the matrix M is tridiagonal the system of equations
in (41) can be solved efficiently with a computational effort
that is proportional to the total number of equations [36]. The
solution

mx = M
−1

Lqx (42)

can be inserted in (4) to (7). Rearranging yields linear matrix
relations

ax = A1qx = Aqx (43)
bx = B1qx + B2mx = B1qx + B2(M−1F )qx

= (B1 + B2M
−1

F)qx = Bqx (44)
cx = C1mx = C1(M−1

F)qx = Cqx (45)
dx = D1mx = D1(M−1

F)qx = Dqx (46)

to compute the unknown spline polynomial coefficients based
on the supporting points qx.
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