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Abstract—Place recognition for loop closure detection lies
at the heart of every Simultaneous Localization and Mapping
(SLAM) method. Recently methods that use cameras and
describe the entire image by one holistic feature vector have
experienced a resurgence. Despite the success of these methods,
it remains unclear how a descriptor should be constructed for
this particular purpose. The problem of choosing the right
descriptor becomes even more pronounced in the context of life
long mapping. The appearance of a place may vary considerably
under different illumination conditions and over the course of a
day. None of the handcrafted descriptors published in literature
are particularly designed for this purpose.

Herein, we propose to use a set of elementary building blocks
from which millions of different descriptors can be constructed
automatically. Moreover, we present an evaluation function
which evaluates the performance of a given image descriptor
for place recognition under severe lighting changes. Finally
we present an algorithm to efficiently search the space of
descriptors to find the best suited one.

Evaluating the trained descriptor on a test set shows a clear
superiority over its hand crafted counter parts like BRIEF
and U-SURF. Finally we show how loop closures can be
reliably detected using the automatically learned descriptor.
Two overlapping image sequences from two different days and
times are merged into one pose graph. The resulting merged
pose graph is optimized and does not contain a single false
link while at the same time all true loop closures were detected
correctly.

The descriptor and the place recognizer source code is pub-
lished with datasets on http://www.mrt.kit.edu/libDird.php.

I. INTRODUCTION

Most modern approaches represent the SLAM problem
as a graph optimization problem ([12]). Thereby a tractable
level of complexity is reached. Lately, some algorithms
have been demonstrated to work robustly on large scales.
However, detecting previously visited places to build the
system of constraints (the graph) lies at the heart of every
of these methods and is commonly referred to as the
loop closure problem. A plethora of methods have been
proposed to address this problem using cameras. Many of
these methods are difficult to implement or require previous
training (e.g. creating code books etc. [9]).

Just recently a new branch of algorithms have been
proposed. The entire image of a sequence is represented by
one holistic descriptor vector (e.g. [19]). Image similarity is
thereafter computed by vector distance. However, it remains
unclear which visual descriptor is best suited to represent
places. This question becomes especially pronounced since
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Fig. 1: A simplified example graph of processing steps. Large
nodes (green) are processing steps and small nodes inside
(red) are parameters. A path through the graph corresponds
to exactly one descriptor.

a flood of image descriptors already exist and new ones
are published frequently. Nevertheless, none of them are
particularly designed to be robust or invariant to changes
in lighting conditions occurring during different times of
the day. Moreover, these descriptors are constructed with a
broad applicability in mind even though one would expect a
specialized descriptor to outperform a general purpose one.
Herein we propose a set of elementary algorithmic building
blocks from which millions of different image descriptors
can be constructed. A sequence of any length of these blocks
results in one descriptor each. Common algorithms like
BRIEF ([7]), LBP ([16]) and almost any other descriptor
can be constructed by one of these sequences of blocks.
This set of blocks enables us to automatically produce a
multitude of image descriptors. We strive at finding a single
descriptor among several millions that is best suited to
represent places under illumination variations. Our goal is
robust place recognition for loop closure detection using a
simple holistic approach.

We resort to a fitness function which evaluates a given
descriptor for the given task. For this purpose we compute
the area under the Precision-Recall (PR) curve. Thereto, a
set of image couples showing either the same or different
places is compiled and taken for training. These pairs of
images are randomly drawn from three sequences of the
same route recorded on different times of the day. By
recording sequences in the morning, at noon and in the
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evening the training set exhibits a large degree of lighting
variations. Our goal is to automatically find a descriptor
which is robust against these image variations. To this end
we use a meta heuristic (evolution strategies) to evolve a set
of descriptors, mutate these to create children and finally
select only the best performing candidates to form the next
generation. Thereafter iterations are continued by creating
new children.

We trained a descriptor by the aforementioned method.
The best descriptor was then tested on a disjoint test set
and compared to state of the art image descriptors like
U-SURF and BRIEF. Experiments show that the trained
descriptor significantly outperforms its off the shelf counter
parts. Finally we recorded two image sequences on different
days, detected loop closures by the trained descriptor and
optimized the visual odometry induced pose graph. Thereby
we obtained one joint pose graph. The resulting graph
shows no false loop closures.

II. RELATED WORK

The presented work is related to methods on place
recognition and loop closure detection [9], [1], [2], [19],
[15] and research on descriptor evaluation and learning [21],
(6], [171, (81, [18], [5], [22], [10], [14].

FabMap presented in [9] by Cummnis and colleagues has
emerged into the work horse of loop closure detection. A
bag of word model on a specifically trained code book
is used. Our method for loop closure detection is rather
simplistic. The entire image is down sampled, tiled and
a single feature vector is computed after concatenating
single tile features. No previous training is required, no
code-books need to be stored and description and retrieval
time is extremely fast.

Badino et al. [1], [2] use SURF like features to describe
poses of a previously recored trajectory (the map). During
a second traversal online imagery is processed, features are
extracted and the nearest pose of the map is estimated. To
this end a histogram filter is fed with these image features
and velocity information to smooth the localization estimate.
Experimental results show a high robustness.

Siinderhauf and co-workers present a holistic image feature
based on the BRIEF descriptor in [19]. Each image is
partitioned into tiles each of which is described by BRIEF.
All single tile feature vectors are concatenated to represent
the image. Loop closures are detected by computing vector
differences. The pose graph back-end is robustified as in
[20]. We herein follow their line in describing images
holistically.

Milford has pushed this idea further as presented in [15].
Panoramic images are compared for similarity by the mean
absolute intensity difference with topometric localization
in mind. However, image resolution and bit depth are
impressively reduced while still being discriminative
enough. One crucial ingredient seems to be the dynamic
time warping of the pair wise image difference matrix.
Experiments on double round trip trajectories of up to 70km

are presented.

The work closest to our descriptor learning framework is the
work of Brown and co-workers [21], [6]. A set of blocks are
presented which are combined and whose parameters are
optimized by Powell’s method. Blocks include smoothing,
non-linear transforms, pooling and normalization. A large
training set of different views of the same points is created
by bundle adjustment. The order of blocks however is fixed
and only the parameters are optimized. Our methods spans
a much greater space of descriptors with more processing
blocks. Furthermore, the order of blocks is optimized as
well.

Parameters of SIFT and HOG features are optimized by
the method of [18]. A set of patches are automatically
extracted from street level imagery similarly to [6]. The
parameter space of these hand crafted methods is thereafter
searched for an optimum with car classification in mind.
Experiments show a substantial improvement of the trained
parameter set over the default set. Furthermore, it is shown
how classification accuracy can benefit from application
specific parameters.

Philibin et al. [17] and Carneiro [8] both present a method
for feature learning. Their work focuses on learning a
distance function for image retrieval. We refrained from
learning a mere distance transform but rather optimized the
entire descriptor.

Descriptors used for image retrieval largely depend on
spatial pooling and vector coding. Boureau and colleague
[5] systematically investigated the effects of proper pooling
and coding choices. The importance of appropriate choices
for these steps could be highlighted.

Using a filter operation followed by estimating the filter
distribution has been investigated in our previous work on
texture description in [14].

A large number of work has been conducted on evaluating
different image detectors and descriptors. We exemplary
cite the recent work of Gauglitz and co-workers [10]. A
vast test set of images for feature tracking was created
and commonly used descriptors are evaluated in terms of
matching performance. However no alteration or automatic
feature construction is proposed.

III. DESCRIPTOR BUILDING BLOCKS

We present the scheme from which a broad class of dif-
ferent image descriptors can be constructed in the following
section. First we present a simple example by constructing
one sample descriptor. It serves as a mere example to
introduce our approach. Thereafter the general method is
elucidated and each block is presented in detail.

We consider a gray level image I and a pixel position ¢, j
which shall be described by the descriptor. Now, a simple
descriptor may convolve the image I with a set of Sobel
filters to compute the filter responses Rypor = I * Fhor and
Ryer = I % Fer with % denoting convolution. The descriptor
may output a two dimensional feature vector fi(i,j) of
the filter responses at the given position ie. fi(i,j) =



Fig. 2: A given descriptor can be extended by applying it at
different offsets of pixel positions and concatenation. Several
such repetition masks are shown.
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Fig. 3: A given descriptor can be extended by applying a
fixed matrix A to it. Two example matrices are shown. See
text for details.

(Ruor(i,5), Ryer(i, 5))T. To extend such a simplistic method
one could apply the given descriptor several times at pre-
defined positions around 4,j and concatenate these into a
larger vector. The resulting feature vector would then be
f2(27]> = (fl(l +i1,J +]1)77f1(2 +in,Jj +]N>)T for
N offsets of pixel position (i1,751),.-.,(in,jn). We stress
that the descriptor which computes f> uses the descriptor
which computes f; as a black box. It simply applies the
descriptor f; several times at different pixel positions around
i,j and concatenates its output to form f5. Following this
line of extending any given descriptor by one additional step
we can drive this idea further. Creating a third descriptor
which computes f3 given fy can simply be computed by
matrix multiplication f3 = A - fo for a fixed matrix A.
The descriptor to compute f3 again uses the descriptor to
compute fo without knowledge of how fo was constructed.
Furthermore, a fourth descriptor may use the descriptor to
compute f3 and apply it several times in the vicinity of
the pixel position 4, j and compute a histogram of f3-values
which in turn forms f4. This chain of elementary steps can
be extended almost arbitrarily.

The steps for this example descriptor are: Sobel filtering,
repetition, matrix multiplication and finally histogram com-
putation. The main point is that any step can be altered inde-
pendently of the other steps. Sobel filters may be replaced by
low and high pass filters while keeping the consecutive steps
fixed as before. The repetition pattern may change, the matrix
A can change or histogram bins can be altered. Moreover,
steps may be applied more than once for one descriptor.
Nothing keeps one from applying yet another repetition to
f4 to form fs.

In the following each of these building blocks are presented

in more detail. Each block contains a set of parameters which
are detailed as well. A repetition block for instance may con-
tain many different repetition patterns (pixel position offsets),
many matrices A are sensible for matrix multiplication etc.
Every descriptor always starts with a filter operation. All
other steps can be combined arbitrarily and in any order.
Filter Banks: The following filter banks are contained in
our scheme: Sobel Filters (no parameters), Gaussian blur-
ring (several kernel widths o as parameters), Derivative in
horizontal and vertical direction (step size for differentiation
as parameters), Haar Features (cascade depth as parameter),
Rank Transform (no parameters) and Census Transform (no
parameters). Moreover, an empty filter (identity) is used to
be able to reproduce the original image without filtering.
Repetition: A repetition is represented by a set of offsets of
pixel position. Several patterns of repetition quite close to
the pixel which shall be described are stored as parameters.
The number of offsets for these patterns are between nine and
sixteen. Moreover, a set of BRIEF like repetition patterns for
different numbers of offsets are stored. These offsets follow
Gaussian distributions hence exhibiting a closer density
towards the center. The number of offsets ranges from 20
to approximately 300 for these patterns. Finally a small set
of repetitions are stored as parameters which are further away
from the center and form an equidistantly spaced grid. The
number of offsets is between four and sixteen. Some of these
repetition patterns are exemplary shown in Figure 2.
Linear Transform: As explained in the aforementioned
example descriptor a matrix multiplication may be appended
to a sequence of construction steps. Two sets of predefined
matrices are stored. Set one contains 2/N x N matrices with
exactly one -1 and one 1 in each row such that every column
contains exactly one non-zero entry. The second set contains
N x N — 1 matrices with one column of 1s and rows
containing exactly one additional -1 such that every column
has at most one -1. One example each is shown in Figure 3.
Non-linear Transform: One Transform that computes polar
from Cartesian coordinates and one transform that scales
the feature vector to unit length are parameters for non-
linear transformation. Moreover we use a sign quantization
transform which replaces all negative elements of a vector
by Os and non-negative elements by Is.
Histogram: A descriptor computing feature vectors f can
be extended by applying it to a set of B independent test
images to obtain feature vectors f1,..., fp. These feature
vectors thereafter serve as bin centers for a histogram and
are kept fixed. The extended descriptor to compute f’ finally
computes f at many pixel positions around the point to
be described. The counter for the nearest bin center is
incremented. The final histogram (of dimension B) is then
output as f’. The number of bin centers and the area from
which the histogram shall be filled serve as parameters for
this building block.
Dimensionality Reduction: The dimension of a feature
vector may be reduced by multiplying the vector by a fixed
matrix A. For dimension reduction we use random projection
matrices ([4]). The degree by which the vector is reduced is



Fig. 4: Some sample images from the training set. The
first three show the same place during morning, noon and
evening. Note the severe changes in illumination and cast
shadows.

the set of parameters for this step. It ranges from 10% to
90%.

Summation: Much like histograms a descriptor to compute
f can be extended by applying it within a region and sum-
ming all such vectors. This step does not contain parameters.
The descriptor construction scheme can be summarized by
a graph. The nodes of the graph represent the building
blocks as described above. Each node contains a fixed set
of parameters. Every path through the graph corresponds to
exactly one descriptor. The graph is depicted in Figure 1.
Using this graph/path notation it is easy to randomly create a
large set of descriptors by sampling paths through the graph.
We have constrained the maximum length of a path (number
of steps) to six. But even then the total number of different
descriptors which can be constructed reaches almost a billion
due to the combinatorial explosion. Hence it is difficult to
find the best performing descriptor for a particular computer
vision problem.

We exemplary show how the BRIEF and Local Binary
Pattern (LBP, [16]) descriptor can be constructed using the
proposed blocks. For BRIEF an initial filter operation using
a Gaussian smoothing is used. Thereafter a repetition with
offset indicies as depicted on the right of Figure 2 is applied.
The offset positions are Gaussian distributed (see [7]). A
linear transform with multiplication matrix of Figure 3 is
applied to the thus computed vector. A sign quantization
finally yields exactly the descriptor presented in [7]. The
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Fig. 5: An image is partitioned into tiles and each tile is
described by a feature vector. The holistic image feature is
formed by concatenation. Image similarity is computed by
vector difference.

LBP descriptor can be assembled using the identity filter
(corresponding to no filtering) followed by a repetition with
the pattern depicted in the middle of Figure 2. This yields
a 9-vector so far. The vector can be multiplied (linear
transform) by the right matrix of Figure 3 again followed
by sign quantization. Thereafter the sign quantized vector is
multiplied by the following matrix

A = (20 2! 27) (1)

Computing a histogram over these LBP values finally leads
the LBP descriptor.

IV. SEARCHING THE DESCRIPTOR SPACE

In the next section we show how we seek a good perform-
ing descriptor. First we describe the fitness function which
evaluates the performance of a given descriptor. Thereafter
a meta heuristic to find a good performing descriptor among
the plenty is presented.

A. Fitness Function

We strive to find an image descriptor that is able
recognize a place from an image even under varying
lighting conditions. This problem occurs frequently in visual
SLAM loop closure detection. To this end each image of
a sequence is down sampled and partitioned into M x M
equally sized tiles. The center pixel of each image tile is
described by an image descriptor and feature vectors are
concatenated to form a holistic image descriptor ([19]). In
all experiments we use a 4 x 4 tiling which was empirically
found to be optimal. Place similarity is thereafter computed
by vector difference. Figure 5 exemplary illustrates this
method.

To evaluate the performance of a given descriptor we have
traveled a route of approximately 10km on three different
times of the day. We recorded image sequences and formed
pairs of images showing the same place. The matching
was computed from high precision GPS measurements. We



refer to these image pairs as positive pairs. Furthermore,
we randomly created negative pairs of images that do not
show the same place. Example images are shown in Figure
4. Using this training set as ground truth a PR curve can be
computed by varying a classification threshold of norms of
vector differences. That means we strive to find a descriptor
that best separates the positive from the negative pairs. By
including images recorded in the morning, at noon and
evening the change that naturally occurs during the course
of a day is well captured in our training set.

B. Evolution Strategies

Since the space of descriptors is not a vector space (a de-
scriptor cannot be expressed by a fixed size numerical vector)
we resort to evolution strategies ([3]). An initial population of
L descriptors is created by randomly sampling paths through
the graph of building blocks. Thereafter M children are
created from the parent population by mutation. All parents
and children are evaluated by the fitness function presented
in section IV-A and the L best performing descriptors are
selected into the next generation. The remaining descriptors
are discarded. Mutation and selection steps are continued
until performance doesn’t improve further.

The crucial step of many optimization methods of this kind
is the mutation operator. Three different types of mutation
are implemented in our framework.

o A given descriptor may be extended by an extra step
(not necessarily at the end of the path but also in
between).

e A descriptor may be reduced by one step.

o A parameter of any step may be altered.

Figure 6 shows these three mutations for a descriptor.

The evaluation of one descriptor is rather time consuming.
The descriptor needs to be applied to many thousand images.
To address this complexity problem we have furthermore
developed a method to adaptively refine the training set.
Very easy image pairs do not contribute much to the training
success and should therefore be discarded in favor of more
challenging pairs. Therefore the training set is thinned out af-
ter a fixed number of descriptor generations (typically four).
Easy to classify image pairs are detected by the frequency
they are correctly classified by different descriptors. Thereby
we are able to double the number of descriptors that can be
evaluated per time and speed up the training accordingly.

V. EXPERIMENTS

We ran the proposed descriptor learning framework with
the fitness function of Section IV-A for approximately 100
hours. We ran the evolution strategies with several instances
in parallel with slightly varying parameter sets with one to
four parents and four to sixteen children per generation. We
observe that the overall fitness function improves drastically
over the first few generations and convergence slows down
thereafter. The overall best performing descriptor on the test
set reaches an area under the PR curve (AUC) of 0.82. Since
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Fig. 7: ROC and PR curves for the test set. From bad to

good: simple gray value descriptor, SURF, BRIEF, U-SURF
and the learned descriptor DIRD. See also Figure 8.

Image
SURF
U-SURF
DIRD

0 0.2 0.4 0.6 0.8 1

Fig. 8: Area under the PR curve for a simple gray value
descriptor (Image), SURF, BRIEF, U-SURF and the learned
descriptor DIRD. For the curves see Figure 7.

the paths through the graph of building blocks is quite ver-
bose the learned descriptor can be interpreted. First the image
is filtered by a Haar Filters (horizontal, vertical, diagonal)
of depth four. Thereafter, the vectors of filter responses for
each pixel is scaled to unit norm and summed over a set
of offset positions. Finally this feature vector is evaluated
on nine offset positions around the pixel in question and
concatenated (repetition). The resulting dimension is 216. In
the sequel we refer to this descriptor as DIRD (Dird is an
[lumination Robust Descriptor).
DIRD was then tested on a test set of image pairs showing
the same and different places. Test and training sets are
strictly disjoint and taken from different traversals. The
performance was then compared to BRIEF, SURF, U-SURF
and a simple gray value descriptor. Results are depicted
in Figures 7 and 8. DIRD clearly outperforms its general
purpose counter parts. The AUC of DIRD on the test set
is 0.82 (same as on the training set). Using the gray values
of the image as a feature achieves an AUC of 0.11, SURF
of 0.49, BRIEF of 0.51 and U-SURF of 0.68. Results are
shown in Figure 8. Thus the specialized descriptor DIRD
outperforms the second best U-SURF by a fair margin. ROC
and PR curves for these descriptors are depicted in Figure 7.
Since the descriptor was sought with place recognition
for loop closure detection in mind we have also tested
DIRD in this set up. Thereto we have traveled approximately
11km through an inner city scenario with several loops,
recorded stereo imagery and computed a visual odometry
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Fig. 6: The path trough the graph of Figure 1 can be mutated into any of these paths in one mutation step.

Fig. 9: Top: Pose graph of integrated visual odometry.
Beginning of trajectory is the top right. Drift is clearly
visible. Bottom: Pose optimized graph after loop closures
have been successfully detected using the automatically
learned descriptor DIRD.

([11]) induced pose graph from the data. Then we have
detected loops by segment matching (see appendix) using
DIRD and optimized the pose graph using the g2o library
([13]). The results before and after optimization are shown
in Figure 9. The inevitable drift is clearly resolved. No false
loop closures are introduced by our method.

Finally we have recorded a new trajectory on a different
day and time that overlaps with the first one. This second
trajectory was then fully automatically merged into the first
graph. Places shared between both trajectories as well as
all self loops are reliably detected. The optimized graph is
depicted in Figure 10. Note that we refrained from using
a robust back-end ([20]) for the optimization of the graph
since it is essentially superfluous. No false loop closures are
introduced by our method.

Fig. 10: Two traversals from different days and time which
overlap are automatically merged by the proposed place
recognizer.

VI. CONCLUSION AND FUTURE RESEARCH

Herein we have presented a set of elementary algorith-
mic building blocks from which a broad class of different
descriptors can be constructed automatically. These build-
ing blocks span a large space of such methods including
many established descriptors already known from literature.
Moreover, we have presented a search technique to find
good performing descriptors given a specific fitness function.
A fitness function to evaluate a given descriptor in the
case of place recognition and loop closure detection using
holistic features under varying illumination conditions has
been introduced. Such a problem specific image descriptor
has been trained and evaluated on an independent test
set. Experiments show a substantial improvement of this
descriptor over its handcrafted counter parts like U-SURF
and BRIEF. We conclude that it is well worth investigating
efforts into automatic descriptor learning to yield problem
specific methods which outperform their general purpose
counter parts.

Evaluating the proposed descriptor learning framework on
feature matching and other computer vision domains is
ongoing research. Furthermore, it seems exciting ground for
future work to add more elaborate dimensionality reduction
methods and more involved sign-quantization algorithms.



Finally we are curious how far the loop closure detection
method presented herein can be pushed.

APPENDIX

We propose to match segments (subsequences) of a se-

quence for robust loop closure detection. Milford uses dy-
namic time warping in [15] from which this method draws
some inspirations. Let M be a similarity matrix of size N x N
for a sequence of N poses. M(i,j) € [0,1] denotes the
similarity between poses ¢ and j. The similarity is computed
from the distance of image feature vector f; and vector f; of
the respective poses (cp. Figure 5). Distances are translated
into similarities by a logistic function. We strive to translate
matrix M into matrix M’ which contains only non-zero
entries for very likely loop closures.
The main idea is that we expect several consecutive poses
to match for a true loop closure. If for instance pose i
corresponds to pose j then we expect a high similarity score
for #/ and j’ if these are in the direct vicinity of poses i and
j. Formally, we expect a sequence of K indices Z(i,5) =
(1= K,jK)y-., (1 —1,71),(4,4)) with 0 < jry1 — jr < 4
such that all M (i — k, ji) have a high similarity score. To
this end we define

M'(i,j) = max

Z(i,4)

K
> M(i— k. ji) )

k=1

with Z (4, j) being a sequence of K indices ending at (, j) as
defined above. M’ can be computed efficiently by dynamic
programming. In our example we use K = 20 meaning we
expect to match subsequences of length at least 20. Finally,
we apply a non-maxima suppression to M’. A loop closure
hypothesis is generated by thresholding M.

A typical off-diagonal part of M is shown in Figure 11 with
the maximizing sequence of indices Z(4, j) drawn in green.
The pair of poses ¢ and j is marked with a green triangle.
The source code for segment matching can be downloaded'.
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