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Abstract— Smartphones have long become an omnipresent
part of our life. Equipped with both a broadband internet
connection and advanced GPS onboard sensors, the idea is
to use them as mobile sensors for active safety systems that
aim at protecting vulnerable road users such as pedestrians or
cyclists. This paper gives a comprehensive analysis of today’s
smartphones GPS accuracy on an inner-city bicycle track. In
addition, the transmission latencies of a prototypical bicycle
warning system are evaluated. The results show that while
the lateral deviations are still too high to allow for lane-
level localization, the longitudinal accuracy as well as the
transmission latencies are good enough for many active safety
applications already.

Index Terms— Smartphone Position Data, 3G Transmission
Latencies, Bicycle Warning System

I. INTRODUCTION

Detecting vulnerable road users (VRUs) such as pedestri-
ans and cyclists so as to warn the driver in situations of
imminent danger has been an ongoing research issue for
more than a decade. While camera-based onboard-sensors
have already reached good classification rates for many
situations [1], they still have trouble detecting VRUs at the
side of the vehicle or behind an occlusion.

For this reason, the research initiative Ko-FAS [2] is inves-
tigating Car2X-architectures that allow to include infrastruc-
ture mounted camera units [3] and cooperative sensors [4]
into the environment perception of future driver assistance
systems. The drawback of this approach is that equipping
intersections with extra camera systems is a costly affair,
and the cooperative sensor technology would still rely on an
additional transponder device that has to be carried around.

Smartphones, on the other hand, have long become an
omnipresent part of our life. In Germany, nearly two thirds
of the teens and twens and 40% of all ages own a smartphone
[5]. Given an estimated 23 million smartphones sold in 2012,
which is a rise of 43% as compared to 2011, experts predict
an overall penetration of 66% till 2015 [6].

With such a high penetration rate to begin with, smart-
phones might help to overcome the challenge of low market
penetration at the launch of ITS G5. Even today, they are
used as satellite navigation systems with a live link to an
online map database. If those users are offered a free active
safety system on their smartphones, they have a motivation
to provide their anonymized position data to the respective
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backend which, if integrated in addition to ITS GS5, will
increase the benefit of car-based driver assistance systems.

In this paper, we investigate the potential of smartphones
as mobile sensors for active safety systems that aim at
protecting vulnerable road users such as pedestrians and
cyclists. In particular, we evaluate both GPS accuracy and
transmission latencies of a state-of-the-art smartphone on an
inner-city bicycle track and discuss our findings with respect
to the feasibility of a bicycle warning system.

Experiments have been carried out with a Samsung Nexus
S that facilitates a Broadcom BCM4751 GPS chip. The same
GPS chip is used in Samsung’s Galaxy S3, the world’s most
often sold smartphone in Q3 2012 [7]. Apple’s iPhone 4
is based on the predecessor chip BCM4750. In contrast to
existing studies such as [8], reference data has been recorded
while on the track so deviations both in and orthogonal to
the direction of travel can be evaluated.

The remainder of the paper is organized as follows: In
Section II, we introduce a bicycle warning system that is
based on smartphones as mobile sensors and discuss its
requirements with respect to the GPS accuracy of the smart-
phone. Section III describes the methods and instrumentation
used in our evaluation. The results are given in Section IV,
while Section V serves to discuss our findings and their
consequences. Finally, Section VI concludes this paper.

II. BICYCLE WARNING SYSTEM

In [9], we addressed the problem of driver intent inference
at urban intersections for the scenario shown in Figure 1. The
aim was to warn the driver of a cyclist that is moving parallel
to the street if and only if the driver actually intends to do
a right turn.

Fig. 1. Right turn scenario addressed by the bicycle warning system.
In a prototypical implementation of the system, the warn-

ing is issued as a directed accoustic signal if both the

right-turn intent of the driver and an endangered cyclist are
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detected. The cyclist’s position data is provided by a BMW
backend server which again has a direct connection to the
smartphone. In the future, this kind of data transfer will be
handled by a middleware that is currently under development
at BMW Group and might well be standardized within
Genivi [10]. The purpose of that middleware is to encapsulate
the complexity of communication and to provide developers
a convenient way to implement distributed applications.

Compared to most scenarios with pedestrians involved, our
bicycle warning system has comparably low requirements
on the GPS accuracy of the smartphone. Assuming that
most cyclists use the cycleway if present, a map-matching
algorithm can be employed to the smartphone’s position data
so as to reduce its deviation from the cyclist’s actual position
to its longitudinal component. Moreover, as cyclists have a
higher velocity than pedestrians, the longitudinal deviation
of their position data corresponds to a much smaller time
difference when it comes to predicting time-to-reach values.

Assuming that the driver intent can be perfectly recog-
nized, the remaining challenge lies in the correct classifica-
tion of situations in which a warning is necessary, which
is often referred to as risk assessment. The risk assessment
of the bicycle warning system consists of 3 steps: First, the
future trajectory of the car is predicted so as to estimate
the remaining time tc,, for the car to reach the potential
conflict point. If this time is less than 3 seconds, the same
prediction is done for the bicycle using a constant velocity
model. Finally, a warning is issued if the difference between
the estimates fc,, and fBiCycle is within [—3s,2s] and the
probability for the right-turn intent of the driver is higher
than a certain threshold.

An analysis of how well this risk assessment can detect
critical situations based on the smartphone’s GPS data is
given in Section V.

III. EVALUATION METHODS

This section describes the methods for evaluating the
smartphone’s GPS accuracy and the transmission latencies
for smartphone-to-car communication.

A. Evaluation of GPS accuracy

Evaluation has been carried out on inner-city cycleways in
Munich. The track is shown in Figure 3. One lap is 2494 m
and takes around 10 minutes to complete. For this study we
cycled 219 laps, adding up to a total of 542.2 km and around
39 hours of measurement data. For better comparability
between consecutive days, the data is organized in time slots
of one hour each as shown in Table L.

TABLE I
TIMESLOTS

[ Slot No. || Time (CET)

1 0900 — 1000
2 1000 — 1100
3 1300 - 1400
4 1400 — 1500
5 1500 — 1600

Leica Geosystem
GPS1200

BMW Group

Hanauerstr. 46

Samsung
Nexus S

Fig. 2. Experimental setup. The Samsung Nexus S smartphone is horizon-
tally mounted on the handlebar of the bicycle while the Leica Geosystem
GPS1200 is carried in a special rucksack on the back.

The measurement setup is shown in Figure 2. For optimal
reception as well as for inter-person comparability, the smart-
phone was mounted to the handlebar of the bicycle. However,
we also did a small study with the smartphone put into the
breast pocket of the cyclist’s jacket so as to investigate how
much this is degrading the GPS accuracy.

As ground truth, a high precision carrier phase differ-
ential GPS system was used. The GPS antenna needs to
be carried in a special rucksack on the back, so there is
an estimated longitudinal offset of about 40 cm that needs
to be compensated. Also, we expect an additional position
error of up to 25 cm due to the cyclist’s movements. Beside
the actual position values, the estimated standard deviation
of the reference system as well as four position quality
indicators (accuracy, horizontal dilusion of precision, number
of satellites used to calculate the GPS fix, number of satellites
visible) of the smartphone have been recorded.

While the smartphone records data at 1 Hz, the reference
system was set to a measurement rate of 20 points per
second. Both smartphone and reference provide high pre-
cision GPS based timestamps, so the ground truth for the
smartphone GPS fixes can be calculated by interpolation.
Also, each data point is mapped onto a digital representation
of the track so as to allow for distance dependent evaluation.

B. Evaluation of transmission latencies

Both smartphone and car have high precision GPS based
UNIX timestamps available, so latencies can mostly be
compensated using a constant velocity model for the bicycle.
They do become relevant, however, when the cyclist turns or
brakes. In both cases the driver assistance system might warn
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Fig. 3. Route that has been taken for measurement. The 100% cycleway
track includes a tree-lined part at 2400 m to 100 m, a comparably narrow
street at 400 m to 1500 m as well as several potential stops at traffic lights.

the driver of a threat that no longer exists if the latencies are
too high.

In this paper, we use the right turn scenario of Figure 1 to
analyze typical transmission latencies for smartphone-to-car
communication. Experiments have been carried out at the
crossing Hanauer Str. / Dessauer Str. (track distance 100 m)
with both cyclist and car moving. In total, data from 39 right
turn maneuvers has been captured. The internet connection
of the car’s application unit has been established using a
standard 3G HSDPA stick.

IV. RESULTS
A. GPS availability and reference quality

The complete dataset contains 140102 GPS fixes over
140120 seconds of measurement, which corresponds to a
GPS availability of 99.99% over time. However, evaluation
had to be restricted to points for which the reference position
satisfies an estimated standard deviation of less than 1m,
which is true for only 89% of the data. Within this reduced
dataset, the estimated standard deviation of the reference
position is distributed as shown in Figure 4.
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Fig. 4. Estimated standard deviation of the reference position given as
percentile ranges between 0, 25, 50, 75 and 95 percent.

B. Overall position accuracy
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Fig. 5. Overall deviation in and orthogonal to the direction of travel.

Figure 5 shows the deviation of the smartphone’s position
data from that of the reference both in and orthogonal to the
direction of travel. Apparently, the GPS fixes are much more
accurate in longitudinal than in lateral direction. The 95%
quantile of the absolute values of the longitudinal deviations
is 4.68 m, that of the lateral deviations 6.83 m.

C. Deviation over distance

In urban environments, there are many factors that can
lead to a degradation of GPS based positioning systems.
In order to explain the difference between longitudinal and
lateral accuracy, Figure 6 visualizes the deviation of the
smartphone’s position data over the track distance.

While the longitudinal deviations have more or less the
same distribution throughout the whole course, the lateral
deviations change significantly when the cyclist enters the
east—west part of the track. The change from negative to
positive deviation values at a distance of 950 m, which is
exactly the turning point at the westmost point of the track,
indicates that the broader range and bias of the deviation
is due to multipath effects caused by the buildings at the
southern side of the street, which are very close to the
cycleway at this part of the track. In general, most occlusions
and reflective surfaces are oriented alongside the street, so
it seems plausible that multipath-effects are more a problem
of the lateral than of the longitudinal accuracy.

The trees alongside the cycleway between 2400 m and
100 m, on the other hand, seem to have a stronger effect on
the longitudinal than on the lateral accuracy. This might be
due to the smartphone’s internal position filter. If the cyclist
stops at the traffic light near 2400 m, he needs to accelerate
within the tree-lined section of the track. In this section, the
GPS signal strength is lower than usual and therefore, the
position filter puts more weight to its constant velocity model
than to the actual GPS updates. Given that the cyclist actually
accelerates, this leads to negative longitudinal deviations as
observed in the data.

D. Deviation over time

Figure 7 shows the distribution of the longitudinal and
lateral deviation for the individual datasets. The most con-
spicuous observation is that for the datasets from 26th and
27th November 2012, 0900-1000 CET, the lateral deviations
are much greater than average. Being from consecutive days
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and the same time slot means that the satellite constellation
was nearly identical for the two datasets. This demonstrates
that the GPS performance strongly depends on the number
and location of the satellites that are used for position
estimation. It seems that under such worst case conditions
the deviations are nearly twice as high as normal. However,
given that the deviations of the rest of the data are consistent,
such conditions seem to be rather unusual.

E. Quality indicators

For the use in driver assistance systems, it would be of
great help to know when the smartphone position data is
reliable and when not. A basic filtering approach is to limit
the GPS fixes that are actually used to those whose quality
measure is higher than a certain threshold. For the quality
indicators that are provided by the smartphone, the resulting
distributions of the total deviation as well as size of the
remaining fraction of the data are shown in Figure 8.

Apparently, filtering the data with the quality indicators
satellites in fix and satellites visible has no favourable effect
on the actual deviations. On the contrary, it seems that the
deviations are even higher the more satellites are visible.
For the other two quality indicators, accuracy and horizontal
dilusion of precision, filtering does have a marginally positive
effect.

2000 2500

Deviation along the track. The lines correspond to the 2.5, 25, 50, 75 and 97.5 percent quantile.
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Fig. 8. Overall total deviation and availability of GPS fixes under

restrictions on the quality indicators provided by the smartphone. Deviations
are given as percentile ranges between 0, 25, 50, 75 and 95 percent. Values
in brackets represent the fraction of GPS fixes that can still be used under
the restriction.
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Fig. 7. Individual deviation for each dataset given as percentile ranges between 0, 25, 50, 75 and 95 percent.

F. Deviations with smartphone in pocket

As a side study, we also investigated the GPS deviations
when the smartphone was put into the breast pocket of the
cyclist’s jacket. The experiment was carried out on the first
100 m of the track during time slots 1-4. In each time slot,
the smartphone was first carried 15 minutes in the breast
pocket and then 15 minutes mounted to the handlebar so
that changes in the satellite constellation do not affect the
comparison. The results are given in Figure 9.
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Fig. 9. Deviation of GPS fixes for the smartphone being put into the

jacket’s breast pocket or attached to the handlebar of the bicycle.

As the diagram shows, the GPS performance suffers
heaviliy if the smartphone is stored away in a pocket.

G. Transmission latencies

The transmission latencies of the bicycle warning system
introduced in Section II are given in Figure 10.
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Fig. 10.  Latency for smartphone-to-car communication in right turn

scenarios where both car and smartphone are moving.

While there are occasions when the transmission takes
longer than 1500 ms, 95% of the smartphone GPS position
updates is transmitted in less than 646 ms. Given that the
internet connection of the car’s application unit was estab-
lished with a standard 3G HSDPA stick, it is conceivable
that even better values might be obtained if a roof mounted
antenna is used.



V. DISCUSSION

We are now going to discuss the consequences of our find-
ings to the prototypical bicycle warning system introduced in
Section II. By specification, the system is to issue a warning
if the estimated time difference between the bicycle and the
car reaching the potential conflict point is within [—3s, 2.
Because of the longitudinal deviation of the bicycle’s po-
sition data, however, the time for the bicycle to reach the
potential conflict point cannot be exactly determined. Also,
an additional error might be introduced by the transmission
latencies of the smartphone-to-car communication if the
cyclist accelerates or brakes. Both might lead to false positive
as well as false negative risk assessments.

In practice, the cyclist will often move at a more or less
constant velocity, so the transmission latencies can be ne-
glected. Assuming a constant actual bicycle velocity of 6 m/s
and a standard deviation of 10% for both the estimate of
the car’s time-to-reach ¢, and the estimate of the bicycle’s
velocity, the probability of the system issuing a warning
in a situation with an actual time difference tcar — tBicycle
can be calculated based on the observed distribution for the
smartphone’s longitudinal deviation shown in Figure 5. The
result is visualized in Figure 11.
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Fig. 11. Probability of a warning given the actual time difference between

the bicycle and the car reaching the potential conflict point.

The figure indicates that, under the given assumptions, the
smartphone’s longitudinal GPS accuracy is good enough to
classify most of the situations correctly: Within the specified
interval, warnings are issued with an overall probability of
91%. In very critical situations with time gaps between —2s
and 1s, a warning is issued with a probability of more
than 99%. Conversely, only 8% of all warnings have been
issued outside the specified interval, with near to no warnings
outside [—4s, 35].

According to [11], the right-turn scenario is one of the
three most common bicycle accident scenarios. The other
two involve a car turning from the side street into the main
street while a cyclist is moving along the cycleway of the
main street either in or against the direction of traffic. Both
scenarios are very similar to the one discussed in that it
is only the longitudinal deviation of the cyclist’s position
data that matters as long as the we can safely infer that

the cyclist is moving along the cycleway. Given the same
constant velocity of the cyclist, the resulting performance can
therefore be expected to be very similar to the one discussed.

VI. CONCLUSION

In this paper, the potential of a state-of-the-art smartphone
has been evaluated with respect to its use as a mobile
sensor for active safety systems. The results indicate that
while the lateral deviations are still too high to allow for
lane-level localization, the longitudinal accuracy is good
enough for many active safety applications already. Using a
map-matching algorithm and context knowledge to negotiate
lateral deviations, the smartphone position can be predicted
with 95% of its deviations below 4.68 m. Combined with an
average transmission latency as low as 500 ms, this has been
shown to be sufficient to address the majority of common
bicycle accident scenarios.

A remaining problem is the strong degradation of the
position quality if the smartphone is stored away into a
pocket, which makes it unusable as a pedestrian detection
device in inner city scenarios. Hopefully, this will change
with the next generation of GPS chips, which have been
announced in 03/2012 [12], and the launch of Galileo.
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