
Joint Self-Localization and Tracking of Generic Objects

in 3D Range Data

Frank Moosmann1 and Christoph Stiller1

Abstract—Both, the estimation of the trajectory of a sensor and
the detection and tracking of moving objects are essential tasks
for autonomous robots. This work proposes a new algorithm that
treats both problems jointly. The sole input is a sequence of dense
3D measurements as returned by multi-layer laser scanners or
time-of-flight cameras. A major characteristic of the proposed
approach is its applicability to any type of environment since
specific object models are not used at any algorithm stage.
More specifically, precise localization in non-flat environments
is possible as well as the detection and tracking of e.g. trams or
recumbent bicycles. Moreover, 3D shape estimation of moving
objects is inherent to the proposed method. Thorough evaluation
is conducted on a vehicular platform with a mounted Velodyne
HDL-64E laser scanner.

I. INTRODUCTION

Two main tasks can be identified for a perception sys-

tem of a robot: precise self-localization, often performed

simultaneously with mapping (SLAM), and the detection and

tracking of moving objects (DATMO). While most methods

from literature treat the two tasks as being independent, a joint

estimation scheme is introduced in this contribution.

A. Self-Localization

The problem of localization is usually understood as the

estimation of the robot’s pose, i. e. position and orientation.

The frame of reference thereby varies. Some approaches seek

a global estimate using GPS or global landmarks. Others refer

to the relative motion of the robot, specifying the pose w.r.t.

the starting point – the goal of this work.

The most widely spread algorithms for range sensors fol-

low the principle of simultaneous localization and mapping

(SLAM) [23]. Though the last decade showed a trend towards

probabilistic techniques, the computational complexity with

3D data in outdoor environments notably shifts the used

method types in favor of scan-matching [18], [11], [3], [16].

Most SLAM methods only estimate the motion of the

vehicle w.r.t. a static scene and usually average out objects

with different motion. For low outlier ratios these registration

methods provide good results. A high portion of moving

objects, however, might cause these methods to fail. Only

few SLAM methods try to simultaneously detect and track

moving objects [26], [25]. Unfortunately, their computational

efficiency and robustness in the 3D real world was not yet

shown.

1Both authors are with the Institute of Measurement and Control, Karlsruhe
Institute of Technology, 76131 Karlsruhe, Germany frank.moosmann
at kit.edu

Figure 1. Result of the proposed method: The mapped static environment
colored by altitude (left) and tracked moving objects highlighted with a unique
coloring in the sensor data (right).

B. Multi Target Tracking

The problem of multi target tracking is usually understood

as the task to detect a set of objects in the environment and

to characterize them by their position, orientation, extent, and

velocity. Existing solutions frequently decompose the problem

into two independent stages. The first stage detects objects

independently for each point in time. State of the art methods

mostly train classifiers for the detection of specific object

classes like cars or humans [19]. Only few methods employ

generic segmentation methods to detect any kind of object

that sticks out well from background [22]. The second stage

associates the detections over time in order to get continuous

tracks, i. e. estimates of the objects intrinsic state like e. g.

position and velocity. Possible generic solutions for this stage

are given in [1]. When using dense data, the association

of measurements can be ambiguous especially when several

detections per object exist. To overcome ambiguities, solutions

like fuzzy segmentation [21], segment matching [8] or appear-

ance learning [10] have been proposed.

This two-stage approach has been applied to various kind

of sensors, from 2D laser scanners [17] over 3D laser scanners

[12], [19] up to time-of-flight cameras [9]. Its major drawback

is the dependence on a reliable and repeatable object detector.

To the best of our knowledge, no approach exists that can

robustly track arbitrary objects.

A completely different methodology is track before detect

[7]. Sensor data is quantized e. g. at fixed image columns

[20] or at fixed intervals in the horizontal plane [4]. Although

results seem very promising, finding a good grouping of the

tracked partitions, which corresponds to the detection, is still
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Figure 2. Overview of the proposed method.

an open issue.

One step further is the idea to optimize the partitioning of

data (which can here be regarded as object detection) and the

motion estimation together. However, the proposed solutions

[13], [24] are computationally too complex to be applied in

real-time on ordinary computers within the next years.

Hence, all successful object tracking methods seem to be

either 2D or model based, which requires manual model

construction and model selection through classification.

This work proposes a novel idea for the joint solution of

both problems. The combination of a dynamic data partitioning

with track before detect techniques allows to track arbitrary

objects. By treating the static scene as object, mapping is ap-

plied to both, moving objects and the static scene, in a unique

way. Experiments conducted in a vehicular environment show

the applicability to 3D environments with both tracking and

self-localization performed with full 6 degrees of freedom.

II. PROPOSED METHOD

Throughout this work, a left superscript xt denotes the

current time index and a left subscript tx the measurement

time. For clarity, these are only specified if necessary. All

computations are made w.r.t. the sensor coordinate system.

No fixed world coordinate frame is used.

A. Overview

Input to the algorithm at each time t is a set of range

measurements represented as 3D points tP =
{
(x, y, z)T

}
.

This point cloud is preprocessed, features are calculated, and

Figure 3. Each segment, indicated by a unique color, is turned into an object
hypothesis and verified by tracking across m frames.

object hypotheses are generated. Each object hypothesis tS is

turned into a tracklet Ttt . Hence, the set of tracklets t
tT = { Ttt }

is created. The only exception is the initialization in the very

first frame. Object detection is skipped and one single (static-

scene-) track is created from all measurements. The track(let)s

are predicted and updated across m frames and finally merged

with existing tracks. Note that the registration step uses the

unsegmented point cloud as reference, which is in contrast

to most existing tracking methods. Output of the algorithm

is a set of tracks which includes the track of the static scene.

Hence, the sensor motion w.r.t. a fixed world coordinate frame

can be deduced as the inverse static scene motion.

B. Pre-processing and Features

The input point cloud is smoothed and two features are

calculated for each point pi ∈ P: a normal vector ni =
(nx, ny, nz)

T : ‖ni‖ = 1, representing a local surface plane,

and a so-called flatness value fi ∈ [0, 1] which characterizes

how appropriate the approximation by a surface plane is.

The exact calculations are taken from [16], where the normal

vectors N = {ni} are denoted as N and the flatness-values

F = {fi} are denoted as C.

C. Object Detection

The aim of this work is to track any kind of object that

is moving. As a consequence, object class specific detectors

cannot be used. Better suited are segmentation methods, that

split the set of input points P, represented by the set of indices

S = {i}, into segments Sg ⊆ S,
⋃

g Sg = S, ∀g, h, g 6=
h : Sg

⋂
Sh = ∅, where each segment corresponds to one

object hypothesis. Any meaningful segmentation method can

be employed within the proposed tracking framework; here

the so-called local convexity criterion is used, which was

introduced in [15] and improved in [14], also see Fig. 3.

D. Tracking

A tracklet Tg is created from each object hypothesis Sg

with a minimum size and can be regarded as object hypothesis

in the time domain. A local object coordinate system Og is

introduced, as depicted in Fig. 4. It is specified by a pose

vector

ρg = (φ, θ, ψ, x, y, z)T (1)
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Figure 4. The pose ρ of the state vector defines the position and the
orientation of a track coordinate system (top) w.r.t. the scanner coordinate
system (bottom). The track appearance is stored as point cloud (violet) with
normal vectors and flatness values (both not shown) relative to the track
coordinate system.

which defines its orientation and position w.r.t. the sensor

coordinate system S. The pose and its derivative constitute

the state of the tracklet:

xg =

(
ρg

ρ̇g

)
= (φ, θ, ψ, x, y, z, φ̇, θ̇, ψ̇, ẋ, ẏ, ż)T (2)

The 3D points Pg ⊆ P, the normalsNg , and the flatness values

Fg constitute the appearance of the tracklet. They are stored

relative to the object coordinate system Og, see Fig. 4. In total,

a tracklet is defined by its state and appearance:

Tg = (xg, P
Og
g , N

Og
g , Fg) (3)

It is worth noting that our method for track estimation thus

includes the 3D reconstruction of the shape of moving objects.

In the first m frames the appearance of a tracklet is kept

constant. On the contrary, the state is re-estimated for each

new incoming frame within the Prediction and Update step

of Fig. 2. This makes the appearance move along with the

coordinate frame defined by the state. A Kalman Filter with

constant velocity model1 is employed upon the state vector

which can express any rigid motion. Prediction corresponds

exactly to the prediction step of the Kalman Filter. Registration

and update is performed as in [14] by aligning the track’s

appearance point cloud with the full input point cloud by

means of the ICP algorithm. The predicted pose thereby serves

as initial pose of this iterative algorithm. In case the average

flatness value of the tracklet exceeds some threshold, the point-

to-plane ICP [6] is used, otherwise the point-to-point variant

[2]. The measurement covariance for the Kalman Filter update

is calculated with the method of [5]. One special treatment

is made for the static scene track: instead of registering the

track appearance against the input data, the input data is

registered against the track appearance as in [16]. This makes

the approach faster and more robust and allows for sensor

motion compensation.

Note that up to this point, no associations are made yet

between the tracklets, since registration is performed with the

full input data. Relations are established only in the track

management stage described next.

1More specific and possibly non-linear models could of course be used for
specific object classes to extend and hence improve the method.

Figure 5. Input points as virtual range image, colored by distance.

Figure 6. Associations between new tracklets t

t
T (upper image) and tracks t

∗
T

(lower image) are established by overlaying their projections and counting the
number of pixels they overlap. Shown are the association strengths for moving
objects (in the lower figure); the edges that are not labeled are associations
with the static track (gray).

E. Track-Management

This section essentially describes theMerging step in Fig. 2,

which also handles the transition of tracklets to tracks. Both

describe moving objects by their state and appearance. The

difference is conceptual only: tracklets are track hypotheses

that, after successful verification, can become tracks. As a

consequence, tracks are predicted and updated exactly like

tracklets.

The merge step takes as input the current set of tracks
t
∗
T′ and the set of tracklets t

t−mT′ that was (independently)

registered across m frames and produces an updated set of

tracks t
∗
T. First, any track that moved out of the field of view

is removed from t
∗
T′. Then, each tracklet is compared with

the existing tracks and one of three actions is taken:

1) The tracklet is kept and added to the set of tracks if

the tracklet was successfuly registered over the last m
frames and if it represents an object with a motion

different to all existing tracks.

2) The tracklet is merged with the track in case a track on

the same object already exists.

3) The tracklet is discarded if none of the above two cases

is true.

In all three cases, tracklets are inherently associated and

compared with existing tracks. Fig. 6 illustrates the efficient

method used to determine these associations: The appearances

of all existing tracks and tracklets are projected to two virtual
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range images and the number of overlapping pixels determines

the association strength agh between tracklet Ttt−m g and track

Tt
∗ h.

To decide upon the three cases, the tracklet Ttt−m g is charac-

terized by a feature vector (see Sec. IV). Several characteristics

are therefore calculated. Among others is the motion histogram

m = (m1,m2,m3,m4)
T. For the tracklet that moved from

t−mρg to tρ′

g , it summarizes how many appearance points

moved perpendicular to their normal vector (m1), aslant to

it (m2 and m3), and along the normal vector (m4). This

effectively characterizes how reliable motion estimation is,

since motion perpendicular to the normal vector is, generally,

unreliable. Furthermore, the tracklet is compared to each

associated track Tt ′

∗ h with association strength agh > 0.
Therefore, the motion of the associated track Tt

∗ h within the

last m frames is applied to the tracklet Tt ′

t−m g:

tρ′′

g,h = t−mρg + (tρ′

h − t−mρh) (4)

In case both the tracklet and the track referred to the same

object and tracking was successful, tρ′′

g,h should be very sim-

ilar to tρ′

g. The ICP energy eg(
tρ′′

g,h) is calculated using both

the Euclidean point-to-point distance [2] and the projective

point-to-plane distance [6]. These errors are denoted eg,h,2 and
eg,h,P in the following as opposed to eg,2 and eg,P , the errors
for the original pose tρ′

g . Based on these errors the associated

tracks causing minimum error can be determined as well as

the track with maximum association strength

h2 = argmin
h:ag,h>0

{eg,h,2} (5)

hP = argmin
h:ag,h>0

{eg,h,P } (6)

ha = argmax
h

{ag,h} (7)

Note that h2, hP , and ha are not necessarily different. The

features are gathered within a 52-dimensional feature vector

fg , detailed in the appendix. A multi-class support vector

machine (SVM) with RBF kernel is used to classify the feature

vector in order to decide upon the three cases.

In case a tracklet is kept as new track, the tracklet’s

appearance is removed from all associated tracks and the

tracklet is added to the set of tracks. This implicitly handles

track-splits.

In case a tracklet is to be merged with an existing track,

the corresponding track still has to be determined. This is

performed by calculating for each associated track h a score

sgh and choose the track with the highest score. The score is

calculated as linear combination of a second feature vector:

sgh = (1 fgh
T) ·w (8)

The feature vector f gh is similar to f g and is detailed

in the appendix. The parameter vector w is determined by

optimization on a labeled training set. When merging, the

state of the associated track remains unchanged. Only the

appearance of the tracklet is added to the track. The algorithm

for accumulating the appearance is taken from [16]. There, flat

Table I
CLASSIFICATION RESULTS ON A LABELED DATA SET FOR TWO DIFFERENT

PARAMETER SETTINGS OF THE CLASSIFIER.

Decision variant A Decision variant B
Keep Merge Ignore Keep Merge Ignore

Keep 23 14 89 103 13 10
Merge 0 12208 612 196 12516 108
Ignore 1 208 3614 200 567 3056

Accuracy 94.49% 93.48%

areas are contracted to yield sharper surface representations.

This so-called moving object mapping (MOM) not only makes

the results nicer, it also improves the registration result.

As compared to [16], one further step is added to process the

appearances. This is particularly relevant for non-rigid object

in order to avoid tracking inaccuracies. In the projection step

illustrated in Fig. 6, each appearance point is removed from the

track that yields a closer range value than the range value at the

pixel of the current sensor data, see Fig. 5. As consequence,

the appearance can adapt to non-rigid objects like pedestrians.

III. RESULTS

The proposed algorithm is evaluated on data captured with

a Velodyne HDL-64E laser scanner. The sensor, a 64-beam

laser scanner, is mounted on top of a car and yields a 360◦

view of the environment, as illustrated in Fig. 9. We set m = 3
through all the experiments.

The first stage of evaluation concerns the localization pre-

cision. Since in static scenes the proposed algorithm for local-

ization equals the algorithm presented in [16], the results are

transferable. Two scenarios were evaluated that both represent

loops in a non-flat urban environment. These loops can be

used to evaluate drift, i. e. the localization imprecision that

increases with traveled distance. In average, a position error

of 2.66 m after a 1 km drive was determined. This value can

be regarded as very low and is about an order of magnitude

lower than for common camera-based techniques. More details

and discussions are given in [16].

The evaluation of object detection and tracking proceeds

in several stages. First, the classifier for track management is

evaluated. This classifier decides for each tracklet, i. e. track

hypothesis, whether it is to be merged with an existing track,

kept as new track, or ignored. Four-fold cross-validation is

applied on a dataset that was set-up and labeled manually. The

classification accuracy reaches the values listed in table I. The

two decision variants correspond to different weightings of

the classes during training. With this weighting, the SVM can

be pulled towards favoring certain decisions. Variant A favors

the ignorance of tracklets, which yields a higher precision but

lower recall of the tracker. On the contrary, variant B yields

a lower precision but higher recall. Many alternative variants

exist, most of them with a classification accuracy between 90%

and 95%. For further experiments, variant A is selected.

In order to evaluate the quality of tracking, an experiment

was conducted in real traffic using a second car, denoted as
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Figure 8. Moving Object Mapping: Appearance of a car accumulated over time (from left to right). Initial points are depicted with double size.
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Figure 7. Tracking quality assessed by using a second car, denoted target car.
Shown are the speed-profiles of both cars and the speed error as difference
between the estimated speed (by the tracker) and the true target speed
(measured by DGPS/IMU) for different tracking strategies. Missing values
indicate a temporary failure of the tracking method.

Table II
TRACKING STATISTICS FOR SPEED COMPARISON EXPERIMENT OF FIG. 7

GENERATED WITHOUT OUTER 10% QUANTILES.

nb. of speed error in m/s
tracks median mean std-deviation

with MOM 2 -0.84 -0.96 ±1.16
first appearance 4 -0.82 -1.04 ±1.29
replace appearance 12 -10.62 -7.69 ±10.27

target car. This target car starts in front of the sensor car,

accelerates, and gets overtaken by the sensor car after 26 s.

The speed-profiles (measured by DGPS/IMU) as well as the

speed-errors are depicted in Fig. 7, some characteristic values

are listed in table II. Evident is the advantage of MOM

over using only the appearance of one frame. The speed-error

is within an acceptable range and the track gets lost only

once. Especially during the overtaking maneuver, the car is

continuously tracked because the appearance smoothly adapts

to the new viewpoints. This adaption is well illustrated in

Fig. 8. Using constantly the first appearance leads to three

track losses and a slightly higher speed error. Replacing the

appearance each frame leads to the worst results. As this

technique causes the track to drift, speed errors are high and

the track gets lost 11 times.

Additional experiments were conducted around intersections

with many moving objects. A video and the data is available

on www.mrt.kit.edu/z/publ/download/velodynetracking/. Vari-

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  5  10  15  20  25  30  35

c
o

u
n

t

track-length / s

Figure 10. Track lengths on the sequence illustrated in Fig. 9 (total 50 s).

ous types were successfully tracked: pedestrians (with rolling

case), cyclists, cars, vans, trucks, trams. Fig. 9 shows some

tracking results at a big intersection in the city of Karlsruhe.

Most moving objects are immediately detected, some slowly

moving pedestrians with a short delay. Most tracks are stable,

i. e. tracking is successful until the object moves out of view.

This is shown by Fig. 10 that lists the distribution of track

lengths across the sequence. Cars that move in parallel to the

sensor car are tracked for the whole time of movement, i. e. 30

seconds. Most other objects are tracked for several seconds,

even in areas where the objects are partly occluded.

IV. CONCLUSIONS

A novel approach was presented for self-localization and

mapping combined with moving object tracking in dense

range data. Tracking and mapping was applied to both object

hypotheses and the static scene identically. Thus, 3D shape es-

timation of moving objects is inherent to the proposed method.

A classification-based track management was introduced for

track verification, merging, and splitting. The applicability

of the method was shown for a vehicular platform in a

crowded city environment. But these are not the limits of the

approach. Since object models were kept generic and tracking

is performed in full 3D, the approach is applicable to other

sensors and in other application areas, too.

APPENDIX

Let logp(x) := log(1 + max{0, x}).
The 52-dimensional feature vector fg is composed as

follows: f [1] ∈ {0, 1} is 1 if the last measurement

was successful and 0 otherwise. f [2] ∈ {0, 1, 2, 3} is
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(a) After verification interval, t = 0.4 s. Nearly all moving objects are immediately detected

and tracked.

(b) t = 7 s. Moving Object Mapping helps bridging occluded areas, e. g. for the turquois car.

(c) t = 26,4 s. Tracking is successful in a wide viewing range.

Figure 9. Tracking results: The sensor data is colored from blue (ground) over white (sensor level) to red (above the sensor). Each tracked object is displayed
by a cuboid and the appearance points in a unique color. The cuboid, or bounding box, is calculated in a post-processing step from the appearance.
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equal to the number of measurement failures. f [3] =
logp

∥∥(tx′

g −
t−1xg)− (t−1xg −

t−2xg)
∥∥ characterizes if the

two last relative movements were approximately the same.

f [4] = eg,P . f [5] = eg,2. f [6] ∈ {0, 1, 2, 3} charac-

terizes when the last successful measurement was made.

f [7] = logp(|Pg|). f [8] characterizes for the bin of the

motion-histogram with the highest value the average move in

meters within the last m frames in direction of the normal

vector. f [9] = logp(m4). f [10] = logp(m3). f [11] =
logp(m2). f [12] = logp(m4 + m3). f [13] = m4/ |Pg|.
f [14] = (m4+m3)/ |Pg|. f [15] =

∑
h min{1, ag,h}. f [16] =

logp(
∑

h ag,h).
The rest of the feature vector is three times a 12-dimensional

vector for each of the associated tracks h2, hP , and ha.
Exemplary for h2: f [17] ∈ {0, 1} is 1 if the last measurement

of h2 was successful and 0 otherwise. f [18] = logp(ag,h2
).

f [19] = ag,h2
/
∑

h ag,h. f [20] = ag,h2
/maxh ag,h. f [21] ∈

N characterizes when the last successful measurement of h2
was made. f [22] ∈ N holds the age of h2, limited by some

upper bound. f [23] = logp(|Ph2
|). f [24] = logp(|Ph2

| / |Pg|).
f [25] = eg,h2,P . f [26] = eg,h2,2. f [27] = logp(eg,h2,P /eg,P ).
f [28] = logp(eg,h2,2/eg,2).
The 32-dimensional feature vector fgh is composed as

follows: f [1] =
∑

h min{1, ag,h}. f [2] = logp(ag,h). f [3] =
logp(

∑
i ag,i). f [4] = ag,h/

∑
i ag,i. f [5] = ag,h/maxi ag,i.

f [6] = eg,P . f [7] = eg,h,P . f [8] = logp(eg,h,P /eg,P ).
f [9] = logp(eg,h,P /eg,hP ,P ). f [10] = eg,2. f [11] = eg,h,2.
f [12] = logp(eg,h,2/eg,2). f [13] = logp(eg,h,2/eg,h2,2).
f [14] ∈ {0, 1, 2, 3} characterizes when the last successful

measurement was made. f [15] ∈ N characterizes when

the last successful measurement of h was made. f [16] =
logp(|Pg|). f [17] = logp(|Ph|). f [18] = logp(|Pg| / |Ph|).
f [19] ∈ {0, 1} is 0 if the associated track is the static

track and 1 otherwise. f [20] ∈ {0, 1} is 0 if the only

associated track is the static track and 1 otherwise. f [21] =

logp

(∥∥∥tρ′

g −
tρ′′

g,h

∥∥∥
)
. f [22] = logp(dM (tρ′

g,
tρ′′

g,h)).

f [23] = logp(dM (tρ′

g,
tρ′′

g,h)). f [24] = logp(m4). f [25] =
logp(m3). f [26] = logp(m2). f [27] = logp(m4 + m3).
f [28] = (m4 + m3)/(m2 + m1). f [29] = (m4 + m3 +
m2)/(m1). f [30] = m4/ |Pg|. f [31] = (m4 + m3)/ |Pg|.
f [32] characterizes for the bin of the motion-histogram with

the highest value the average move in meters within the last

m frames in direction of the normal vector.
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