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Abstract— In this paper, we present a system to detect
symbols on roads (e.g. arrows, speed limits, bus lanes and
other pictograms) with a common monoscopic or stereoscopic
camera system. No manual labeling of images is necessary since
the exact de�nitions of the symbols in the legal instructions
for road paintings are used. With those vector graphics an
Optical Character Recognition (OCR) System is trained. If
only a monoscopic camera is used, the vanishing point is
estimated and an inverse perspective transformation is applied
to obtain a distortion free top-view. In case of the stereoscopic
camera setup, the 3D reconstruction is projected to a ground
plane. TESSERACT, a common OCR system is used to classify
the symbols. If odometry or position information is available,
a spatial �ltering and mapping is possible. The obtained
information can be used on one side to improve localization,
on the other side to provide further information for planning
or generation of planning maps.

I. INTRODUCTION

For both driver assistance systems and autonomous driv-
ing, detection of lane markings plays a major role. As early
as in the 80s, �rst approaches for autonomous driving used
a camera to detect the lane markings and thereby the course
of the road. Today, most upper class vehicles have a camera
based system on board to detect lane markings and warn the
driver when leaving the lane. Those approaches usually only
detect boundary lines and ignore other road surface paintings.

Recent systems for autonomous driving highly rely on ac-
curate maps. These maps usually ful�ll two tasks: Providing
information for localization and providing static information
for path planning.

For localization, static landmarks are stored in the map
and re-detected while driving. One approach is to compute
generic feature descriptors for interesting points. With the
position of the feature and the feature description itself, a
relative pose between mapping pose and localization pose
can be estimated (e.g. [1]). While this leads to good results,
especially in urban areas, the necessary disk space for large
maps must be considered.

Another approach is to extract more speci�c information
such as lane markings (e.g. [2]). A map with all lane mark-
ings can be created based on any kind of high resolution
birds-eye-view images of the desired road. In the localization
step, lane markings are detected in the image and the result
is compared to the previously generated map. Since no
appearance based information is stored in the map, an update

Fig. 1. Example images of the backward facing camera in the vehicle (top)
and the results of the proposed algorithm (bottom). For better evaluation,
the results are shown on a separatly generated top view map.

of the map is not necessary until the road itself changes, e.g.
due to road works. While lateral positioning is very accurate,
the uncertainty in longitudinal direction is very high. This
can be improved by detecting non-lateral lane markings such
as arrows and stop lines.

Another important task of maps in autonomous driving is
providing static information for trajectory planning (e.g. [3]).
This can be drivable areas, position of traf�c lights and
corresponding stop lines, speed limits and information about
connected driving corridors on large junctions. In contrast to
the localization maps, which can be generated partially or
completely automatically, for planning information maps a
high manual effort is necessary. However, especially speed
limits and lane directions are often painted on the road and
hence seen by cameras.

Detecting the information painted on the road therefore
would lead to further localization improvements, but also
could serve as basis for planning map generation. Hence, our
proposed system uses the knowledge of legal road marking
de�nitions to detect them on road surface with an OCR
system.



II. RELATED WORK

Road and lane marking detection is one of the oldest
applications in camera based driver assistance systems. In
1990 the European research project PROMETHEUS used
intensity and gradient information to detect lane markings
in the image [4]. The development continued over the next
years with different approaches, e.g. [5], [6], [7].

Today's research focuses on road geometry estimation in
regions that do not provide clearly visible markings. Franke
et al. [8] used particle �lter to predict the road course on
rural roads. Other approaches aim on the detection of curb
stones [9], which usually delimit the drivable area in urban
areas.

The goal of all those approaches is to detect the course of
the road rather than to detect the lane markings as dedicated
objects. A �rst approach to detect the markings itself is
described in [10] with the goal to detect corrupted marking
segments. A stereo camera system was used to generate a
birds-eye-view on which a morpholocial �lter was applied
to remove everything except the arrow tips. With a neural
network the frequency transformed images were analyzed.
Nan et al. [11] also transformed an image in birds-eye-view
perspective and used Haar wavlets to detect symbols similar
to face detection algorithms. In [12] a system was proposed
which detects lane markings in a given rectangular region and
compares the binarized pattern to stored templates. Fourcher
et al. [13] used the difference between a median �ltered
image and the original to extract lane marking borders.
The result was compared to recorded templates with both,
Hamming distance and histograms. Compared to [11] and
[12] the system is more invariant to changes in lightning
conditions, however, it showed problems with wide road
markings. Another approach was recently proposed by Wu
et al. [14], who used FAST corner descriptors and template
matching to detect symbols on the road. Hence, manually
labeled training images are necessary.

In contrast to most of the above applications Optical
Character Recognition algorithms are designed to classify
speci�c symbols. However, usually the input images are
less perspectively distorted and the background is less noisy
compared to cameras mounted on vehicles. One common
library is TESSERACT [15]. It was developed by Hewlett-
Packard in 1984-1994. Since 2005, the project is open
source and is maintained by Google. They use TESSER-
ACT for their Google Books project [16]. TESSERACT is
available under Apache-License oncode.google.com/
p/tesseract-ocr/ .

Posner et al. [17] applied OCR to natural scene images to
detect visible text with the goal to improve scene interpreta-
tion. Also a system to detect text on road signs using OCR
was proposed by Wu et al. [18]. However, both applications
of OCR in robotic environments are restricted to detect
common characters and human readable text.

We propose an algorithm that combines the knowledge
of the de�nitions of allowed symbols with common OCR
software to detect and classify road surface markings. There-
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Fig. 2. Overview of the detection algorithm. OCR Training has to be done
only once. Top-views are created from monoscopic or stereoscopic images,
before candidates are generated and OCR is applied.

fore, the image is transformed to birds-eye-view, potential
markings are extracted and OCR is applied. As �nal result
we obtain a map with all symbols on the road.

III. ALGORITHM

The complete proposed algorithm consists of two main
parts. In a preliminary step, the desired symbols must be
transfered to a OCR-compatible format. In our case we
simply generate a font from vector graphics of the desired
symbols once.

The second part is the online detection algorithm, which
is applied on each image. It can be divided into several
further steps (see Fig 2). First, the images are transformed
to top-view images. This can be done either by using stereo
information and projecting the scene to a ground plane,
or by estimating the vanishing point to perform an inverse
perspective transform, if no stereo setup is available.

In the transformed image, markers on the road and on the
road markings are generated initially. Afterwards, the image
is binarized with a marker based watershed algorithm. Single
elements are grouped for further processing and candidates
for OCR are selected. OCR is applied by using TESSERACT-
Library. In an optional last step, if odometry information is
available, the detection of symbols in consecutive images can
be integrated to one single optimized detection.

In the following sections we explain the main parts of the
algorithm in detail.

A. Training of the OCR system

To prepare the OCR system, a font with the desired
symbols is generated. The font consists in our case of all
letters, symbols and arrows allowed on German roads, which
is de�ned in [19]. However, any other symbol de�nitions,
e.g. from other countries, can also be used. To increase



Fig. 3. Fonts used for training of TESSERACT. The letters are generated
with vector graphics from legal design speci�cations. Additional fonts with
slanted characters are used for detection robustness.

Fig. 4. Detection of vanishing point in a typical scenario.

detection rate, two further fonts with the same characters
slightly slanted are generated. Fig. 3 shows all fonts used
for training. A second set of training data is generated with
only symbols and arrows and the character “I”. This allows
a better classi�cation if a single symbol is detected on the
road, since usually letters and numbers occur in groups. With
the character “I”, a better differentiation between segments
of dashed lines and straight arrows is possible.

Additionally, TESSERACT can use a dictionary with of-
ten appearing letter combinations. In this work we de�ne
common words, e.g. “STOP”, “BUS”, and speed limits, e.g.
“50”, “70” in the dictionary.

B. Top-view generation

The �rst step for detecting the symbols is to generate a
top-view image of the scene. We implemented two different
methods: If only monoscopic images are available, the van-
ishing point is estimated and based on a �at plane assumption
the images are warped. With stereoscopic images, we use the
same technique described in [20] to generate the top-view
maps.

1) Monoscopic images:Vehicle environment is usually
convenient to determine a suitable vanishing point. The area
close to the vehicle can be assumed as �at plane and due
to lines, curbs or the road itself at least some lines can
be found to intersect in the corresponding vanishing point.
For detecting the lines, a progressive probabilistic Hough-
Transformation [21] is used. Thus only lines with a minimal
length can be considered. Furthermore lines with horizontal
or vertical orientation are neglected.

2) Stereoscopic images:To avoid errors due to incorrectly
estimated vanishing point and violation of plane assumption,
stereoscopic images can be used. From the image pair
disparity and thus 3D information is computed. The scene
is projected to the vehicle ground plane. In [3] we used the
same process to generate our top-view maps by accumulat-
ing the single projected top-views combined with position
information. While those stereoscopic top-views provide
accurate spatial relations between the detected marking and
the vehicle position, they lack of image quality and the
viewing range is limited due to reconstruction errors (see
Fig. 5).

Fig. 5. Example of a top-view image generated with stereo reconstruction.

C. Segmentation

The road markings we are interested in are usually bright
markings with high contrast on a darker and homogeneous
road. The actual parameters are adaptively estimated with the
histogram of a small image region close to the ego-vehicle,
where we usually can expect mainly road surface with some
lane markings.

Road image valuesr are expected to range between the
5% percentilep5 and 80% percentilep80 of the computed
histogram.

r min = p5

r max = p80

A new histogram of all pixelsgi > (p80+ � road ) is computed,
where gi denotes the gray value of pixeli . To ensure
all road pixels are removed we introduce the additional
threshold� road . Lane marking valuesm are based on this
new histogram with percentilesp� :

mmin = p�
5

mmax = p�
98

In addition, a value for the homogeneity of the road surface
G0 is computed using the mean of the gradientG of the
bottom row in the image and a tolerance value� grad .

G0 = mean(G(u; vmax )) + � grad

Markers for the watershed based segmentation are com-
puted as sets of three markers (road/marking/road). A marker
set consists of three pixel positionsul ; um ; ur in one image
row v, whereul is left of a road marking,um directly on
the marking andur right of the marking. The following
conditions must be ful�lled:

� mmin < g (um ; v) < m max

� r min < g (ul ; v) < r max

� r min < g (ur ; v) < r max

� g(um ; v) � g(ul ); v > � gmin

� g(um ; v) � g(ur ); v > � gmin

� Gmed (ul ; v) < G 0

� Gmed (ur ; v) < G 0

The minimal difference in brightness� gmin is a priori
de�ned. Markers on both sides of the road marking are
necessary to segment correctly when the road surface is not
connected, e.g. in case of solid lines. Since a road marking
usually extends over multiple rows, not each row must be
considered for marker generation. In practice everyk-th row



Fig. 6. Markers used for watershed algorithm are generated automatically.
Here the process of setting a set of markers in an image row is depicted.
Blue markers are outside, green markers inside the road markings. Each
line is checked from left to right if a position is found where all conditions
are ful�lled.

Fig. 7. Generated markers (top) and corresponding watershed Segmentation
(bottom) on monoscopic top-view images.

is used to search �rst for candidates for left and middle
markers with a given distanced. For each candidate pair
the third marker is searched in the residual row. The process
is shown in Fig. 6 while Fig. 7 (top) depicts the result of a
complete image.

Afterwards, a common watershed algorithm [22] [23] is
applied. The result can be seen in Fig. 7 (bottom). To avoid
small gaps in the segmentation result, morphologic closing
is applied additionally.

D. Candidate Selection

While the markings are usually clearly visible in the com-
plete image, single candidates for OCR must be identi�ed
by grouping segmented parts that belong together (e.g. two
digit numbers for speed limits). Moreover, the number of
candidates for OCR can be limited by further assumptions.
Helpful features for segmented parts are

� area of the bounding box
� aspect ratio of the bounding box
� length of the contour line.

Elements that are too small or large are rejected immediately.
In addition the lane markings on the side of the road are
detected based on their aspect ratio.

To group segments a Support-Vector-Machine is trained
with common symbols consisting of more than one element,
e.g. “BUS”, “30”, “50”, “70”, or symbol for reduction of the
road width. Features are

� Distancedu of bounding boxes inu-direction (du = 0
if bonding boxes touch)

� Distancedv of bounding boxes inv-direction (dv = 0
if elements begin in the same image row)

� Ratio of widthsrw � 1
� Ratio of heightsr h � 1.

The single parts of a group are still contained for further
analysis in case of detection of the whole group was not
successful.

E. Optical Character Recognition (OCR)

For OCR the common software TESSERACT is used.
TESSERACT is not limited to Latin fonts, but complex
characters, e.g. in Arabic or Asian scripts are possible as
well. While there is no graphical user interface provided,
TESSERACTcan be directly accessed in C++ code. Further-
more, the software is able to segment a page of text into
lines, single words and single characters. However, since
road markings usually not occur in multiple lines of text and
the segmentation is done separately (see Sec. III-C), those
functions are not used in our algorithm.

According to [15] the following steps are performed within
TESSERACT(see Fig. 8):

1) Edge Detectionto obtain a closed outline.
2) Approximation as polygon to reduce amount of data.
3) Feature Extraction which are line segments describ-

ing the contour.
4) Static classi�cation with all template characters.
5) Adaptive classi�cation with the help of well recog-

nized characters in the previous step.

TESSERACT returns the symbol with the highest prob-
ability for each candidate and the probability itself. The
coordinates of the detected symbol are estimated by calcu-
lation the centroid of the input candidate segment. If the
reduced training set is used for single symbol detection and
the included character “I” is returned, the detection is auto-
matically classi�ed as dashed line segment and thus rejected.
Finally, the image coordinates of the detected symbol can
be converted into the vehicle coordinate system, to obtain
relative metric pose information. If odometry and global ref-
erence is available, the symbol positions can be transformed
to world coordinate system. Usually, in consecutive images
a symbol is detected multiple times. Therefore, it is possible
to cluster the results. All detections of the same symbol
within a certain radius are merged to one �nal detection
based on their matching possibility given by TESSERACT.
In Fig. 9 an example with multiple detections is depicted on
an accumulated top-view map. Blue dots indicate detections
in single images, yellow and green dots the �nal decision.



Fig. 8. Example of TESSERACT working process: Input data (left),
polygonal approximation (center) and feature matching (right).

Fig. 9. Result of clustering (yellow and green dots) of all single detections
(blue dots) on an accumulated top-view map.

IV. EVALUATION

Evaluation of the algorithm is done on the Bertha Benz
Memorial Route [3]. This104km track leads through both
urban and rural areas in southern Germany. The sequence is
recorded with two backwards facing cameras on our research
vehicle “Annieway”. Base width of the stereo setup is approx.
38cm. Both cameras provide an image resolution of 1238 px
� 370 px with an acquisition rate of 10 Hz. All images are
recti�ed and the transformation between camera and vehicle
coordinate system is known. In case of the monoscopic
application, only the left camera is used.

To evaluate the system, all symbols on our ego lane are
manually labeled. Those symbols are expected to be detected
completely, since effects by occlusion can be neglected and
stereo reconstruction is available. In total 398 symbols are
painted on the104km road, including 364 arrows, 12 speed
limits and 9 “BUS” symbols. With both, monoscopic and
stereoscopic system about 80% of the symbols are detected.
Only 2.5% of the detected symbols are incorrectly classi�ed.
Table I provides a detailed overview of the result.

The large number of not detected straight arrows compared

Symbol Existent Detected Mono Detected Stereo
Total 398 314 (80%) 317 (80%)

222 175 (79%) 185 (83%)

80 67 (84%) 60 (75%)

42 41 (98%) 41 (98%)

11 6 (55%) 7 (64%)

8 7 (88%) 6 (75%)

1 1 (100%) 1 (100%)

1 0 (0%) 0 (0%)

9 4 (44%) 3 (33%)

8 4 (50%) 3 (27%)

3 3 (100%) 3 (100%)

1 0 (0%) 1 (100%)

5 5 (100%) 3 (60%)

1 1 (100%) 1 (100%)

1 0 (0%) 0 (0%)

, 5 4 (80%) 3 (60%)
Incorrect - 8 8

False positives - 20 31

TABLE I

DETECTION RATE OF ALL SYMBOLS ON OUR EGO LANE IN A104 KM

RURAL AND URBAN TEST DRIVE.

to other arrows is based on a misclassi�cation as straight
line if the painting is slightly damaged. The reversed case
of damages dashed lines in curves, which are sometimes
classi�ed as straight arrows is the main reason for false
positive detections. A further reason for false positives is
the detection of nearby symbols not labeled in the ground
truth data. While the ego lane is clearly visible in the
accumulated top-view map we used for annotation, in the
detection evaluation every symbol is considered as ego lane
that has less than1:5m distance to the driven trajectory.

Another problem occurs with complex paintings, e.g..
Here the approximation in TESSERACT(see Sec. III-E) is not
�ne enough to match the symbol correctly. A solution would
be to only detect the triangular outline and classify the inner
symbol separately.

Symbols on neighboring lanes are detected depending
on visibility. While in the monoscopic case an area of
12m� 15m behind the car is evaluated, we limited the
stereo top-view detection area to half the width, due to large
reconstruction errors in distance. Often other vehicles partly
occlude the markings, so they are only visible in accumulated
top-views. Thus, a comparable evaluation of the total number
is not possible with our existing ground truth data. However,
in the stereoscopic case, further 210 symbols outside the ego
lane are detected, while with monoscopic images even further
539 symbols are found. Fig. 10 gives an example of detected
symbols on a more complex scene.

To evaluate the position accuracy of the algorithm, we
have manually labeled 50 straight arrows with start and end
position. One problem occurs in the road markings itself:
The mean length of an arrow is5:02m, while the shortest
and longest labeled arrow is4:70m and5:54m respectively.
Table II shows the lateral and longitudinal deviations from
the result to the midpoint of the labeled data. Note that the



Fig. 10. Example with symbols detected on multiple lanes on accumulated
top-view map for visualization.

Error Monoscopic Stereoscopic
Lateral

mean deviation 0.009 m 0.044 m
standard deviation 0.075 m 0.065 m

min deviation -0.105 m -0.059 m
max deviation 0.305 m 0.274 m

Longitudinal
mean deviation 0.316 m -0.143 m

standard deviation 0.423 m 0.178 m
min deviation -0.784 m -0.816 m
max deviation 1.089 m 0.105 m

TABLE II

SPACIAL DEVIATIONS IN CASE OF STRAIGHT ARROWS.

system returns the centroid of the symbol, while only start
and endpoint are labeled. This also affects images with partly
occluded symbols, which leads to slightly shifted centroids
in detection. Here, the advantage of stereoscopic top-views
is clearly visible. Obtaining the position with vanishing point
estimation and plane assumption in the monoscopic case
leads to doubled standard deviation in longitudinal deviation
compared to stereoscopic top-views. However, the lateral
deviation is comparable in both cases.

Computing time on our system (Intel Xeon @2.5GHz) is
between 20 ms and 70 ms per frame, depending on vanishing
point detection and number of generated OCR candidates.

V. CONCLUSION

We presented a system to detect symbols on road surface.
In contrast to other similar solutions, we completely rely on
legal road symbol de�nitions, with which we create a special
font for OCR. The system works both with monoscopic
and stereoscopic camera systems to generate the required
top-views. Stereo top-views provide good position accuracy,
while monoscopic images bene�t from a larger �eld of view
with less distortions.

Both systems detect approximately 80% of the symbols on
the ego lane. Two main problems still occur: Non standard
road paintings and occlusion by others. The latter could be
solved by accumulating image information similar to our top-

view generation for visualization and will be addressed in
future work.
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