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Abstract— In this paper, we present a system to detect
symbols on roads (e.g. arrows, speed limits, bus lanes and
other pictograms) with a common monoscopic or stereoscopic
camera system. No manual labeling of images is necessary since
the exact definitions of the symbols in the legal instructions
for road paintings are used. With those vector graphics an
Optical Character Recognition (OCR) System is trained. If
only a monoscopic camera is used, the vanishing point is
estimated and an inverse perspective transformation is applied
to obtain a distortion free top-view. In case of the stereoscopic
camera setup, the 3D reconstruction is projected to a ground
plane. TESSERACT, a common OCR system is used to classify
the symbols. If odometry or position information is available,
a spatial filtering and mapping is possible. The obtained
information can be used on one side to improve localization,
on the other side to provide further information for planning
or generation of planning maps.

I. INTRODUCTION

For both driver assistance systems and autonomous driv-

ing, detection of lane markings plays a major role. As early

as in the 80s, first approaches for autonomous driving used

a camera to detect the lane markings and thereby the course

of the road. Today, most upper class vehicles have a camera

based system on board to detect lane markings and warn the

driver when leaving the lane. Those approaches usually only

detect boundary lines and ignore other road surface paintings.

Recent systems for autonomous driving highly rely on ac-

curate maps. These maps usually fulfill two tasks: Providing

information for localization and providing static information

for path planning.

For localization, static landmarks are stored in the map

and re-detected while driving. One approach is to compute

generic feature descriptors for interesting points. With the

position of the feature and the feature description itself, a

relative pose between mapping pose and localization pose

can be estimated (e.g. [1]). While this leads to good results,

especially in urban areas, the necessary disk space for large

maps must be considered.

Another approach is to extract more specific information

such as lane markings (e.g. [2]). A map with all lane mark-

ings can be created based on any kind of high resolution

birds-eye-view images of the desired road. In the localization

step, lane markings are detected in the image and the result

is compared to the previously generated map. Since no

appearance based information is stored in the map, an update

Fig. 1. Example images of the backward facing camera in the vehicle (top)
and the results of the proposed algorithm (bottom). For better evaluation,
the results are shown on a separatly generated top view map.

of the map is not necessary until the road itself changes, e.g.

due to road works. While lateral positioning is very accurate,

the uncertainty in longitudinal direction is very high. This

can be improved by detecting non-lateral lane markings such

as arrows and stop lines.

Another important task of maps in autonomous driving is

providing static information for trajectory planning (e.g. [3]).

This can be drivable areas, position of traffic lights and

corresponding stop lines, speed limits and information about

connected driving corridors on large junctions. In contrast to

the localization maps, which can be generated partially or

completely automatically, for planning information maps a

high manual effort is necessary. However, especially speed

limits and lane directions are often painted on the road and

hence seen by cameras.

Detecting the information painted on the road therefore

would lead to further localization improvements, but also

could serve as basis for planning map generation. Hence, our

proposed system uses the knowledge of legal road marking

definitions to detect them on road surface with an OCR

system.
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II. RELATED WORK

Road and lane marking detection is one of the oldest

applications in camera based driver assistance systems. In

1990 the European research project PROMETHEUS used

intensity and gradient information to detect lane markings

in the image [4]. The development continued over the next

years with different approaches, e.g. [5], [6], [7].

Today’s research focuses on road geometry estimation in

regions that do not provide clearly visible markings. Franke

et al. [8] used particle filter to predict the road course on

rural roads. Other approaches aim on the detection of curb

stones [9], which usually delimit the drivable area in urban

areas.

The goal of all those approaches is to detect the course of

the road rather than to detect the lane markings as dedicated

objects. A first approach to detect the markings itself is

described in [10] with the goal to detect corrupted marking

segments. A stereo camera system was used to generate a

birds-eye-view on which a morpholocial filter was applied

to remove everything except the arrow tips. With a neural

network the frequency transformed images were analyzed.

Nan et al. [11] also transformed an image in birds-eye-view

perspective and used Haar wavlets to detect symbols similar

to face detection algorithms. In [12] a system was proposed

which detects lane markings in a given rectangular region and

compares the binarized pattern to stored templates. Fourcher

et al. [13] used the difference between a median filtered

image and the original to extract lane marking borders.

The result was compared to recorded templates with both,

Hamming distance and histograms. Compared to [11] and

[12] the system is more invariant to changes in lightning

conditions, however, it showed problems with wide road

markings. Another approach was recently proposed by Wu

et al. [14], who used FAST corner descriptors and template

matching to detect symbols on the road. Hence, manually

labeled training images are necessary.

In contrast to most of the above applications Optical

Character Recognition algorithms are designed to classify

specific symbols. However, usually the input images are

less perspectively distorted and the background is less noisy

compared to cameras mounted on vehicles. One common

library is TESSERACT [15]. It was developed by Hewlett-

Packard in 1984-1994. Since 2005, the project is open

source and is maintained by Google. They use TESSER-

ACT for their Google Books project [16]. TESSERACT is

available under Apache-License on code.google.com/

p/tesseract-ocr/.

Posner et al. [17] applied OCR to natural scene images to

detect visible text with the goal to improve scene interpreta-

tion. Also a system to detect text on road signs using OCR

was proposed by Wu et al. [18]. However, both applications

of OCR in robotic environments are restricted to detect

common characters and human readable text.

We propose an algorithm that combines the knowledge

of the definitions of allowed symbols with common OCR

software to detect and classify road surface markings. There-
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Fig. 2. Overview of the detection algorithm. OCR Training has to be done
only once. Top-views are created from monoscopic or stereoscopic images,
before candidates are generated and OCR is applied.

fore, the image is transformed to birds-eye-view, potential

markings are extracted and OCR is applied. As final result

we obtain a map with all symbols on the road.

III. ALGORITHM

The complete proposed algorithm consists of two main

parts. In a preliminary step, the desired symbols must be

transfered to a OCR-compatible format. In our case we

simply generate a font from vector graphics of the desired

symbols once.

The second part is the online detection algorithm, which

is applied on each image. It can be divided into several

further steps (see Fig 2). First, the images are transformed

to top-view images. This can be done either by using stereo

information and projecting the scene to a ground plane,

or by estimating the vanishing point to perform an inverse

perspective transform, if no stereo setup is available.

In the transformed image, markers on the road and on the

road markings are generated initially. Afterwards, the image

is binarized with a marker based watershed algorithm. Single

elements are grouped for further processing and candidates

for OCR are selected. OCR is applied by using TESSERACT-

Library. In an optional last step, if odometry information is

available, the detection of symbols in consecutive images can

be integrated to one single optimized detection.

In the following sections we explain the main parts of the

algorithm in detail.

A. Training of the OCR system

To prepare the OCR system, a font with the desired

symbols is generated. The font consists in our case of all

letters, symbols and arrows allowed on German roads, which

is defined in [19]. However, any other symbol definitions,

e.g. from other countries, can also be used. To increase



Fig. 3. Fonts used for training of TESSERACT . The letters are generated
with vector graphics from legal design specifications. Additional fonts with
slanted characters are used for detection robustness.

Fig. 4. Detection of vanishing point in a typical scenario.

detection rate, two further fonts with the same characters

slightly slanted are generated. Fig. 3 shows all fonts used

for training. A second set of training data is generated with

only symbols and arrows and the character “I”. This allows

a better classification if a single symbol is detected on the

road, since usually letters and numbers occur in groups. With

the character “I”, a better differentiation between segments

of dashed lines and straight arrows is possible.

Additionally, TESSERACT can use a dictionary with of-

ten appearing letter combinations. In this work we define

common words, e.g. “STOP”, “BUS”, and speed limits, e.g.

“50”, “70” in the dictionary.

B. Top-view generation

The first step for detecting the symbols is to generate a

top-view image of the scene. We implemented two different

methods: If only monoscopic images are available, the van-

ishing point is estimated and based on a flat plane assumption

the images are warped. With stereoscopic images, we use the

same technique described in [20] to generate the top-view

maps.

1) Monoscopic images: Vehicle environment is usually

convenient to determine a suitable vanishing point. The area

close to the vehicle can be assumed as flat plane and due

to lines, curbs or the road itself at least some lines can

be found to intersect in the corresponding vanishing point.

For detecting the lines, a progressive probabilistic Hough-

Transformation [21] is used. Thus only lines with a minimal

length can be considered. Furthermore lines with horizontal

or vertical orientation are neglected.

2) Stereoscopic images: To avoid errors due to incorrectly

estimated vanishing point and violation of plane assumption,

stereoscopic images can be used. From the image pair

disparity and thus 3D information is computed. The scene

is projected to the vehicle ground plane. In [3] we used the

same process to generate our top-view maps by accumulat-

ing the single projected top-views combined with position

information. While those stereoscopic top-views provide

accurate spatial relations between the detected marking and

the vehicle position, they lack of image quality and the

viewing range is limited due to reconstruction errors (see

Fig. 5).

Fig. 5. Example of a top-view image generated with stereo reconstruction.

C. Segmentation

The road markings we are interested in are usually bright

markings with high contrast on a darker and homogeneous

road. The actual parameters are adaptively estimated with the

histogram of a small image region close to the ego-vehicle,

where we usually can expect mainly road surface with some

lane markings.

Road image values r are expected to range between the

5% percentile p5 and 80% percentile p80 of the computed

histogram.

rmin = p5

rmax = p80

A new histogram of all pixels gi > (p80+δroad) is computed,

where gi denotes the gray value of pixel i. To ensure

all road pixels are removed we introduce the additional

threshold δroad. Lane marking values m are based on this

new histogram with percentiles p∗:

mmin = p∗
5

mmax = p∗
98

In addition, a value for the homogeneity of the road surface

G0 is computed using the mean of the gradient G of the

bottom row in the image and a tolerance value δgrad.

G0 = mean(G(u, vmax)) + δgrad

Markers for the watershed based segmentation are com-

puted as sets of three markers (road/marking/road). A marker

set consists of three pixel positions ul, um, ur in one image

row v, where ul is left of a road marking, um directly on

the marking and ur right of the marking. The following

conditions must be fulfilled:

• mmin < g(um, v) < mmax

• rmin < g(ul, v) < rmax

• rmin < g(ur, v) < rmax

• g(um, v)− g(ul), v > ∆gmin

• g(um, v)− g(ur), v > ∆gmin

• Gmed(ul, v) < G0

• Gmed(ur, v) < G0

The minimal difference in brightness ∆gmin is a priori

defined. Markers on both sides of the road marking are

necessary to segment correctly when the road surface is not

connected, e.g. in case of solid lines. Since a road marking

usually extends over multiple rows, not each row must be

considered for marker generation. In practice every k-th row



Fig. 6. Markers used for watershed algorithm are generated automatically.
Here the process of setting a set of markers in an image row is depicted.
Blue markers are outside, green markers inside the road markings. Each
line is checked from left to right if a position is found where all conditions
are fulfilled.

Fig. 7. Generated markers (top) and corresponding watershed Segmentation
(bottom) on monoscopic top-view images.

is used to search first for candidates for left and middle

markers with a given distance d. For each candidate pair

the third marker is searched in the residual row. The process

is shown in Fig. 6 while Fig. 7 (top) depicts the result of a

complete image.

Afterwards, a common watershed algorithm [22] [23] is

applied. The result can be seen in Fig. 7 (bottom). To avoid

small gaps in the segmentation result, morphologic closing

is applied additionally.

D. Candidate Selection

While the markings are usually clearly visible in the com-

plete image, single candidates for OCR must be identified

by grouping segmented parts that belong together (e.g. two

digit numbers for speed limits). Moreover, the number of

candidates for OCR can be limited by further assumptions.

Helpful features for segmented parts are

• area of the bounding box

• aspect ratio of the bounding box

• length of the contour line.

Elements that are too small or large are rejected immediately.

In addition the lane markings on the side of the road are

detected based on their aspect ratio.

To group segments a Support-Vector-Machine is trained

with common symbols consisting of more than one element,

e.g. “BUS”, “30”, “50”, “70”, or symbol for reduction of the

road width. Features are

• Distance du of bounding boxes in u-direction (du = 0
if bonding boxes touch)

• Distance dv of bounding boxes in v-direction (dv = 0
if elements begin in the same image row)

• Ratio of widths rw ≥ 1
• Ratio of heights rh ≥ 1.

The single parts of a group are still contained for further

analysis in case of detection of the whole group was not

successful.

E. Optical Character Recognition (OCR)

For OCR the common software TESSERACT is used.

TESSERACT is not limited to Latin fonts, but complex

characters, e.g. in Arabic or Asian scripts are possible as

well. While there is no graphical user interface provided,

TESSERACT can be directly accessed in C++ code. Further-

more, the software is able to segment a page of text into

lines, single words and single characters. However, since

road markings usually not occur in multiple lines of text and

the segmentation is done separately (see Sec. III-C), those

functions are not used in our algorithm.

According to [15] the following steps are performed within

TESSERACT (see Fig. 8):

1) Edge Detection to obtain a closed outline.

2) Approximation as polygon to reduce amount of data.

3) Feature Extraction which are line segments describ-

ing the contour.

4) Static classification with all template characters.

5) Adaptive classification with the help of well recog-

nized characters in the previous step.

TESSERACT returns the symbol with the highest prob-

ability for each candidate and the probability itself. The

coordinates of the detected symbol are estimated by calcu-

lation the centroid of the input candidate segment. If the

reduced training set is used for single symbol detection and

the included character “I” is returned, the detection is auto-

matically classified as dashed line segment and thus rejected.

Finally, the image coordinates of the detected symbol can

be converted into the vehicle coordinate system, to obtain

relative metric pose information. If odometry and global ref-

erence is available, the symbol positions can be transformed

to world coordinate system. Usually, in consecutive images

a symbol is detected multiple times. Therefore, it is possible

to cluster the results. All detections of the same symbol

within a certain radius are merged to one final detection

based on their matching possibility given by TESSERACT.

In Fig. 9 an example with multiple detections is depicted on

an accumulated top-view map. Blue dots indicate detections

in single images, yellow and green dots the final decision.



Fig. 8. Example of TESSERACT working process: Input data (left),
polygonal approximation (center) and feature matching (right).

Fig. 9. Result of clustering (yellow and green dots) of all single detections
(blue dots) on an accumulated top-view map.

IV. EVALUATION

Evaluation of the algorithm is done on the Bertha Benz

Memorial Route [3]. This 104 km track leads through both

urban and rural areas in southern Germany. The sequence is

recorded with two backwards facing cameras on our research

vehicle “Annieway”. Base width of the stereo setup is approx.

38 cm. Both cameras provide an image resolution of 1238 px

× 370 px with an acquisition rate of 10 Hz. All images are

rectified and the transformation between camera and vehicle

coordinate system is known. In case of the monoscopic

application, only the left camera is used.

To evaluate the system, all symbols on our ego lane are

manually labeled. Those symbols are expected to be detected

completely, since effects by occlusion can be neglected and

stereo reconstruction is available. In total 398 symbols are

painted on the 104 km road, including 364 arrows, 12 speed

limits and 9 “BUS” symbols. With both, monoscopic and

stereoscopic system about 80% of the symbols are detected.

Only 2.5% of the detected symbols are incorrectly classified.

Table I provides a detailed overview of the result.

The large number of not detected straight arrows compared

Symbol Existent Detected Mono Detected Stereo

Total 398 314 (80%) 317 (80%)

222 175 (79%) 185 (83%)

80 67 (84%) 60 (75%)

42 41 (98%) 41 (98%)

11 6 (55%) 7 (64%)

8 7 (88%) 6 (75%)

1 1 (100%) 1 (100%)

1 0 (0%) 0 (0%)

9 4 (44%) 3 (33%)

8 4 (50%) 3 (27%)

3 3 (100%) 3 (100%)

1 0 (0%) 1 (100%)

5 5 (100%) 3 (60%)

1 1 (100%) 1 (100%)

1 0 (0%) 0 (0%)

, 5 4 (80%) 3 (60%)

Incorrect - 8 8
False positives - 20 31

TABLE I

DETECTION RATE OF ALL SYMBOLS ON OUR EGO LANE IN A 104 KM

RURAL AND URBAN TEST DRIVE.

to other arrows is based on a misclassification as straight

line if the painting is slightly damaged. The reversed case

of damages dashed lines in curves, which are sometimes

classified as straight arrows is the main reason for false

positive detections. A further reason for false positives is

the detection of nearby symbols not labeled in the ground

truth data. While the ego lane is clearly visible in the

accumulated top-view map we used for annotation, in the

detection evaluation every symbol is considered as ego lane

that has less than 1.5m distance to the driven trajectory.

Another problem occurs with complex paintings, e.g. .

Here the approximation in TESSERACT (see Sec. III-E) is not

fine enough to match the symbol correctly. A solution would

be to only detect the triangular outline and classify the inner

symbol separately.

Symbols on neighboring lanes are detected depending

on visibility. While in the monoscopic case an area of

12m× 15m behind the car is evaluated, we limited the

stereo top-view detection area to half the width, due to large

reconstruction errors in distance. Often other vehicles partly

occlude the markings, so they are only visible in accumulated

top-views. Thus, a comparable evaluation of the total number

is not possible with our existing ground truth data. However,

in the stereoscopic case, further 210 symbols outside the ego

lane are detected, while with monoscopic images even further

539 symbols are found. Fig. 10 gives an example of detected

symbols on a more complex scene.

To evaluate the position accuracy of the algorithm, we

have manually labeled 50 straight arrows with start and end

position. One problem occurs in the road markings itself:

The mean length of an arrow is 5.02m, while the shortest

and longest labeled arrow is 4.70m and 5.54m respectively.

Table II shows the lateral and longitudinal deviations from

the result to the midpoint of the labeled data. Note that the



Fig. 10. Example with symbols detected on multiple lanes on accumulated
top-view map for visualization.

Error Monoscopic Stereoscopic

Lateral
mean deviation 0.009 m 0.044 m

standard deviation 0.075 m 0.065 m
min deviation -0.105 m -0.059 m
max deviation 0.305 m 0.274 m

Longitudinal
mean deviation 0.316 m -0.143 m

standard deviation 0.423 m 0.178 m
min deviation -0.784 m -0.816 m
max deviation 1.089 m 0.105 m

TABLE II

SPACIAL DEVIATIONS IN CASE OF STRAIGHT ARROWS.

system returns the centroid of the symbol, while only start

and endpoint are labeled. This also affects images with partly

occluded symbols, which leads to slightly shifted centroids

in detection. Here, the advantage of stereoscopic top-views

is clearly visible. Obtaining the position with vanishing point

estimation and plane assumption in the monoscopic case

leads to doubled standard deviation in longitudinal deviation

compared to stereoscopic top-views. However, the lateral

deviation is comparable in both cases.

Computing time on our system (Intel Xeon @2.5GHz) is

between 20 ms and 70 ms per frame, depending on vanishing

point detection and number of generated OCR candidates.

V. CONCLUSION

We presented a system to detect symbols on road surface.

In contrast to other similar solutions, we completely rely on

legal road symbol definitions, with which we create a special

font for OCR. The system works both with monoscopic

and stereoscopic camera systems to generate the required

top-views. Stereo top-views provide good position accuracy,

while monoscopic images benefit from a larger field of view

with less distortions.

Both systems detect approximately 80% of the symbols on

the ego lane. Two main problems still occur: Non standard

road paintings and occlusion by others. The latter could be

solved by accumulating image information similar to our top-

view generation for visualization and will be addressed in

future work.
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