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Abstract—In this article, we present a novel compositional
hierarchical framework for road scene understanding that al-
lows for reliable estimation of scene topologies, such as the
number, location and width of lanes and the lane topology,
i.e., parallel, splitting or merging. In our approach lanes and
roads are represented in a hierarchical compositional model
in which nodes represent parts of roads and edges represent
probabilistic constraints between pairs of parts. A key benefit
of our approach is the representation of lanes and roads as a
set of common parts. This makes our approach applicable to
scenes with rich topological diversity, while bringing along the
much desired computational efficiency. To cope with the high-
dimensional and continuous parameter space of our model and
the non-Gaussian image evidence, we perform inference using
nonparametric belief propagation. Based on this approximate
inference algorithm, we introduce depth-first message passing
for lane detection, that performs inference in several sweeps.
Empirical results show that depth-first message passing requires
significantly lower computation for performance comparable to
classical belief propagation.

Index Terms—Multi-lane recognition, Multi-feature fusion, Hi-
erarchical graphical models, Nonparametric belief propagation.

I. INTRODUCTION

THE ability of sensing and understanding the vehicles
environment is a key technology for autonomous driving

and Advanced Driver Assistance Systems (ADAS). Many of
these applications require a robust estimation of geometrical
road scene properties, such as the number, location and width
of lanes as well as the recognition of the lane topology i.e.,
parallel, splitting or merging.

Lane perception, at least in its basic setting seams to be
an easy task, since it only involves the recognition of the
host lane. In fact, this basic tasks has been successfully
treated in a large body of literature, e.g., [1]–[3]. While
similar perception approaches are still used in commercial
ADAS applications, such as lane keeping assist, these systems
make strong assumptions on the structure of roads, e.g., a
smooth and continuous curvature, parallel lanes and well-
defined lane markings. Even so, these methods are sufficient
for the recognition of lanes on well structured highways and
highway-like roads, lane perception in less structured urban
environments is still an open problem.

Still an open challenge is the development of multi-lane
road recognition approaches for urban roads, as addressed by
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our approach. This is mainly due to complex lane topologies
and a large amount of clutter and partial occlusion in urban
scenes. Further, in contrast to highways lane markings are
often not reliable as an individual cue. In order to allows
for reliable results in complex real-world cluttered scenes,
recent approaches in scene understanding use a combination
of different sensory cues [4]–[6].

Similarly, our approach allows for the incorporation of
different low-level visual cues. Thereby it is based on prob-
abilistic graphical models allowing us to explicitly take into
account that our knowledge about the environment is imper-
fect. A novelty of our models is that they do not impose
any hard constraints on the lane geometry as imposed by the
common clothoid or spline models. Instead, we assemble lanes
as a composition of parts whose dependencies are encoded
by weak probabilistic dependencies. A key benefit of these
dependencies is that they incorporate prior scene knowledge
which allows us to cope with clutter and partial occlusions.

This article extends our previous work [7] by means of an
extended formal description that allows joint consideration of
multiple visual cues, details on our real-time inference algo-
rithms and extended experimental analysis covering complex
urban scenarios.

II. RELATED WORK

Lane detection and tracking has been successfully treated
in a large body of literature. A Kalman filter for tracking
the parameters of a clothoid model has been proposed in
[1] and extended in many following approaches. The robust
estimation of the lane course in [8] uses lane markings and
a special particle filter. Fusing multiple visual cues including
lane markings, edges, and road color has been proposed in
[3]. In [9] the particle filter is used to fuse lane marking and
curbstone cues for urban lane detection. A 3D spline model has
been used as a lane model for rural roads whose parameters
have been tracked in a Kalman particle filter in [2].

All of the above approaches have in common that they aim
to detect the host vehicle lane, while constraining the features
to be part of a specific lane geometry (i.e., clothoid or spline).
Further, they assume that lanes and their visual cues are
parallel. In contrast, our approach aims to detect multiple lanes
with more complex lane toplogies, e.g., splitting and merging
lanes. Further, we do not impose any hard constraints on
the lane geometry. Instead, we express our prior expectations
in the lane geometry using weak probabilistic constraints.
These constraints allow us to not only account for spatial
uncertainties, but to cope with clutter and partial occlusions.
Issues that are not directly addressed by the above approaches.
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Lane and road perception is also investigated in the field of
scene understanding, where it is often a sub-task of a more
holistic environment perception task. Many approaches treat
scene understanding as a segmentation problem. A conditional
random field is used by Wojek et al. [10] to jointly perform
object detection and scene labeling. Sturgess et al. [11] de-
veloped a segmentation of road scenes based on appearance
cues and structure-from-motion features. In contrast to seg-
mentation based approaches, high-level scene understanding
approaches aim to infer a more holistic scene knowledge,
often using generative graphical models. Wang et al. [12]
propose a hierarchical Bayesian network to perform activity
detection in traffic scenes from a static platform. Interdepen-
dent Dirichlet processes are used in [13] to understand the
behavior of moving objects in the scene. A generative model
for 3d scene understanding was proposed in [6]. Their model
jointly performs multi-class object detection, object tracking,
scene labeling and 3d geometry estimation using a reversible-
jump Markov Chain Monte Carlo (MCMC) scheme. Geiger
et al. [4] also proposed to use reversible-jump MCMC to
infer geometrical and topological scenes properties as well as
semantic activities from movable platforms. Further, Spehr et
al. [5] propose a high-level scene understanding approach for
real-time parking lot interpretation. Towards this goal Spehr
et al. propose the application of compositional hierarchical
models and approximate inference algorithms.

Following [5], we propose to use compositional hierar-
chical models for real-time multi-lane road recognition. In
our approach, however, we are not limited to parking lot
scenes. Instead, we present a novel hierarchical model for
heterogeneous road topologies, including multi-lane roads with
parallel and non-parallel lanes. Furthermore, we propose the
application of depth-first message passing and part sharing for
real-time inference and the fusion of multiple lane cues for
reliable lane recognition.

III. MULTI-CUE SENSOR EVIDENCE

In our approach, we rely on a monocular vision sensor
which provides the visual input frames for our approach. Given
this visual input, we employ two different feature detection
approaches. First, lane marking features are extracted from
the visual input using the symmetrical local threshold method.
We choose this method since according to the evaluation
conducted in [14] it gives the best result in the general case,
i.e., it is relatively robust against clutter and local illumination
changes. Further, a Sobel edge detector is used to gain road
edge features in image regions where markings are missing,
but road edges, such as curbstones are present. We choose this
edge detector mainly due to its high sensitivity, which allows
us to reduce the amount of false negatives. However, this also
means that the edge detector is highly affected by outliers due
to clutter and shadow, as shown in Fig. 1. In our approach, we
directly address this issues using the weak spatial constraints,
as detailed in Sec. IV. These constraints reduce the influence of
outliers on the overall recognition process by assessing their
spatial plausibility. Therefore, our framework enables us to
use very sensitive detector and thus to cope with challenging
scenarios with sparse visual cues.

(a) (b)

Fig. 1. Results of feature extraction in an urban scenario. (a) Lane marking
detections (green). (b) Road edge detections (red). Road edge cues are used
to detect roads in scenarios where lane markings are not reliable.

The two feature extraction approaches obtain a set of lane
marking features m = {m1, . . . ,mNm

} and a set of road
edge features r = {r1, . . . , rNr

}. A lane marking feature
mi = (xi, yi, ϑi) is defined by its location (xi, yi) ∈ R2

and orientation ϑi ∈ [0, 2π). Similarly, a road edge feature
is defined as ri = (xi, yi, ϑi). These features constitute the
observable random variables r and m of our CHM, which
have corresponding hidden random variables xf

i defined on
the same 3d state space. As Fig. 2 shows, these hidden feature
variables constitute the first level L1 of our CHM.

The dependency of lane marking observations and hidden
feature variables is modeled by observation potentials

φi(x
f
i ,m) = ε0N0(xf

i ; 0,Σ0)

+ (1− ε0)

Nm∑
k=1

πi,kN (xf
i ;µk,Σi,k), (1)

and analogously for observation potentials φi(x
f
i , r) account-

ing for road edge features. Here, Σi,k ∈ R3×3 is the co-
variance matrix of the kth mixture component. Formally, this
observation potential is a kernel density estimation of the
true likelihood, which allows to model multi-modal density
distributions by assigning a Gaussian kernel to each feature
µk. πi,k denotes the probability of the association of the k-th
feature with the i-th hidden variable. Further, we augment the
observation potential by a zero mean, high-variance Gaussian
outlier process N0(xi; 0,Σ0) that allows us to account for
clutter and occlusions.

IV. COMPOSITIONAL HIERARCHICAL MODEL OF A
MULTI-LANE ROAD

Our approach to road scene understanding is based on a tree-
structured graphical model, which captures the way the joint
distributions over random variables can be decomposed into
a product of factors. Each of these factors only depends on a
subset of the variables and thus allows for the development of
efficient inference algorithms.In particular, we represent multi-
lane roads in a Compositional Hierarchical Model (CHM) [5],
[15]–[17] that is encoded by a pairwise Markov random field.
In this CHM the root represents a full instantiated model of
a multi-lane road, with all its properties (see Fig. 2), and the
nodes on the lower levels represent a recursive decomposition
of the root object into parts and sub-parts. This decomposition
leads to a layered object representation with decreasing part
complexity in direction to the leaves. Thus, our CHM not
only encodes the dependencies between low-level evidence
and high-level scene topologies, but divides the perception
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problem into sub-problems that are easier to solve. In our
approach, we assume a flat road surface and model the scene in
the vehicle coordinate system. The vehicle coordinate system
is located at the center of the rear axis and follows the common
axis definition (x= forward, y= left, θ=yaw angle).

More formally, our CHM is encoded by an undirected tree
structured graph G = (V, E) with nodes V and edges E .
The nodes V correspond to three disjoint sets of variables
V = x ∪ m ∪ r, where x denotes the set of hidden random
variables x = {x1, . . . ,xn}. Each hidden variable xi ⊆ x
represents a part or a sub-part of the multi-lane road, which
is represented by the root node of our graphical model (see
Fig. 2) and is defined on a multidimensional continuous state
space. Further, the observable variablesm and r correspond to
the lane marking features and the road edge features, respec-
tively. The edges E between pairs of hidden variables define
spatial constraints ψij(xi,xj), which encode the dependencies
between neighboring hidden variables xi and xj by means of
conditional spatial distributions. Edges between hidden and
observable random variables encode observation potentials
φi(xi,m) and φi(xi, r), as in Eq. 1.

Given the above definition and assuming that the observa-
tions of lane markings m and road edges r are independent
given x, the joint probability distribution factorizes as

− log(p(x1, . . . ,xN |m, r)) = log(Z) +
∑

(i)∈Im

Φi(xi,m)

+
∑

(i)∈Ir

Φi(xi, r) +
∑

(i,j)∈E

Ψij(xi,xj), (2)

where Φi(·)=− log(φi(·)), Ψij(·)=− log(ψij(·)) and Z ∈ R
denotes the partition function that normalizes the probability
distribution. Im denotes the indexes of the set of cliques that
are contained in x ∪m and Ir the indexes of the cliques in
x ∪ r. The above factorization is also shown in Fig. 2.

In the following, we detail the different levels of our CHM
as well as their their spatial dependencies.

A. Features and local driveable Areas

Recall that the leaves of our CHM comprise feature vari-
ables xf

i =(xi, yi, ϑi) with associated observations. Two of the
observed features define a local driveable area referred to as
patch, which form the second level L2 of our CHM, as shown
in Fig. 3a. This figure illustrates that each patch is defined by
a left and a right lane boundary feature.

Formally, patches are defined by a five-dimensional state
vector xp

j = (xj , yj , ϑj , wj , νlp). Here, (xj , yj) ∈ R is the
patch location, ϑj ∈ [0, 2π) its orientation angle, wj ∈ R+

its width and νlp ∈ R+ its length (see Fig. 4a). Note that in
our experiments the patch length νlp was chosen as a constant
design parameter.

The dependencies between feature variables xf
i and patch

variables xp
i are modeled using weak spatial constraints

ψij(x
f
i ,x

p
j ) = N (xp

j ;Sij(x
f
i ),Σij), (3)
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Fig. 3. CHM of a patch and illustration of the modeled spatial constraints. (a)
A patch is decomposed into a left and a right lane boundary which are directly
observable. (b) Illustration of the modeled spatial constraints, where spatial
uncertainties are illustrated by showing 2D Gaussian distributions, where dark
colors correspond to more likely locations.

where for a left feature the transformation function

Sij(x
f
i )=


xi
yi
ϑi
0
0

+


1
2 sin(ϑi) 0 0 0 0

0 − 1
2 cos(ϑi) 0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



νwp

νwp

0
νwp

νlp


(4)

returns the predicted location of variable xp
j based on the

expected lane width νwp ∈ R+ and the state of variable xf
i .

The covariance matrix Σij ∈ R4×4 is a design parameter that
express uncertainties regarding the spatial dependencies, as
illustrated in Fig. 3b.

We choose this patch definition due to its generality. In fact,
patches can be composed from any lane and road cue that
allows to predict the lane center (e.g., guardrails, delineators
or bots’dots). This scalability is a key advantage of our frame-
work, since it not only enables us to increase the reliability of
our approach but to handle the enormous appearance diversity
of lanes and roads [18], [19].

B. Local driveable Areas and Lanes

The next higher levels of our CHM comprise lanes of
increasing length (see Fig. 2). As Fig. 4 illustrates, lanes
are defined as a composition of NP individual patches
xl
i = {xp

1,x
p
2, . . . ,x

p
NP
, lli}, i.e., lanes are represented by a

polygonal path with piecewise constant orientation and width.
Consequently, the length of a lane lli ∈ R+ is defined as the
sum of Euclidean distances between subsequent lane elements.
A key development goal of the lane representation is to
maintain a low complexity of the spatial constraints, which is
crucial for a low computational complexity during inference.
Particularly convenient are spatial constraints between lane
and patch variables ψi,j(x

p
i ,x

l
j) since patches are expected

to have the same spatial configuration as the adjacent lane
element. Spatial constraints between pairs of lane variables
ψi,j(x

l
i,x

l
j), on the other hand, are used to predict the

expected location of the subsequent lane element, using the
transformation function

Sij(x
l
i)=


xi
yi
ϑi
wi

+


cos(ϑi) 0 0 0

0 sin(ϑi) 0 0
0 0 1 0
0 0 0 1



νlp
νlp
0
0

 . (5)
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Fig. 2. CHM of a two lane road. This figure shows the factorization of the joint probability distribution in Eq. 2 using an undirected graphical model. Hidden
random variables are depicted in grey and symbols illustrate their type, i.e., features, patches, lanes and multi-lane roads. Observable variables are shown in
black and dependencies between random variables are highlighted using edges.

(a) (b)

Fig. 4. Patch-based lane representation. (a) Two lane road with splitting lanes.
(b) Patches comprised to lanes.

Here, νlp is the constant patch length defining the segmen-
tation of the lane center line which allows us to control the
complexity of inference.

Note that, in contrast to many state-of-the-art approaches,
we do not impose hard constraints on the longitudinal lane
geometry (e.g., clothoid or spline). Further, lanes are not
restricted to a specific lateral model (e.g., parallel lanes or
constant lane width). This great flexibility is a key benefit
of our approach, since it makes our framework applicable to
scenarios beyond highways and highway-like roads.

Yet, most ADAS applications involving vehicle control
require a smooth lane representation and a small number
of false detections. This commonly leads to the introduction
of model assumptions on the lateral and longitudinal road
topology [18], [19]. While in principal our lane representation
could easily be extend to e.g., a clothoid model by introduc-
ing additional model parameters, it would limit its field of
applicability. Therefore, instead of introducing specific lateral
or longitudinal lane models, we consider such assumptions as
the property of a specific road type, as detailed next.

C. Lanes and multi-lane Roads

As can be seen in Fig. 2, lanes are once again used as parts
of more complex objects representing multi-lane roads. Since
roads comprise all available information they are the output
level of our approach.

A road xr
i = {xl

1,x
l
2, . . . ,x

l
Nl
} is composed of a finite

number of Nl lanes and has a longitudinal model (e.g.,
clothoid, polyline or spline), defining its curvature and a lateral
model defining its topology. The road topology, includes the
number, position and width of lanes and the lane structure,
i.e., parallel, splitting or merging.

An example of a CHM of a road is depicted in Fig. 2,
showing a two-lane road with parallel lanes. In this case,
the spatial constraints ψ29,31(xl

29,x
r
31) and ψ28,31(xl

28,x
r
31)

model a parallel lane configuration. In a more complex model
these spatial constraints can be used to encode dependencies
between e.g., merging or splitting lanes. This example clarifies
a key aspect of our approach. Namely, that our CHM can
easily be adopted to new road topologies without altering the
lower levels of our model. This flexibility not only allows to
meet the heterogeneous demands of ADAS applications but to
generalize our framework to scenarios with diverse topologies,
as detailed in Sec. VI.

D. Periodic Variables

One of the challenges in modeling the spatial constraints is
that the random variables representing angles ϑ ∈ [0, 2π) do
not possess a natural origin. To overcome issues regarding the
choice of origin, we adapt von Mises Fisher distributions [20].
The von Mises Fisher distribution is a convenient choice,
since it can be derived from a bivariate Euclidean Gaussian
distribution with mean (cos ϑ, sin ϑ) [21], [22] and thus
can easily be added to the Gaussian model of our spatial
constraints.

V. INFERENCE OF A SINGLE ROAD TOPOLOGY

In our framework the task of lane and road perception is
equivalent to computing the marginal posterior distribution or
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belief bi(xi) of all or a subset of the hidden variables in our
graphical model. A task which can efficiently be performed
using Belief Propagation (BP). In BP the belief over a variable
xi is computed by combining all incoming messages at node
i with the local observation potential as

bi(xi) ∝ φi(xi,m)φi(xi, r)
∏

c∈Ξ(i)

mc,i(xi)
∏

p∈Γ(i)

mp,i(xi)

∝ b−i (xi)
∏

p∈Γ(i)

mp,i(xi), (6)

where the two products contain messages from the children
Ξ (i) and the parents Γ (i) of node i, respectively. In BP,
messages mi,j(xj) passed from node i to j predict which
state node j should be in and can be computed recursively.
Further, Eq. 6 defines the bottom-up belief state b−i (xi) that is
an intermediate processing results of the inference algorithms
detailed in the following.

If the belief state of all variables is Gaussian the belief can
be computed exactly using Eq. 6 [23]. However, in our case
this is not the case due to the noisy and multi-modal sensory
evidence and thus standard BP is not applicable. To overcome
this issues, we perform inference using Nonparametric Belief
Propagation (NBP) [24], [25], which is a generalization of
the particle filter [26] for approximate inference in arbitrary
graphs.

In NBP the belief bi(xi) is approximated by a set of L
importance weighted samples {(s(k)

i , π
(k)
i )}Lk=1 as

bi(xi) =

L∑
k=1

π
(k)
i N (xi; s

(k)
i ,Λi). (7)

Each of these samples s(k)
i represents a hypothesis for the

spatial configuration of variable xi and is drawn from the
product distribution

s
(k)
i ∼

∏
c∈Ξ(i)

mc,i(xi)
∏

p∈Γ(i)

mp,i(xi) (8)

using the efficient nearest neighbor product sampling method
proposed in [27]. The corresponding importance weight π(k)

i

of a sample s(k)
i is then defined as

π
(k)
i ∝ φi(s(k)

i ,m)φi(s
(k)
i , r) (9)

and represents the spatial plausibility of the hypothesis s(k)
i .

Finally, the computational efficient rule of thumb [28] is used
to construct a kernel density estimation from the raw sample
set by assigning a Gaussian smoothing kernel with bandwidth
Λi to each sample (see Eq. 7).

A convenient property of our framework is that evidence
is exclusively injected into our model via the leave nodes,
which allows us to perform the belief update of Eq. 7 in two
stages. First, we compute the bottom-up belief state b−i (xi)
by passing messages from the observable leaves to the root.
Second, we pass messages down from the root to the leaves
to compute the belief bi(xi). These two phases have different
goals. While the aim of the bottom-up phase is the fast
generation of high-level hypotheses (e.g., lanes and roads), the
top-down phase ensures the overall consistency of parts and
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Fig. 5. Message passing using part-sharing. (a) During the bottom-up phase
messages (blue) are passed from the leaves to the root using the sharing
structure. During this phase the belief is shared between nodes on L1 and L2
to avoid redundant computations. (b) During the top-down phase, message
passing is based on the structure of our CHM, since each node receives
different contextual information from its parent.

their subparts. We generally follow the bottom-up/top-down
message passing schedule with some adaptions to facilitate
this standard message passing approach.

As detailed above bottom-up/top-down message passing
begins with the computation of the bottom-up belief of all
feature variables b−i (xf

i ). During this step feature variables
are conditioned on either the feature set m or the feature set
r. Consequently, all feature variables in xf ∪m and in xf ∪r
comprise the same bottom-up belief and thus many messages
send from the feature variables on L1 to the patch variables on
L2 contain the same belief estimate. This means, we have to
compute the same message product for each patch node in the
CHM, leading to unnecessary computational complexity. To
avoid such redundant computations, we adapt the part-sharing
technique, which has been proposed in the field of vision based
multi-view, multi-object detection [15], [27].

A. Part-Sharing

The fundamental idea of part-sharing is to merge those
nodes during the bottom-up phase, which receive the same
messages from their children. In our case, we can combine the
patch nodes as well as the nodes in their sub-trees, as depicted
in Fig. 5b. This figure shows the resulting sharing structure
that includes three sharing-nodes xf

1,3,5,7 ={xf
1 ,x

f
3 ,x

f
5 ,x

f
7},

xf
2,4,6,8 = {xf

2 ,x
f
4 ,x

f
6 ,x

f
8} and xp

9,...,12 = {xp
9, . . . ,x

p
12}

clarifying that the bottom-up belief is shared between the
combined hidden variables.

Using part-sharing, bottom-up inference is based on the
sharing structure, where the bottom-up belief state of each
node is only calculated once and then shared between its
parents (see Fig. 5b). This procedure not only avoids redundant
computations but ensures that only one object instance has to
be memorized. After the belief of the root node b15(xl

15) is
computed, we begin with top-down message passing. Since,
during this phase the patch nodes receive different messages
from their parents, top-down message passing is performed
in the graphical model illustrated in Fig. 5a. Before starting
the top-down phase we decompose the sharing nodes into the
comprised nodes by assigning the bottom-up belief b−i (xi) of
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Fig. 6. Multi-lane road detection using depth-first message passing. Based
on an initially selected patch sample lane hypotheses are generated (blue).
An expectation-based step ensure the consistency of high-level hypotheses
and local evidence (green). Further, road hypotheses can be evaluated without
explicit bottom-up message passing (orange). Note that the bottom-up belief
state of nodes on level Ls1 and Ls2 is computed using part-sharing.

the sharing-nodes to all aggregated nodes. Finally, the belief
bi(xi) over each variable xi is computed by combining its
bottom-up belief with the incoming messages from its parents
mj,i(xi) with j∈Γ (i), as defined in Eq. 6.

B. Depth-First Message Passing

Bottom-up message passing in the sharing structure amounts
in processing each level of our model one by one (see
Fig. 5b). Intuitively, this can be thought of as a breadth-
first search in the hypotheses space, since on each level
all possible hypotheses are computed. The advantage of this
approach is that it leads to a good approximation of the density
distributions on all levels. The drawback, however, is that
with each level the hypotheses space growth exponential, and
therefore computations are only tractable for a small number
of levels. Further, in our application we are interested in the
fast detection of high-level hypotheses (i.e., lanes and roads)
not in an exhaustive search for low-level hypotheses.

Therefore, we proposed a sequential message passing sched-
ule [7], [27], which is inspired by the depth-first traversal
for arbitrary tree structured graphs. The fundamental idea of
depth-first message passing is to perform bottom-up message
passing in several sequential sweeps. At the beginning of each
sweeps we select a single patch sample that is likely to be part
of a valid high-level hypotheses and propagate it through the
graph. Since in this approach a single sample is propagated
through the graph, we only compute a subset of the possible
hypotheses on each level, resulting in a computational efficient
depth-first search for valid hypotheses in the hypotheses space.

In the case of lane and road detection it is convenient to
start depth-first message passing from patches close to the
vehicle, since they are located in areas of low uncertainty.
After selecting a patch sample, we can then extend the lane
hypotheses from the vehicle into areas of higher uncertainty.
Towards this goal, in each sweep a single patch samples
(s

(k)
i , π

(k)
i ) is selected from the nonparametric density b−i (xp

i )

according to its weight s(k)
i ∼ π(k)

i . Subsequently, the selected
sample is propagated through the graphical model as depicted
in Fig. 6. In this example, message passing is initiated at
variable xp

i by selecting a single sample s
(1)
ij according

to its weight. Using this sample the message mi,j(x
l
j) is

constructed, predicting the configuration of xl
j . This message

can now be used to update the belief b−j (xl
j) by computing

the product of all incoming messages from the children of
xl
j (see Eq. 6). Towards this goal, nearest neighbor product

sampling [27] searches for samples s(qnn)
kj in the incoming

messages at xl
j , which are similar to s(1)

ij . These samples are
accepted according to the acceptance rate [27]

A(s
(qnn)
kj ) = exp(−1

2
(s

(1)
ij −s

(qnn)
kj )TΣ−1

ij (s
(1)
ij −s

(qnn)
kj )),

(10)
where qnn is the index of the nearest neighbor of the sample
s

(1)
ij and Σij is the covariance matrix of the spatial constraints
ψij(x

p
i ,x

l
j).

However, in depth-first message passing it is likely that no
sample is accepted, since it is not guaranteed that variable xl

j

received messages from all its children. Therefore, if no sam-
ple is accepted a top-down bottom-up sweep is initiated that
searches for evidence supporting the predicted configuration
of xl

j . Intuitively, this sweep can be thought of as an aligning
process that ensures the consistency of the lane hypotheses
and the low-level observations.

This alignment process is illustrated in Fig. 6 by show-
ing green messages. Here, we begin by sending a message
mj,k(xp

k) from node xl
j to node xp

k, again containing a single
sample s(1)

jk . This single sample is used in the nearest neighbor
product sampling to search for samples in the messages
mh,k(xp

k) with h ∈ Ξ (k) send to xp
k from its children. As

before, samples s(qnn)
hk are accepted according to Eq. 10, to

decide whether a sample is supported by an observation or if
it corresponds to the outlier process (see Eq. 1).

If for all messages mh,k(xp
k) a sample s(qnn)

hk is accepted,
we calculate the product of the incoming and the accepted
sample, which amounts in calculating the product of two
Gaussian distributions. If for some of the incoming messages
no sample is accepted, we multiply the contained samples with
the high-variance Gaussian outlier process. In the following,
the product result is used to send a single sample message
mk,j(x

l
j) back to xl

j . Finally, the belief update at node xl
j

is performed by computing the product of mi,j(x
l
j) and

mk,j(x
l
j). The above procedure is repeated for each level until

the root node is reached. Then the next sweep is started.
An attractive property of depth-first message passing is that

based on a partly estimated road hypothesis we can propose
lane hypotheses, as shown in Fig. 6. This figure shows, that
given the road geometry prediction of the left lane, we can
propose a right lane hypothesis and evaluate its plausibility.
This ability is a key advantage over many nonparametric lane
detection approaches [9], [29], since it enables us to distribute
lane samples based on the a priori knowledge of the spatial
constraints and thus to detect lanes in areas of low belief.

VI. REPRESENTING AND INFERRING HETEROGENEOUS
ROAD TOPOLOGIES

So fare, we mainly focused on estimating a single road
topology. However, a key challenge in lane and road percep-
tion is to handle the enormous topological diversity of traffic
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Fig. 7. Representation of heterogeneous road topologies using sets of CHMs
and part-sharing. (a) Set of CHMs, where each CHM models a specific road
topology. (b) Sharing structure representing the set of CHM by means of
shared parts. Performing bottom-up inference in the sharing structure is not
only computational efficient but allows to simultaneously estimate multiple
road topologies. Note that the length of lanes and roads is not depicted.

scenarios [18], [19]. While, in general, the spatial constraints
of our CHM allow for a certain degree of spatial variation,
as soon as the variations become too large or different road
topologies have to be represented new separate CHMs have to
be specified.

Therefore, a multi-scenario model is represented by a set
of Nh CHMs G={G1, . . . ,GNh

}, where each CHM is a joint
probability distribution defined over a hierarchical graph Gi =
(Vi, Ei). An illustrative example of a set of CHM is depicted in
Fig. 7, showing three CHMs each representing a different road
topology. At the first glance, a separate CHM for each road
topology seams unattractive, since it leads to an exponential
growth of instances. However, it is reasonable to expect that
many CHMs contain similar parts. In fact, the three CHMs
in Fig. 7a comprise several common parts and thus we can
represent them by means of shared parts, as depicted in Fig. 7b.
The depicted sharing structure clarifies the similarities between
the different road topologies, which e.g., share the two-lane
road. Note that, sharing the two-lane road also requires us to
share its sub-tree.

The key benefit of part-sharing is that during bottom-up
message passing, we have to compute the bottom-up belief
over all common parts only once and then share it between
the associated parents. As before, bottom-up message passing
is performed in the sharing structure, while top-down message
passing is performed in the individual CHMs, corresponding
to the root nodes of the sharing structure. Part-sharing is one
of the key aspects in our framework, since it not only allows
us to perform efficient bottom-up inference in a single CHM
but to share complex high-level objects between different road
topologies. In contrast to many recent lane and road perception
approaches, which only aim to detect a single road topology
this makes our approach applicable to various topologies.

VII. EXPERIMENTAL RESULTS

In this section, we applying our framework to challenging
real world scenarios and present a set of quantitative and
qualitative results. These experiments aim to demonstrate that

(a) (b) (c)

Fig. 8. Results of lane recognition for (a) an urban road with sparse lane
markings (b) a highway split and (c) an urban road with non-parallel lanes.
The top shows the detected lane-marking features (red). The bottom shows
the projected lane-marking detection into the vehicle reference frame (yellow,
purple, green) and results of lane recognition (grey).

the proposed approach: (1) can benefit from the weak con-
straints incorporated on each level of the CHM to increase the
reliability of the detection results, (2) can incorporate multiple
low-level cues and thus increase recognition performance and
(3) can perform lane and road perception in real-time using
depth-first message passing [7].

To evaluate the performance of our approach, we tested it
in highway, rural and urban scenarios (see Fig. 8) using our
C++ implementation. The database used for our evaluation
comprises several thousand individual images of urban, rural
and highway scenarios and was captured during low traffic
density, i.e., the road is completely visible. Clearly manual
labeling of such a large database is impracticable. Therefore,
we obtain ground-truth information from a high-accuracy
map database [30], which contains an exact topological lane
description. Given this map database, we perform the labeling
process in three steps. First, we extract relevant data (e.g.,
patches, lanes or roads) from the map database and align
them to our results using a high-accuracy DGPS and IMU
system. Second, we compute an 2d overlap ratio between
ground truth data and our results to judge if our result are
positive or negative examples. In particular, we consider our
results to be positive results if the overlap ratio exceeds 80%,
i.e., our results have an geometrical consistency with the
ground truth of over 80%. This soft labeling process allows to
handle inaccuracies in the map database and the DGPS+IMU
system as well as to access the accuracy and reliability of our
approach. Finally, the importance weights given in Eq. 9 are
used to draw precision recall curves.

The used CHM has a similar structure as depicted in Fig. 2.
However, to cover the detection range of the used vision
sensor, we extend the CHM by introducing random variables
representing lanes composed of up to 40 patches. The root
nodes of our graphical model represent roads with two or three
lanes. For all tests we set the outlier probability ε0 to 20%
of the total likelihood [25], [26]. The a priori width and the
length of the patches were set to νwp

= 3.5 m and a length
νwl

= 2.0 m.
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Fig. 9. Precision-Recall curves for highway scenarios (a) and for rural
scenarios (b). Results are computed using different algorithms and evaluated
against the ground truth. For details see text.

A. Lane and Road Recognition

A key benefit of the proposed framework is that each
level of the CHM incorporates geometrical and topological
a priori knowledge comprised in the spatial constraints. We
evaluate the importance of using such knowledge during road
recognition by evaluating the belief bi(x

p
i ) over the patch

locations at different stages of message passing. Towards this
goal, we introduce three message passing algorithms.

Alg. 1: We compute the bottom-up belief b−i (xp
i ) over the

patch nodes by fusing messages received from their
children xf

j with j ∈ Ξ (i).
Alg. 2: We compute the bottom-up belief of both the lanes

b−i (xl
i) and patches b−i (xp

i ). Then, we compute
the belief of the patches b\ri (xp

i ) by propagating
messages down from the lanes to the patches.

Alg. 3: We compute the belief bi(x
p
i ) by performing a

complete bottom-up/top-down sweep.
Here, Alg. 1 incorporates only the piecewise parallel lane
assumption in the recognition process, while Alg. 2 and 3
introduce longitudinal and later lane models, respectively.

As can be seen in Fig. 9, the recognition performance of
our model increases drastically, as we incorporate contextual
information. This can be explained by the fact that patch nodes
perform inference over a relatively small area. Accordingly,
they strongly rely on the presence of local, visual evidence.
This means e.g., missing, occluded or damaged lane cues have
a significant impact on the recognition performance. Lanes,
on the other hand, are based on a set of patches and thus
combine sensory evidence from a larger area (e.g., about 200
patches for an average highway lane). Hence, the recognition
performance is not as affected by missing local evidence as
the one of patches. Furthermore, it can be seen in Fig. 9,
that incorporating longitudinal and lateral model assumptions
further improves the recognition performance of our approach,
as it ensures the overall compatibility of objects and object
parts.

Qualitative results for particular challenging scenarios are
depicted in Fig. 8. It can be seen that our approach shows
promising results in situations with sparse feature sets, lane
splits and non-parallel lane structure, where conventional lane
tracks are incapable of providing a full solution. Note that,
hypotheses outside of the lane markings are supported by
features on one side, and by the outlier process on the
other side. As a result, weight is relatively low compared to
hypotheses supported by two features. During the computation
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Fig. 10. Results of lane detection for highway (a) and for rural scenarios
(b) using depth-first message passing (red) and breadth-first message passing
(green). In both scenarios depth-first message passing (25 samples) shows
more promising results than breadth-first message passing (150 samples).

of road hypotheses it is less likely that these hypotheses are
drawn from the message product (see Eq. 8) and thus they are
often not present on the road level.

B. Depth-First Message Passing

A key aspects of the proposed framework is depth-first mes-
sage passing for lane detection [7]. We expect that depth-first
message passing requires significantly lower running time as
breadth-first message passing and thus to apply our approach
in real-time. To test this hypothesis, we perform lane and
road detection by applying both depth-first message passing
and breadth-first message passing to the highway and rural
scenarios of our dataset. To avoid an exponential growth of
the lane-level hypotheses using breadth-first message passing,
we introduce a resampling step after performing the belief
update on the lane variables [24], [31]. This is used to limit
the number of lane sample to 150.

It can be seen in Fig. 10 that depth-first message passing
out-performs standard breadth-first message passing over the
complete range of confidence, while using a significantly
reduced sample set of only 25 samples. The reason for this
major improvement is that by applying depth-first message
passing, we first propagate those low-level hypotheses, which
are likely to be part of valid high-level hypotheses. Conse-
quently, during messages passing, we have to propagate less
invalid hypotheses than using breadth-first message passing.

Qualitative results of applying both breadth-first and depth-
first message passing are depicted in Fig. 11, showing the large
amount of hypotheses computed during breadth-first message
passing and the few likely hypotheses computed during depth-
first message passing.

C. Runtime

In order to evaluate the runtime, we perform two experi-
ments. First, we evaluate the runtime for highway scenarios
using the lane marking detector, as they are the common
target scenario for current ADAS. Furthermore, we access
the runtime for complex multi-lane urban scenarios using
both feature detectors. The results are summarized in Tab. I,
showing that while in the more complex urban scenarios
the runtime increases, patches, lanes and roads can still be
computed in real-time (i.e., between two subsequent frames
of the used vision sensors (25 fps)). Thereby, the results
indicate that depth-first message passing is a key aspect in
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(a) (b)

Fig. 11. Qualitative results of lane geometry estimation. (Top) Detected lane-
marking features (red). (a) Results using breadth-first message passing. (b)
Results using depth-first message passing.

Detection Patches Lanes (BF) Lanes (DF) Roads
Highway (ms) 1.47 75.29 4.41 5.38

Urban (m) 2.47 167.32 4.92 7.63
TABLE I

RUNTIME FOR HIGHWAYS USING LANE MARKING CUES AND FOR URBAN
MULTI-LANE ROADS USING LANE MARKING AND ROAD EDGE DETECTORS.

archiving real-time performance, since it significantly reduces
the computational complexity for lane detection.

D. Multi-Cue Lane and Road Perception

A key benefit of our hierarchical framework is that it allows
for the incorporation of multiple lane and road boundary cues
and fuses them in an intelligent way. Particularly, in semi-
or unstructured urban environments using multiple cues is
expected to lead to an increased recognition performance. To
verify this hypotheses we apply our hierarchical framework to
the urban scenarios of our database. In this experiment, the
recognition performance achieved using only lane marking
cues is compared to the results obtained using both lane
marking and the road edge cues.

The results of these experiments are depicted in Fig. 12,
showing that as expected the additional usage of the road edge
cues improves the recognition performance, since in many
urban scenarios lane markings are not reliable. It can be seen
that using both cues, we can obtain a precision of about 90%
up to a recall of 90−95%, while precision drops drastically for
a recall higher then 80− 85% using only lane marking cues.
However, using multiple low-level cues also leads to additional
computational complexity. In fact, the average computational
time for the single cue setup is 21.0 ms, while for the multi-cue
setup processing requires 23.3 ms.

VIII. CONCLUSION

We have presented a novel compositional hierarchical
framework for multi-lane road recognition. Based on simple

(a) (b)

Fig. 12. Results of multi-cue urban lane detection. (a) When relying on
lane marking features the precision drops rapidly for a recall higher then
80 − 85%. (b) Using both lane marking and road edge features allows to
obtain a precision higher then 90% up to a recall of 90 − 95%. In (b) the
precision decreases slowly for a recall between 70− 95%, since the second
detector also causes additional false positives.

visual cues, our approach allows to reliably infer the topol-
ogy of traffic scenes. Thereby, our road model is generic
and compositional in the sense that we do not impose any
hard constraints on the lane geometry as imposed by e.g.,
clothoids or splines. Instead, our prior expectations on the lane
geometry are expressed through weak probabilistic constraints
and we assemble lanes from a large number of lane patches.
Furthermore, we introduced a new depth-first message passing
algorithm for road recognition which in combination with part
sharing allows to apply our approach in real-time. Finally, we
proposed to use sets of hierarchies to represent heterogeneous
road topologies, which allows to benefit from their similarities
for real-time inference.

The proposed work is only one part of a next-generation
environment understanding. In the future, we wish to extend
our framework by including further modules, such as vehicle
or pedestrian detections and navigation maps. These additional
input sources can be used as observations on the different
levels of our hierarchical model and as in [32] are expected to
increase the performance in scenarios, where visual lane and
road cues are occluded or not reliable.
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