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Cyclist detection is an important task for automobile industries. In this pa-
per we present a vision based system for cyclist detection. We build cascade
detectors for cyclists in different viewpoints and part filters to deal with par-
tial occlusions. To improve the performance, geometry based ROI extraction
method is integrated. Additionally, a Kalman filter in combination with optical
flow is also applied to estimate cyclists’ trajectories and to stabilize detections
along image sequence.

1 MOTIVATION
In recent years vision-based detection becomes more and more important among automobile
industries. One of the most successful examples is pedestrian detection, which is broadly ap-
plied in driver assistance systems. In comparison to that, cyclist detection hasn’t attracted much
interest from most researchers, although cyclists are ranged in the same level with pedestrians
in the group of vulnerable road users [GT07].

However, cyclist detection is a also an important task. Not only because cyclists are as
vulnerable as pedestrians but also they share the same road with other vehicles with a compa-
rable velocity, which makes them much easier to get involved in accidents and to suffer from
severe injuries and even fatalities. In addition, the available systems of cyclist detection are
mostly radar-based. They are sensitive to all the objects in surroundings so that more false pos-
itives can be generated, reducing the robustness of the system. In the mean while, vision based
pedestrian detection has already achieved high precision [DWSP12]. Therefore, designing a
vision-based detection system specially tailored to cyclists is necessary.
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2 RESEARCH PROBLEM
For implementation of such a system several problems remain to be solved. At first, the ap-
pearance of cyclists in the image obviously varies according to the viewpoints. This requires
extra algorithms to deal with multi-view detection and the precision should be maintained as
well. This problem is rarely taken into consideration in pedestrian detection. Secondly, due to
small bodies, cyclists can be easily occluded by other objects, e.g. cars. To capture partially
occluded cyclists is also challenging. Thirdly, collision prediction requires knowledge of the
cyclists’ trajectories. This knowledge allows us to estimate the risk of an accident which can be
used to implant active protection systems or to send warning signals to car drivers and cyclists.
At last, the detector should be able to run in real time. This is very important for application
on low cost hardware, as cost reduction is always the issue of industries. So this system should
provide a solution to these points.

3 STATE OF THE ART
In the last decade enormous progress has been seen in the area of vision-based object detec-
tion. Viola et al. in [VJ04] designed a cascade detector integrated with Haar-like features and
achieved a real time speed. Dalal et al. proposed HOG (histogram of oriented gradients) feature
in [DT05], improving the detection precision significantly. Based on that, Felzenszwalb et al.
introduced DPMs (deformable part models) in [FMR08]. By applying part filters and allowing
displacements between them, this method has achieved the best results at one time. As another
alternative, Wojek et al. combined HOG with Haar-like, shapelet [SM07] and shape context
[MBM05] in [WS08] and proved that it performs better than individual features. In [WMSS10]
Walk et al. added color and motion information to this method and improved the precision in
one more step. Unlike them, Dollár utilized different features to assemble integral channels
[DTPB09]. By using a cascade detector, he achieved a comparable result and a much faster
speed. As extension, Benenson et al. in [BMTVG12] made an even faster detector with the
help of differently scaled models and stixels from stereo images. These methods are mainly
focused on detection of pedestrians.

As for cyclist detection, Rogers et al. in [RP00] modeled bicycles by two circles. Cho et
al. applied DPMs in combination with an extended Kalman filter to detect and track bicycles
[CRZ10]. However, bicycle detection makes little sense in some situations, e.g. parked bicycles
without riders, because it is the cyclist not the bicycle that needs protection. Instead, Li et al.
used HOG-LP to detect crossing cyclists [LCX10]. As cyclists from other directions are not
concerned, the usability of their method is limited.
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4 OUTLINE OF OBJECTIVES
In this work we are aiming at building a vision-based detection system for cyclists. To solve
the multi-view problem, we divide the cyclist’s viewpoints into several subgroups and for each
group a detector is built. Occluded cyclists are only partially visible, which means that part
detectors are required. Based on the detector results, hypotheses about cyclists are made after
probability analysis. As a fact, time cost for detection is strongly dependent not only on the
detection algorithm but also on the image size. So we integrate ROI (region of interest) extrac-
tion into our framework. With its help, only interesting regions in the image are concerned,
so that detection can further speed up. Moreover, tracking algorithms in 2-D and even in 3-D
environment are integrated to improve the detection results and to estimate the trajectory. At
last, we are also planing to extend our framework to detect general object classes.

5 METHODOLOGY
This section consists of four parts. The first part describes our selected detectors. The second
part introduces the methods to deal with partial occlusions. The third one focuses on monocular
camera based ROI extraction. Finally, we briefly discuss about tracking algorithms.

5.1 Detector Structure
5.1.1 Unimodel vs. Multi-model

To search for objects in an image, the mostly used method is sliding window detection, which
is also applied in our project. In this method, a window with the same size as the training
samples is shifted over the image. Hypotheses about objects are made based on features which
are calculated inside the window. Since only objects within this window can be detected, it is
important to choose the window size appropriately.

For simplicity, most researchers use only one fixed window size to detect pedestrians, since
the aspect ratio is almost constant, independent of the pose and the appearance. Unlike that, the
appearance of other objects, e.g. cars or cyclists, varies significantly in different viewpoints. In
[OBT14] Ohn-Bar solved this problem for cars by building detectors for each visual subcategory
and achieved good results. So in this project we do it in a similar way. For training we also
choose the KITTI dataset [GLU12], which is one of the benchmarks for object detection and
contains rich images of traffic scenes. Instead of using additional features in [OBT14], positive
samples here are sorted directly according to their 3-D orientations. We do it in this way,
because, not only the procedure can be simplified but also errors from false classifications can
be avoided.

In this paper we divide positive samples into eight equidistant orientation groups, each with
a range of 45◦, as shown in Figure 1. Since sliding window detection is used, we also scale
samples of each group to their rounded average aspect ratios. E.g. 0.5 is chosen for group II
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and VI, 1.0 for group IV and VIII and the others have an aspect ratio of 0.75. The minimal
height of each sample is 80 pixels.
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Figure 1: Division of positive samples into eight equidistant orientation groups I to VIII.

5.1.2 SVM vs. DT

Support vector machines (SVM) are often used together with HOG features. SVMs can obtain
high precision but at a great time cost. On the contrary, decision trees (DT) often run at fast
speed, even though the classification power is often weak in practice. So our aim is to build a
detector which combines advantages of both kinds of classifiers.

Here we choose a cascade as the detector structure. Unlike [DTPB09], we do some mod-
ifications to it. As shown in Figure 2, it consists of n stages of DTs and one SVM. The front
DTs can filter out lots of negative samples very quickly, so that a fast speed is achieved. The
last SVM guarantees a high precision and its influence on speed is mere. Because it is located
at the last stage, only a few classifications are done there.

Since only gray images are used in this paper, i.e. color information is not available, we
choose HOG as features instead of integral channels in [DTPB09] [BMTVG12]. For classifi-
cation, HOG vectors are calculated for each image patch. The SVM makes use of the whole
vector. Instead, DTs only deal with some specific vector elements. To select the number n, two
points should be concerned. On one side, too few DT stages can increase the burden on SVM
and further reduce the detection speed. On the other side, with too many DT stages, only a
few negative samples can be obtained for training SVM, which makes it very easy to be overfit.
According to our experience, 2 to 4 is a reasonable number.

5.2 Detection with Partial Occlusion
Up to now we focused on detecting cyclists with full bodies. As for occluded cyclists, we can
only recognize them by capturing their visible parts with part detectors.
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Figure 2: Structure of the cascade detector. It consists of n stages of decision trees DT1 to DTn and
one support vector machine SVM. For each image patch a HOG feature vector is calculated. While the
SVM makes use of the whole vector, the DTs only consider some specific vector elements, so that a fast
detection speed is achieved.

To decide which part should be detected, we take the same approach as [FMR08]. At first,
we calculate HOG features for each sample and use them to train a SVM. Then a rectangular
filter with the same size as the part detector is convoluted with the weights. The maxima,
regarded as with high energy, are selected as locations for part detectors.

For each group in Figure 1, we train m part detectors with the same structure as Figure 2.
For efficiency, we only run part detectors on image regions without hypotheses of full body
detectors. Based on results of part detectors we can estimate the presence of cyclists according
to the method proposed by Shu in [SDO+12].

Here we interpret the score s(pi) of part i at location p = (x, y) as

s(pi) = cpi + dpi · fd(dx, dy), (1)

where cpi is the convolution value of the part filter and (dx, dy) is the relative displacement to its
anchor. fd(dx, dy) = (dx, dy, d

2
x, d

2
y) denotes the deformation and dpi is the coefficient vector,

which can be learned from a latent SVM as in [FMR08]. So the total score from part filters can
be interpreted as

scorep = b+
n∑

i=1

s(pi), (2)

where b is a bias factor. But this equation is only valid for completely visible cyclists. For
occlusion, only the visible parts are interesting to us. If we take an assumption that visible
parts always have high part scores, the problem can be converted to search a set Sm of the most
confident parts, which maximize the score. Then Equation (2) can be rewritten as

scorep = b+ argmax
Sm

1

|Sm|

·
∑
i∈Sm

1

1 + exp(A(pi) · s(pi) +B(pi))
, (3)

where |Sm| is the set cardinality, in [SDO+12] it is equal to 3. A and B are parameters, which
can be learned by the sigmoid fitting method in [Pla99]. This equation can be considered as
calculating the average score of a subset of parts. As occluded parts always have a smaller
score, the score reaches its maximum only if all parts are visible in the subset.
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Since cyclists are divided into 8 aspects, there are totally 8m part detectors. To apply them
on images one after another is extremely time consuming and unnecessary. Because at one
location only one part type can exist. Hence, we decide to assemble part detectors from one
aspect, e.g. with the help of random forests [Bre01]. Then we only have 16 detectors.

5.3 ROI Extraction from Monoscopic Image
For further improving detection performance, we would like to integrate ROI extraction to our
framework. Here the ROI extraction is based on the fact that all cyclists are on the ground and
that the height, the pitch and the roll angle of the camera are known. Hence, the task is to find
regions in the image, which are corresponding to detected objects standing on the ground. As
one solution, Sudowe et al. in [SL11] introduced the mathemtical derivation from the size of an
object in the real world to its location in the image.

Here we also prefer this geometric method to extract ROIs, because no further sensors are
available and precise locating of object is required, which is important to predict collisions. But
unlike Sudowe’s approach we will reveal the relationship between the size and the location of
an object in the image by a regression method.

At first we observe objects in the real world. Here we build two horizontal planes with a
height z = 0 and z = Sobj respectively. The first one corresponds to the ground plane and the
other is a horizontal plane just above the head of the objects. As shown in Figure 3, both planes
consist of grid points. For each point from one plane we associate it with the point from the
other plane with the same horizontal coordinates to make one pair. So between each point pair,
the distance is constant and equals object’s height Sobj . Here we take for example Sobj = 2m.

Figure 3: Two planes of grid points. The ground plane is presented in yellow with a height of z = 0 and
the green one is the plane just above object’s head with a height of z = Sobj = 2m.

Then we project the grid points from both planes into the image (Figure 4) and store their
coordinates in matrix U0 and USobj

respectively. After that we calculate the distance between
each point pair again, which corresponds to object’s height in the image, and store them in
vector h. According to [SL11], the size and the location of an object in the image have a nearly
linear dependence,

h = U0 · B, (4)
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Figure 4: Calculate the distance h between each point pair and store it. Location (u, v) is the coordinates
of the corresponding ground point.

where B is a parameter matrix and can be obtained by some regression method, such as the least
squares algorithm. For simplicity, Equation (4) can be rewritten as

h =
[
u v 1

]
· B (5)

where h is object’s height with respect to the ground point [u, v, 1]T in the image.
If the roll angle of the camera is zero, the size of an object is only dependent on the vertical

coordinate of its bottom v. Therefore, the ROIs for objects can be restricted to a region between
two horizontal lines (Figure 5), which is in accordance with the results in [SL11].

Figure 5: Example for ROI extraction by our geometric method. This image is captured in the KIT. The
roll angle of the camera is zero and the detection window has a height of 80 pixels. The height of the
object in the real world is assumed to be 2m. Red region represents the ROI of valid objects.

In the same way we can obtain the dependence between the size and the location of an
object in scaled images, so that the geometry based ROI extraction can be extended to multi-
scale detection.
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5.4 TRACKING OF CYCLISTS
To predict collisions, not only the presence of cyclists but also their trajectories should be
known, which requires to track cyclists along image sequences. Here we use a simple model
with constant velocity. The state vector is

x = [x, y, vx, vy, h, w]
T , (6)

where (x, y) is coordinates of the bottom left corner of the cyclist, (vx, vy) denotes the velocity
in the image, and (h,w) represents the size. The acceleration and size variations are modeled
as noise. With the help of a Kalman filter [Kal60], the state of the cyclist can be predicted in the
next image. To associate the predictions and the detections, we use overlapping areas between
them. It means only the overlapping rate between a prediction and a detection is greater than a
predefined threshold, an association will be created. As the number of detections in an image
can be different from the number of predictions, we will solve the association problem by JPDA
(Joint Probabilistic Data Association) algorithm [BAK03]. The predicted state is updated by its
associated detecion. Single detections are regarded as new objects (cyclists) and single objects
without detection are directly taken into next prediction. This procedure can be seen in the right
part of Figure 6.

Because detectors can fail for some images, errors accumulate for those objects in prediction
steps. To avoid it, we add other trackers, such as optical flow, which consists of several feature
points. As shown in the left part of Figure 6, each detected cyclist is assigned with a Kalman
filter and an optical flow tracker. The feature points of the optical flow tracker are updated for
each frame. If an associated detection exists, the feature points are checked and only valid ones
remain. Otherwise the state of the cyclist is estimated based on the optical flow tracker, so that
the tracking results can be further stabilized.

6 STATE OF THE RESEARCH
At the moment we have already built cascade detectors to detect cyclists. The geometry based
ROI extraction method is also integrated. To explore the detector’s performance, we have cap-
tured a video with scenes both on campus and in nearby urban areas. There are totally 45000
images, consisting of lots of objects, such as cars, pedestrians and cyclists. The images have a
size of 1312×1082 pixels. In comparison, we also trained a cascaded DPM detector for cyclists
with the codes provided by [FGM10]. We ran both our detector and the DPM detector on the
test data and the recall-precision-curves are plotted in Figure 7. Additionally, we also evaluated
computational efficiency of each detector (Table 1).

It can be seen that the precision of our detector can increase at most 10% if the ROI ex-
traction method is integrated. In comparison with DPM, our detector has a higher recall at low
precision ranges but its precision becomes worse if the recall value decreases. As far as the real
situation is concerned, false negatives are even worse than false positives. Because protection
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Figure 6: Tracking algorithm by Kalman filter (right side) and optical flow (left side). Each detected
cyclist is assigned with a Kalman filter and an optical flow tracker. For each frame, the states of objects
are predicted and the feature points of the optical flow tracker are also updated. The predicted objects
are updated by their associated detecions. Single detections are regarded as new objects (cyclists) and
single objects without detection are updated by their optical flow trackers, so that the tracking results can
be further stabilized.

Figure 7: Recall-precision-curves for our detectors with (red) and without ROI extraction (green) and the
DPM detector (blue).

measurements can not be activated, if cyclists are not recognized, leading to reduced survival
probabilities in accidents. As for time cost, our detector runs at a speed of almost 11 fps. In
comparison, DPM takes 2.2s for one image. Obviously, our detector is more suitable for real
time applications, even though it is not as good as the DPM detector in high precision areas.

7 EXPECTED OUTCOME
For a more precise impression of our detector’s performance, we would like to do test on more
datasets as well as to compare it with other standard detectors. So far we are only concerned
about detection of completely visible objects. In the next step, we will work on detection of
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Table 1: Time cost of our detectors with (DT+SVM+ROI) and without ROI extraction
(DT+SVM) and the DPM detector.

DPM DT+SVM DT+SVM+ROI
time(s) 2.2 0.28 0.09

partially occluded objects. To stabilize detection along image sequences, the tracking algorithm
also works in progress. For a precise estimation of a cyclist’s trajectory, we would like to project
its 2-D movement into 3-D coordinates. This can only be done with the help of additional
sensors, e.g. lidar. Moreover, we also want to extend our framework for the recognition of
general object classes. In the future, we would like to see our system applied on vehicles, which
makes contribution to protection of cyclists.
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