
Efficient Multi-Drive Map Optimization towards
Life-long Localization using Surround View

Marc Sons
FZI Research Center for Information Technology

Karlsruhe, Germany
sons@fzi.de

Christoph Stiller
Institute of Measurement and Control Systems

Karlsruhe Institute of Technology(KIT)
Karlsruhe, Germany

Abstract—Current vision-based localization approaches en-
able reliable positioning in areas where global navigation
satellite systems (GNSS) fail due to multipath and shadowing
effects. These approaches require an up-to-date map. It seems
promising to update such maps iteratively after passing the
mapped area again. However, bundling more and more passes
into the existing map leads to unbounded computation and
memory complexity.
Herein we propose an iterative optimization approach to create
highly accurate maps comprising any number of drives with
constant computation complexity. The optimization bases on
keypoint correspondences matched between the recorded im-
ages from multiple drives. First, each new drive is reconstructed
separately by a sliding window bundle-adjustment. Thereafter,
the estimated trajectory is divided into disjoint clusters. To align
the new drive to the current map, we optimize pairs of clusters
which are interconnected through loop-closure or inter-drive
correspondences. We derive pose differences from all clusters
to estimate the final map poses. For global accuracy, we add
GNSS measurements from a low cost receiver. We show in our
experiments that the approach enables a joint estimate of the
trajectories and landmarks from numerous city-scaled passes
within several hours on desktop computers.

I. INTRODUCTION

A multitude of applications, e.g. object-fusion, scene un-
derstanding or trajectory planning heavily rely on precise
localization within previously created maps. Commonly, in-
ertial measurement units (IMU) are coupled with GNSS
to localize the ego vehicle position. These approaches are
unreliable, inaccurate or fail entirely in many (sub-)urban
scenarios, e.g. street canyons, forests or tunnels. Recent
vision-based approaches [1]–[4] upon previously created
maps enable accurate localization even when GNSS data
is not available. Despite Vision-based Simultaneous Local-
ization and Mapping (VSLAM) [5] approaches, it has been
established to estimate only the egopose in a previously
acquired map for localization in city-scaled areas. Through
this, the enormous complexity overhead of real-time mapping
is avoided. However, environmental changes, e.g. different
seasons, construction sites or parking vehicles lead to ob-
solescence of a once created map. Hence, it is strongly
required to keep maps up-to-date to preserve reliable, robust
and accurate localization over extended periods of time.
Recent approaches towards lifelong vision based localization
[6]–[9] focus on iteratively updated maps and the selection

Figure 1: Depiction of jointly estimated trajectories of 14
passes through (sub-)urban area which partly or entirely
overlap. Each pass is highlighted in a different color. In
total, the map comprises 70k vehicle frames. The overall
driven distance is about 69km. The map is generated fully
automatically out of ∼ 194k images within 15 hours on a
desktop computer without any feature selection except outlier
removal. To achieve global referencing we involve ∼ 18k low
quality GNSS measurements.

of landmarks which is indeed a challenging and important
step in the mapping pipeline. By that, the size of the
map is kept bounded while preserving reliable localization
in different environmental conditions. However, even using
landmark selection, the complexity of the adjustment grows
unboundedly when more and more drives are added.
In this work, we focus on the joint reconstruction of the
trajectories and landmarks of multiple drives within iterative
mapping pipelines. We present an approach which guarantees
constant computation time independent of the number of

2018 21st International Conference on Intelligent Transportation Systems (ITSC)
Maui, Hawaii, USA, November 4-7, 2018

978-1-7281-0323-5/18/$31.00 ©2018 IEEE 2671

mapped drives and of any feature selection. For that, we
divide all trajectories into disjoint clusters and intercon-
nect those clusters which provide a sufficient number of
interconnecting keypoint correspondences. To obtain these
correspondences, we use the localization estimate of the new
drive within the current map and match keypoints between
existing map frames and frames of the drive which show
the same scene. By that, combinations of interconnected
clusters can be optimized independently of all other clusters
which guarantees constant complexity of each subproblem
and enables parallel processing. Since the number of possible
combinations of clusters may grow with each new pass, we
optimize only a subset of all possible combinations.
As a preprocessing step, we apply subsequent visual odome-
try or, if available, use another odometry source to initial-
ize the trajectory of the new pass which is refined by a
sliding window bundle-adjustment. Finally, we derive pose
differences from all optimized clusters and solve a posegraph
optimization problem using only the derived pose differences.
This optimization scales to the number of pose differences
instead to the significantly higher number of landmarks of a
full-bundle-adjustment and, hence, enables to jointly estimate
the trajectories of multiple city-scaled drives. Since the pose
difference constraints are derived from the estimates of the
previous submap optimizations, the resulting estimate has
almost the same accuracy as a full bundle-adjustment.
If available, we further constraint this optimization by mea-
surements of a low cost GNSS sensor to achieve a rough
geo-referencing and large scale accuracy. Since the results of
all costly optimizations are propagated into pose differences
which are stored as preliminary results, our pipeline enables
to re-estimate the entire map with minor effort, e.g. if the
global reference changes afterwards.
In our experiments, we present an iteratively generated multi-
drive map which was created over night on a desktop
computer. We neither need support from a high-end GPU
nor from a computation cluster to optimize numerous city
scaled passes within a few hours (see Fig. 1). We underlay
aerial images to our estimated trajectories which shows an
accurate global alignment. To show the local accuracy of our
approach, we compare our results to the optimal estimate of
a full bundle-adjustment comprising all passes.

II. RELATED WORK

Using previously built feature maps for vision-based local-
ization in city-scaled areas gained importance in recent years.
Lategahn et. al [3] proposed a feature-based approach to
localize the ego vehicle precisely in orientation and position
using a single session map. The map was created from
a stereo camera while localization was performed using a
monocular camera. Upon this, we propose a variant which
extends the approach to use multiple cameras for localization
and mapping [2]. We presented a novel map scheme which
allows to access mapped features efficiently toward surround
view. We refer to this work for details to the camera setup,
vision frontend, feature matching and the localization used
in the remainder of this work.

A major work on vision based multi-session mapping towards
lifelong localization was proposed by Mühlfellner et al [6].
The mapping process is similar to our approach. After
bundling all sessions they created a compressed summary
map for online localization. They further showed detailed
long-term evaluations of the localization using multi-session
maps. For that, they passed a parking area and a mid-size
inner-city area numerous times over approximately a year
including all seasons and daytimes. To adjust all passes they
use a high-performance computation cluster. A further ap-
proach is from Schneider et. al [10] who presented maplab,
a framework for visual-inertial mapping and localization.
The approach combines aspects of SLAM and overnight
multisession mapping. Their presented experiments show
accurate maps created from handheld devices including a
monocular camera and an inertial measurement unit.
Beside iterative mapping, numerous work on smoothing and
Mapping (SAM) [11] can be found from which our work is
inspired. Ni et. al [12] followed the divide-and-conquer idea
towards map adjustment. They showed that the linearization
of submaps can be cached and reused while combining them
to the overall map. In difference, we explicitly split the
optimization and merge them afterwards iteratively in terms
of pose differences which renders our pipeline more flexible.

III. MULTI-DRIVE MAPPING

This section describes our mapping pipeline including all
optimization steps. The general process is similar to [6].
While passing a mapped area again, the current map is used
for online localization (see [2]). All images and localization
estimates are stored persistently to bundle the drive into the
existing map as a post-processing step. A new map estimate
is generated when the passed area was not mapped before.
Detailed information about the vision frontend, the camera
setup and the surround view localization can be found in
our previous work [2]. All cameras are jointly triggered and
calibrated [13]. The calibration provides a transformation
for each camera k referring to a rig reference frame and a
projection map

πk(l) = z, (1)

which maps a point l ∈R3 from real-world to a point z ∈R2

in the image plane. Since all mounted cameras take images at
equal timestamps, we assume that a set of images recorded at
a particular time refers to a single vehicle frame p ∈ SE(3).
Each landmark li ∈ L is described by a set of matched features
Zi = {z1, . . . ,zn} which in general may origin from images
from different cameras, passes and timestamps. We add a
connecting edge ei, j between two vehicle frames pi,, p j ∈P to
our topology database when the related image sets provide a
sufficient number of interconnecting matches. We denote the
set of all stored edges as E and the set of all vehicle frames
spanning the map as P. The following sections describe each
step of the optimization pipeline in more detail.

A. Single-Drive Optimization

In a first step, a rough trajectory estimate of the new drive
is achieved from odometry. Our framework allows the use of

2672

Figure 2: Geometric relations of instantaneous-center-of-
rotation constraint which is used as vehicle model.

arbitrary odometry sources as long as an extrinsic calibration
between the odometry source frame and the camera rig is
available. We mainly use stereo visual odometry [14] or sur-
round view visual odometry [15] which doesn’t require any
overlap of the fields of view between the different cameras.
Based on the odometry estimate, we subsample subsequent
vehicle poses equally distributed with a defined minimum
distance to each other. Thereafter, we estimate a landmark
li ∈ L for each correspondence Zi through triangulation [13]
using the odometry estimate and the camera calibration. This
renders an initial solution for the optimization of problem

argmin
P,L

|L|

∑
i=1

∑
z∈Zi

∥∥πk(p−1
z li)− z

∥∥2
Ωz

(2)

whose optimal set of map frames P̂ and landmarks L̂ best
explain the measurements {Z1, . . . ,ZN}. Index k denotes the
camera in which feature z was observed, pz the related
vehicle frame and Ωz the covariance matrix of z. To ensure
that problem (2) can always be solved in feasible time we
divide the problems in spatial overlapping windows. We refer
to [2] for details of the single drive adjustment. We slightly
modify the overlapping cluster to sliding window adjustment
which renders a solution closer to the theoretically optimum.
Additionally, we add instantaneous-center-of-rotation costs

cicr (∆y,∆x,γ) =
∣∣∣∣∆y−∆x

1− cos(γ)
sin(γ)

∣∣∣∣ (3)

which penalize subsequent vehicle frames when they deviate
from driving along instantaneous circles. The angle γ denotes
the difference yaw-angle and ∆x and ∆y the longitudinal
and lateral driven distance respectively (see Fig. 2). This
prevents the optimizer to run into wrong minima in cases
where many matched keypoints occur on moving objects,
e.g. while driving through canyons of trucks or on objects
which pass a crossing in front of the ego vehicle.
We apply Cauchy-loss functions to robustify the optimiza-
tion and, additionally, remove correspondences with to high
reprojection errors before and after the optimization of each
window.
Additionally, we use vision-based place recognition [16] or,
if available, GNSS measurements to find proposals for loop-
closuring frames. To ensure that these frames are actually
loop-closures, we create local temporary localization maps

Figure 3: Schematic depiction of two interconnected clusters
Cs and Ct of different drives (red, green). The set LI of yellow
stars depict landmarks related to interconnecting correspon-
dences. Optimization of (4) yields b̂s and L̂I . In case of less
reliable landmarks within LI , interconnecting landmarks to
the previous and next subsequent cluster (green stars) can
be added which are fix during optimization to prevent the
optimizer converging to wrong minima.

and localize subsequent frames around the proposal within
the local map. We only assume a loop-closure when several
subsequent frames were localized successfully. Based on the
loop-closure localization, we match keypoints between those
images which depicts the same scene from a similar point of
view.
After performing the aforementioned single track optimiza-
tion steps, we only store the inlier correspondences and,
additionally, subsequent and loop-closure pose differences
∆i→ j = p−1

i ⊗ p j where the ⊗ : SE(3)× SE(3) → SE(3)-
operator concatenates two affine transformations. Thereby,
we derive pose differences ∆i→ j between those frames pi, p j
which are connected by an edge ei, j.

B. Inter-Drive Optimization

To align landmarks and vehicle frames of a new drive
with the current map, we match features which are already
stored in the map with features of inlier correspondences of
the new drive. Based on the localization, we pair camera
frames that show the same scene from a similar point of
view and match keypoints between the related images. These
matches enable an accurate alignment of the new drive with
the existing map trajectories using (2). However, to divide
the complexity of this problem into feasible portions, we
insert subsequent vehicle frames into disjoint cluster C and
interconnect two clusters Cs, Ct when the number of frame
connections

∣∣{ei, j|pi ∈Cs,p j ∈Ct
}∣∣ between them is larger

than a certain threshold. In order to jointly estimate the
frames and landmarks within and between interconnected
clusters, we define the first frame of each cluster Cv as
baseframe bv and optimize the problem

arg min
LI ,b{v}

|LI |

∑
i=1

∑
z∈Zi

∥∥πk((bv⊗δz,v)
−1 · li)− z

∥∥2
Ωz

(4)

where the keypoint z origins from one of the images recorded
at vehicle frame pz,v and LI denotes the set of interconnecting

2673

landmarks. Thereby, v refers to cluster Cv which contains
vehicle frame pz,v = bv ⊗ δz,v, where δz,v represents pz,v
relative to frame bv. Furthermore, the baseframe of the first
involved cluster is kept fix during optimization (see Fig. 3). In
case of a small number |LI | or many outlier correspondences
it is advantageous to add interconnecting landmarks and
correspondences of the subsequent previous and next cluster
of Cv to problem (4) and keep them fix so that bv cannot
converge to wrong minima (see Fig. 3). Since we generate
only connections e between frames which have sufficient
matches and remove rough outliers, we found that adjusting
clusters pairwise yields almost equal results as combining
more clusters with superior problem complexity. As in the
single drive optimization, we use Cauchy-loss functions and
pre- and post-select outlier landmarks. Finally, we extract and
store pose differences ∆i→ j along all inter-cluster edges ei, j.
In general, whenever an already mapped area is passed
again and added to the map, the number of interconnections
between the clusters in this area increases and, hence, also
the number of possible cluster combinations. Therefore, we
bound the number of interconnections of each cluster Cs
to N and pair Cs only with the {Ct , . . . ,Ct+n}, n ≤ N most
connected clusters in terms of the number of interconnecting
landmarks |LI |.

C. Pose Optimization

Finally, to estimate the vehicle frames p∈ P of all mapped
drives jointly, we optimize a posegraph based on the derived
pose differences from the previous optimizations. The pose
differences propagate the high local accuracy into the final
optimization which scales to the number of pose differences
instead to the significantly higher number of landmarks. This
enables a joint estimate of multiple city-scaled drives which
achieves almost the accuracy of a full bundle-adjustment.
Details of the pose difference optimization can be found in
[17]. Since the number of edges ei, j connecting the vehicle
frame pi to other frames depends on the number of matches
between the related image sets, pi is usually connected to
numerous other frames in the local area. Hence, we only
add pose difference measurements ∆i, j of a subset of all
edges ei, j ∈ E to the optimization. For each pi ∈ P, we only
add the subsequent differences ∆i−1,i, ∆i,i+1, the loop-closure
difference ∆i,l to the spatial nearest pose pl ∈P and one inter-
drive difference ∆i, j to the nearest p j ∈ P of a different drive
of each connected drive (see Fig. 4). For initialization, we
integrate all involved frames along the pose differences using
breath-first-search traversal. To robustify the optimization, we
use posegraph relaxation methods as proposed in [18].

If available, we add GNSS measurements from a low
cost receiver. For that, we transfer the measured GNSS-
coordinates into metric UTM-coordinates tUT M ∈R3 and add
further constraints

cgnss = ti− tUT M (5)

to the optimization problem. We add one constraint for
each vehicle frame pi that is approximately synchronize
in time to a GNSS measurement, where ti ∈ R3 denotes

92.6 92.4 92.2 92.0 91.8 91.6 91.4
x

376.4

376.2

376.0

375.8

375.6

375.4

375.2

y

poses and deltas 2d

Figure 4: Detailed view of a mapped t-crossing that was
passed 7 times (colored trajectories) from all directions. Due
to the surround view camera setup, almost all poses (points)
in the zoomed area are pairwise interconnected. To reduce
the complexity of the final posegraph optimization, we add
only pose differences ∆i, j of a subset (highlighted as arrows)
of all edges connected to pi.

the positional component of pi. We also relax all added
reference constraints to deal with highly inaccurate GNSS
measurements.
We adjust the map frames in an iterative manner. Hence, we
keep all already existing vehicle frames in the map fix and
optimize only the frames of the new drive. However, since
all costly optimization step results are stored in terms of pose
differences, a re-optimization of all mapped frames can be
achieved within a few minutes due to the benign scalability
compared to a full bundle-adjustment.
Finally, the landmarks of all stored inlier correspondences are
triangulated using the final vehicle frames. After the triangu-
lation, we again check the back-projection error and remove
outlier landmarks. However, we notice in our experiments
that the number of removed landmarks is very low which
emphasises the accuracy of the final estimate.

IV. EXPERIMENTS

We demonstrate the capabilities of our mapping approach
by analyzing the resulting map generated from 14 different
drives through partly urban and suburban area. The explicit
intention of these experiments is to demonstrate the efficiency
of our pipeline in terms of reconstruction accuracy and
runtime. Hence, we do not apply any landmark selection
except outlier removal during the optimization steps.
All drives were recorded during 6 months from November to
April with varying environmental conditions and daytimes.
All drives overlap partly or complete (see Fig. 1). The
map was created from recorded images of three cameras
mounted on our experimental vehicle (two front-sided, one
rear-sided) and position measurements from a low cost GNSS

2674

receiver. We triggered all cameras jointly with a rate of 10Hz.
The image resolution was approximately 0.5 megapixel after
rectification. The GNSS measurements were recorded with a
UBLOX-M8P1 receiver.

A. Runtime analysis

In total, we mapped about 69 driven kilometers using ∼
194k images and ∼ 18k GNSS recordings. After bundling all
passes iteratively, the map comprised ∼ 70k vehicle frames
after 0.1m distance resampling, and 16 million landmarks
with 90 million related keypoints after removing all identified
outliers2. The overall processing time to iteratively bundle
all 14 drives was 15 hours using 16 Intel-i7 cores, 64 Gb
RAM and a Solid-State-Drive (SSD) hard-disk. Our pipeline
doesn’t require any GPU, however, some processing steps
could be improved in runtime using a GPU. We used ROS
[19] for online localization and sensor data recording. To
store metadata, and the output of intermediate processing
steps, we use SQLite3 with which serialized data can be
persistently stored within an embedded SQL-database. All
optimization problems were solved using Ceres [20]; a
C++ library to efficiently solve large non-linear least-squares
problems. Multiple optimizations were processed in parallel
using Intel Thread Building Blocks [21] which
significantly decreased the overall runtime. Furthermore, we
parallelized the keypoint detection, description and matching.
We observed that storing and loading intermediate processing
results constituted approximately 30% of the overall pro-
cessing time although using up-to-date SSD harddisks. This
bottleneck, however, can be resolved by using more efficient
caching algorithms and reducing the amount of data which
must be processed.
The processing time of the optimization steps depends on
the number of landmarks detected in the environment. The
following statistics concern areas of the map where we
drove along street canyons. Such environment provides rich
structure which led to a superior amount of landmarks in
the surrounding during our experiments. The size of the
sliding window of the single-drive optimization was set to
100 frames (∼ 10m) and was shifted 20 frames between
two optimization steps. On average, each window comprised
∼ 48k landmarks and ∼ 340k landmark observations after
removing rough outliers beforehand. We removed landmarks
with high reprojection error before (≥ 7 pixel) and after
(≥ 3 pixel) optimization. The mean processing time of a
single window was 1.5 minutes on average while processing
multiple optimizations in parallel (see Fig. 5).
We set the maximal number of interconnections of a cluster
to N = 3 and only combined two clusters, if they had more
than 4 interconnecting edges. Thereby, we created an edge
ei, j between two vehicle frames if the number of matches
between the two related image sets was ≥ 300. Since a
larger part of the mapped area was passed more than 3 times,

1https://www.u-blox.com/en/product/neo-m8p-series
2A video of a different map generated with our approach can be found

at https://www.mrt.kit.edu/3203.php
3https://www.sqlite.org/index.html

0 50 100 150 200 250 300 350 400 450
0

5

10

15

20

25

Figure 5: Analysis of the optimization time of problem (2) for
different numbers of landmarks. The number of landmarks
mainly affects the problem complexity. The chosen window
length of 100 vehicle frames correspond to approximately
30k-50k landmarks within the window.

almost every generated cluster in this area reached the bound
of N = 3 interconnections to other clusters. However, the
number of possible cluster interconnections was significantly
higher. We set the number of vehicle frames per cluster to 40.
The mean computation time of optimizing one cluster pair
comprising two baseframes and on average ∼ 14k intercon-
necting landmarks was 1.3 minutes. As before, the processing
time was measured while running multiple optimizations in
parallel fully utilizing the available computation capacity.
The runtime of the optimization of the final posegraph
based on the derived pose differences from the preceding
optimizations and the GNSS measurements tooks less than 5
minutes in total and, hence, is of minor importance in terms
of runtime.

B. Local accuracy analysis

The aforementioned window and cluster sizes were deter-
mined empirically4. The overall runtime of adding another
drive to the map is mainly affected by the selected win-
dow and cluster sizes. Hence, we analyzed the achieved
local accuracy for different window and cluster sizes. We
compared the outcome of our mapping pipeline against the
result of a full bundle-adjustment of limited areas of the map
since we did not have the required ressources for a joint
optimization of the entire map. For that, we estimated all
vehicle frames and landmarks from 7 drives within several
disjoint limited areas of about 150m length jointly through a
full bundle-adjustment. The computation of each full bundle
adjustment took several hours and reached the memory limits
of our server. We involved no GNSS measurements for
these experiments. In comparison, we evaluated our iterative
approach within the same areas for window sizes of 40 to 300
vehicle frames and cluster sizes of 10 to 50 vehicle frames.
The number of maximal cluster interconnections was set to
N = 3.

4 The selection of the numerous other parameters (which are not all
mentioned here), e.g. the back-projection error thresholds or the window
shift length are based on empirical foundings while implementing and testing
the components of the framework.

2675

Figure 6: Different types of error of the recordend GNSS data. The blue trajectory depicts our estimated trajectory of one
of the mapped drives. The red trajectory depicts corresponding GNSS measurements. Left: Abrupt lateral jump of ∼ 3m.
Middle: Short sequence of outliers. Right: Gobal drift of ∼ 2.5m during a loop-closure caused by atmospherical distortions.
Due to the mainly urban environment, the majority of the GNSS recordings suffer frum such errors.

Figure 7: Parts of the mapped trajectories overlayed on aerial images from OpenStreetMap. Since some of the mapped
drives passed larger streets on different lanes in different directions, we got no inter-drive matches and, hence, no inter-drive
pose differences for the final optimization. Even though the GNSS measurements are highly distorted, averaging them from
multiple drives during optimization achieved sufficient global accuracy in such cases.

The achieved time saving was 72.4% on average. To compare
both estimates, we evaluated the absolute angle and posi-
tion differences between corresponding vehicle frames. For
all evaluated window and cluster sizes, we found that the
differences between the frames of the optimal estimate from
the full bundle adjustment and the estimate of our pipeline
were less than 0.02m and 0.08◦ in position and orientation
respectively. These negligible differences can be explained
through the fact that the majority of all keypoint correspon-
dences covered only a local area which was smaller as the
analyzed window sizes and, hence, affected both estimates
equally. Less than 1% of all involved correspondences were
fragmented by the clustering.

C. Global optimization analysis

Since major parts of the mapped area passed through
urban area, the majority of the recorded GNSS measurements
showed significant outliers (see Fig. 6). To deal with such
measurements, we applied posegraph relaxation to the GNSS
cost terms and lowered their weight for the final posegraph
optimization by the factor of 100.
Since even our reference DGPS system was not reliable
in the mapped area, we evaluated the global-referencing

quantitatively by comparing our estimated trajectories with
aerial images (see Fig. 1 and Fig. 7). As shown in Fig. 7,
the mean global validity of the GNSS measurements enables
global accuracy in cases were no inter-drive or loop-closure
pose differences could be obtained, e.g. due to large view
point differences while driving on the next lane on larger
streets in different directions. We observed that stable results
could be achieved from multiple passes through the same
area even though GNSS accuracy is low.

V. CONCLUSIONS

We present an iterative approach to accurately estimate
maps from multiple drives for precise life-long localization
in (sub-)urban areas using a surround view camera system.
We showed how to decompose the increasing map into
small portions for optimization which enables to estimate
maps of an unbounded area with constant complexity and
negligible loss of local accuracy. Since we transfer the
achieved accuracy of all costly optimization steps to pose
differences, it is possible to recompute the map estimate
including all mapped drives within minutes. Additionally,
we use GNSS measurements to achieve global accuracy and
referencing. The modular structure of our framework allows

2676

us to easily combine our proposed mapping approach with
more sophisticated landmark selection and map management
strategies.
Our experiments show the capabilities of our framework
to iteratively adjust multiple passes of city-scaled areas
with millions of landmarks in reasonable time on desktop
computers even without removing any landmarks except
outliers. We further show that we are capable of achieving
sufficient global accuracy even with many erroneous GNSS
measurements. We have been running the online localization
counterpart which uses the maps generated with our frame-
work for several years and numerous events to demonstrate
fully-automated driving within urban areas.

REFERENCES

[1] J. Ziegler, P. Bender, M. Schreiber, H. Lategahn, T.
Strauss, C. Stiller, et al., “Making bertha drive—an
autonomous journey on a historic route”, IEEE Intel-
ligent Transportation Systems Magazine, vol. 6, no. 2,
pp. 8–20, 2014.

[2] M. Sons, M. Lauer, C. G. Keller, and C. Stiller,
“Mapping and localization using surround view”, in
Intelligent Vehicles Symposium (IV), 2017 IEEE, IEEE,
2017, pp. 1158–1163.

[3] H. Lategahn and C. Stiller, “Vision-only localization”,
IEEE Transactions on Intelligent Transportation Sys-
tems, vol. 15, no. 3, pp. 1246–1257, 2014.

[4] P. Muehlfellner, P. Furgale, W. Derendarz, and R.
Philippsen, “Evaluation of fisheye-camera based visual
multi-session localization in a real-world scenario”, in
Intelligent Vehicles Symposium (IV), 2013 IEEE, IEEE,
2013, pp. 57–62.

[5] T. Bailey and H. Durrant-Whyte, “Simultaneous local-
ization and mapping (slam): Part ii”, IEEE Robotics
& Automation Magazine, vol. 13, no. 3, pp. 108–117,
2006.

[6] P. Mühlfellner, M. Bürki, M. Bosse, W. Derendarz,
R. Philippsen, and P. Furgale, “Summary maps for
lifelong visual localization”, Journal of Field Robotics,
vol. 33, no. 5, pp. 561–590, 2016.

[7] D. M. Rosen, J. Mason, and J. J. Leonard, “To-
wards lifelong feature-based mapping in semi-static
environments”, in Robotics and Automation (ICRA),
2016 IEEE International Conference on, IEEE, 2016,
pp. 1063–1070.

[8] M. Bürki, I. Gilitschenski, E. Stumm, R. Siegwart, and
J. Nieto, “Appearance-based landmark selection for
efficient long-term visual localization”, in Intelligent
Robots and Systems (IROS), 2016 IEEE/RSJ Interna-
tional Conference on, IEEE, 2016, pp. 4137–4143.

[9] M. Dymczyk, S. Lynen, M. Bosse, and R. Siegwart,
“Keep it brief: Scalable creation of compressed lo-
calization maps”, in Intelligent Robots and Systems
(IROS), 2015 IEEE/RSJ International Conference on,
IEEE, 2015, pp. 2536–2542.

[10] T. Schneider, M. Dymczyk, M. Fehr, K. Egger, S.
Lynen, I. Gilitschenski, et al., “Maplab: An open
framework for research in visual-inertial mapping and
localization”, IEEE Robotics and Automation Letters,
vol. 3, no. 3, pp. 1418–1425, 2018.

[11] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J.
Leonard, and F. Dellaert, “Isam2: Incremental smooth-
ing and mapping using the bayes tree”, The Interna-
tional Journal of Robotics Research, vol. 31, no. 2,
pp. 216–235, 2012.

[12] K. Ni, D. Steedly, and F. Dellaert, “Tectonic sam:
Exact, out-of-core, submap-based slam”, in Robotics
and Automation, 2007 IEEE International Conference
on, IEEE, 2007, pp. 1678–1685.

[13] T. Strauß, J. Ziegler, and J. Beck, “Calibrating multi-
ple cameras with non-overlapping views using coded
checkerboard targets”, in Intelligent Transportation
Systems (ITSC), 2014 IEEE 17th International Con-
ference on, IEEE, 2014, pp. 2623–2628.

[14] A. Geiger, J. Ziegler, and C. Stiller, “Stereoscan:
Dense 3d reconstruction in real-time”, in Intelligent
Vehicles Symposium (IV), 2011 IEEE, Ieee, 2011,
pp. 963–968.

[15] J. Graeter, T. Strauss, and M. Lauer, “Momo: Monoc-
ular motion estimation on manifolds”, in 2017 IEEE
20th International Conference on Intelligent Trans-
portation Systems (ITSC), Oct. 2017, pp. 1–6.

[16] H. Lategahn, J. Beck, B. Kitt, and C. Stiller, “How
to learn an illumination robust image feature for place
recognition”, in Intelligent Vehicles Symposium (IV),
2013 IEEE, IEEE, 2013, pp. 285–291.

[17] M. Sons, H. Lategahn, C. G. Keller, and C. Stiller,
“Multi trajectory pose adjustment for life-long map-
ping”, in Intelligent Vehicles Symposium (IV), 2015
IEEE, IEEE, 2015, pp. 901–906.

[18] N. Sünderhauf and P. Protzel, “Switchable constraints
for robust pose graph slam”, in Intelligent Robots
and Systems (IROS), 2012 IEEE/RSJ International
Conference on, IEEE, 2012, pp. 1879–1884.

[19] A.-M. Hellmund, S. Wirges, Ö. Ş. Taş, C. Bandera,
and N. O. Salscheider, “Robot operating system: A
modular software framework for automated driving”,
in Intelligent Transportation Systems (ITSC), 2016
IEEE 19th International Conference on, IEEE, 2016,
pp. 1564–1570.

[20] S. Agarwal, K. Mierle, et al., Ceres solver, http : / /
ceres-solver.org.

[21] J. Reinders, Intel Threading Building Blocks, First.
Sebastopol, CA, USA: O’Reilly & Associates, Inc.,
2007, ISBN: 9780596514808.

2677

