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Abstract— In autonomous driving systems a strong relation
to highly accurate maps is taken to be inevitable, although
street scenes change frequently. However, a preferable system
would be to equip the automated cars with a sensor system that
is able to navigate urban scenarios without an accurate map.
We present a novel pipeline using a deep neural network to
detect lane semantics and topology given RGB images. On the
basis of this classification, the information about the road scene
can be extracted just from the sensor setup supporting mapless
autonomous driving. In addition to superseding the huge effort
of creating and maintaining highly accurate maps, our system
reduces the need for precise localization.

Using an extended Cityscapes dataset, we show accurate ego
lane detection including lane semantics on challenging scenarios
for autonomous driving.

I. INTRODUCTION

The lane structure is a crucial information for safe au-

tonomous driving especially in urban environments. An

autonomous car must identify the current lane robustly in

order to steer the vehicle safely.

Current autonomous driving systems, such as

BerthaONE [1], often resort to an accurate and detailed map

of the environment to tackle this issue. However, these maps

need to be updated constantly due to road constructions

and can therefore be quickly out of date. Furthermore, a

map-based approach requires a precise localization of the

vehicle, that is typically weak in narrow urban scenes, due

to multi-path effects.

A. Feature-based Geometry Estimation

An early approach for estimating the road geometry uses

visual features and object detections [2]. The authors present

a real-time approach using both spatial and temporal aspects

to estimate road curvature parameters. Many later approaches

for estimating the road layout also rely on distinct features

like lane markings and curbs [3]–[6].

Beck et al. [7] increased the robustness of the markings

and curb based approaches by incorporating vanishing points

and a free-space estimation. In [8] previous work is extended

with a coarse semantic segmentation for the lane estimation

process. Another possible solution is to extend the road

boundary information by the position of other vehicles and

to reason about relations between them in order to make an

assumption on the drivable path [9].

The extracted features are treated differently depending on

the approach and its goal. The most common algorithms fit
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Fig. 1. An example result from the Cityscape’s Frankfurt dataset segmented
into its semantic lanes. Shadows and vanishing markings on the street make
the detection of the ego lane (green) and parallel traffic (yellow) difficult,
but our approach is able to estimate the lane boundaries and semantic
correctly. It also correctly determines the oncoming traffic (red). The
extracted semantic information is crucial for planning the car’s trajectory
and steer it safely, when not relying on a map.

a model to the markings and curbs using a hyperbola [4]

or a clothoid ([9], [10]). More abstract model fitting is

presented in [3] and [7], where the road is estimated using

a graphical model that is based on visual features. Similar

to that, [11] apply a probabilistic framework in order to

represent the uncertainty of the measurements. In [12], those

approaches are extended by including rough map priors. In

2018 [13] proposed an approach, where the lane boundaries

are estimated using instance segmentation based on the road

markings.

The main drawback of these approaches is a strong de-

pendency on road markings or curbs. However, especially in

urban scenarios markings might either be worn out, not be

existing or occluded [11]. Hence, a system relying only on

handcrafted features is not suitable for autonomous driving

in urban environments, since it also must deal with missing

or erroneous data. For this reason, we vote for avoiding

purely visual, handcrafted features and instead for training a

network to learn the relevant information itself.

Caltagirone et al. [14] replace handcrafted features with

a deep neural network, that is trained to segment the road

in the 2D topview representation of a lidar pointcloud. This

approach, however, regards only the road boundaries. In a

similar manner, He et al. [15] apply a dual-view convolu-

tional neural network to the topview perspective of an RGB

image and extract lane boundaries for multiple lanes. Alvarez

et al. apply their approach to road segmentation [16], but use

a much simple neural network. In the same way, multiple

approaches have been presented at the KITTI benchmark like

[17], but all of them regard only the ego lane, since KITTI
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Fig. 2. Perception Pipeline for Mapless Driving on an Ego-Lane Corridor. Each left image of the stereo system is segmented by the neural network into
the lanes of the road ahead. Using the right RGB image a semantic 3D pointcloud is produced that is transformed into a topview grid map. The resulting
corridor is spanned across the grid map cells assigned with the ego label.

does not provide other labels.

Two more recent approaches, estimate the drivable path

instead of the lane borders with regards to obstacles and

traffic rules ([9], [18]). Barnes et al. [18] utilize a SegNet

trained with weakly-supervised data generated by the driven

path projected onto past images. The disadvantage of both

works is that they do not generate a representation of

the environment, but estimate a drivable path. This way

a subsequent planning module can not regard the actual

drivable area, but only the limited output. On the contrary,

our scene representation allows to calculate a flexible path,

based on the actual environment.

The result of the mentioned approaches is mainly pre-

sented in the front-view perspective of the vehicle. In this

paper, we decided on using the birds-eye or top-view per-

spective in order to enable further processing for planning

and driving. Other approaches dealing with top-views ([6],

[14], [15], [19]) are not focusing on the semantics of the lane

representation.

Among all the aforementioned approaches only a few

([3], [5], [7], [10], [15]) consider more than a single lane.

In comparison, our approach estimates the semantic of the

neighboring lanes (e.g. oncoming or neighboring lane in the

same direction) and is able to work stable when markings

and distinct curbs are not present. Additionally we can cope

with construction sites and rail tracks.

To this end, we address the issue of mapless driving by

proposing an efficient lane detection system using a deep

neural network. Our system abolishes the dependency on

highly accurate maps for roads (no intersections) and is

able to represent the lanes purely based on RGB images.

However, for routing on urban roads any coarse navigational

input either from a less accurate map or user input is still

necessary.

The approach features several stages. First, we obtain

a pixel-wise semantic segmentation of the current scene

using a deep neural network. The output of our network

includes the lane geometry as well as the semantics. The

data is aggregated into a top-view of the current scene

allowing for a compact lane representation. An example

scene with our results is illustrated in Fig. 1. Overall, our

major contributions are the following:

1) Segmentation concept and dataset for lanes and

2) Pipeline for online lane segmentation as alternative to

highly accurate maps.

B. Datasets

In the research area of lane segmentation, to our knowl-

edge no research with focus on the semantics of a lane has

been established. Therefore, datasets containing relevant lane

information are rare. The KITTI-ROAD dataset [19] contains

ego lane information. Although it has been extended by [20],

less than 120 training images are available for training on ge-

ometric ego lanes, but the dataset lacks semantic information

about other lanes.

We therefore extend the popular Cityscapes dataset [21].

This dataset contains image sequences showing street scenes

in German cities and their semantic segmentation for a single

image within a sequence. The segmentation covers 19 classes

including a road class, that spans all areas drivable by a car.

II. OUR METHOD

In order to push mapless driving, we present an approach

inferring the lane semantics in a single step based on an

RGB image. The resulting scene representation is used

to extract lane boundaries for the ego lane including the

semantic information about adjacent lanes. This information

is crucial for deciding, whether it is feasible to change a lane

based on the current traffic rules and lane topology also in

unusual situations like construction sites. Additionally, we

also provide other Cityscapes classes including obstacles on

the lane, in order to further contribute to the overarching

scene representation. An overview of our perception pipeline

for lane segmentation is presented in Fig. 2.

A. Dataset for Lane Semantics

For our approach we manually extended parts of the

Cityscapes dataset. In total we used 1974 training and 443

test images. The extension comprises four classes concerning

the lane layout: ego, parallel and opposite. The ego lane
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Fig. 3. An excerpt from the dataset visualizing our lane semantics
extension. Red: The opposite lane. Yellow: The left lane parallel to ego.
Orange: The right lane parallel to ego. A vehicle could change onto both
parallel lanes. Green: The Ego Lane. Purple: Target roads at intersections,
that are not evaluated in this work. White: Road parts that do not have
semantics for vehicles. Remaining classes from the Cityscapes dataset are
also illustrated. In our dataset, static background objects from Cityscapes
are combined to a single class.

is defined as the lane, the vehicle is driving on. In doubt

at intersections, we chose the lane going straight to be the

ego lane. We define all lanes directing to the same direction

like the ego lane as parallel. For on-coming traffic the

opposite label is assigned. Lanes turning to the left or right

at intersections are labeled with a target label, but are not

evaluated here. All drivable road parts have been classified

as one of the aforementioned classes. Road parts that are

semantically not drivable remain with a general road label.

In case of unmarked roads we assume the border between ego

and opposite to be the centerline of the road. Some example

images with the ground truth labels are shown in Fig. 3.

B. Semantic Lane Segmentation

As preparation for our approach we trained a neural

network commonly used in semantic segmentation. We base

our network on the ResNet-38 Architecture [22], that is able

to segment street scenes semantically. Our network structure

is given in Table I.

Lane semantics are not only encapsulated in the road

parts, but also in e.g. traffic signs or the driving direction

of cars. Therefore, we retain Cityscapes labels like vehicle,

pedestrian, traffic sign and traffic light in our dataset. The

remaining static labels, e.g. pole or building, are combined

to a single static class, for simplicity

We use the trained network for predicting semantic labels

for the left image of a stereo camera system. For each pixel in

the image, the neural network estimates a pseudo-probability

and a class. Both are used in the further processing.

C. Topview and Grid Map Projection

In parallel, our stereo camera system [23] computes a

disparity image which is synchronized with the labeled

output image of the neural network. Using the calibration

parameters the disparity values are transformed into a single

3D point cloud, where each point gets assigned the corre-

sponding label. By projecting the labeled point cloud onto

the ground plane of the vehicle coordinate system, we obtain

Convolution (7x7) 64 channels, stride 2
Maxpooling (2x2)

3x ResNet module 64 channels
Maxpooling (2x2)

4x ResNet module 128 channels
3x ResNet module 256 channels, 2x dilation
1x ResNet module 256 channels, 4x dilation
1x ResNet module 256 channels, 8x dilation
1x ResNet module 256 channels, 4x dilation
3x ResNet module 512 channels
3x Deconvolution (2x) 64 channels

Convolution (1x1) 23 channels
Softmax

TABLE I

THE STRUCTURE OF OUR RESNET ARCHITECTURE. BATCH

NORMALISATION AND RELU LAYERS ARE USED IN THE USUAL PLACES.

a topview grid map representation. Since we are interested

in a road focused representation, all 3D points with a height

greater than a threshold λ are discarded1.

Depending on the resolution of the grid map2, multiple

pixels, especially in the foreground of the image, could be

assigned to the same grid cell. in order to avoid this, each

cell of the grid map stores the probabilities for each assigned

label. Each grid cell cx,y in the grid map gets assigned the

label li ∈ L with the highest sum of the label probabilities

pI(x, y) estimated by the network for an image I at the

topview position (x, y). Hence, a cell’s value is defined by

cx,y = argmax
l∈L

∑

Ix,y

pI(x, y) · 1(Ix,y = l), (1)

where 1(·) denotes the indicator function. This way, the grid

map stores only the most likely label for each cell, where

multiple labels have been assigned.

D. Temporal Consistency

Temporal information of previous frames is important

in order to maintain a continuous representation. This is

especially important for estimating lane semantics in street

scenes. Since evaluating multiple frames with a neural net-

work or maintaining a state over time is time consuming,

this work proposes to apply the temporal consistency in a

post-processing step.

Based on the grid map insertion method above, multiple

frames can be fused using the estimated label probabilities.

We utilize the odometry of the vehicle to transform the

grid maps into a global coordinate system. This way, two

labels from the same frame s in sequence S and values from

adjacent frames si and sj both assigned to cell at (x, y) are

treated the same when processed by the grid map. Hence,

extending (1) with a temporal component a cell’s value

cx,y = argmax
l∈L

∑

I∈S

∑

Ix,y

pI(x, y) · 1(Ix,y = l) (2)

is summed over multiple labeled data from consecutive RGB

frames.

1In this work, λ = 0.5m
2In this work, grid cells of size 10cm on an area of 100x100m
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Fig. 4. The area ahead of the vehicle is divided into lateral segments and
for each segment we determine the width of the area classified as ego lane.
The seed point for the algorithm is determined for each segment based on
the corridor from the previous segment. As initial seed point the center of
the previous corridor is used. This way, all forward facing road layouts can
be represented.

To avoid overwriting static labels from the current frame

with dynamic objects from a last frame, we exclude all

dynamic classes from the temporal storage and only use

dynamic labels from the current frame.

E. Corridor Extraction

Given the topview grid map we further extract a corridor

that spans the aspects of the road labeled as ego lane. Using

the gridmap created with our spatio-temporal fusion, the

resulting corridor is more robust and consistent over time. A

corridor directly extracted from the frontview images would

be highly prone to inconsistent corridors between different

frames.

In order to extract the corridor, we divide the area ahead

of the vehicle in lateral segments equally distributed with a

fixed size. This step is illustrated in Fig. 4.

Similar to region growing, we move the border of the

corridor to the left and right within each segment until

the semantic label changes. Thus, only reachable areas are

included in the resulting corridor. In order to enable not

only straight corridors to be extracted, but also curved ones,

the seed point for the algorithm is determined for each

segment based on the corridor from the previous segment. As

initial seed point the center of the previous corridor is used.

Therefore, all forward facing road shapes can be represented

by the resulting corridor independent of the unusual or

unexpected shape, that may occur due to reconstructions.

Compared to model fitting approaches, unusual road layouts

and frequent changes in the curvature can be represented

easily.

III. EVALUATION

We evaluate our approach on the Cityscapes images of

Frankfurt, containing 266 images in total. We apply our ap-

proach to the full resolution images of 1024x2048 pixels. For

the evaluation we regard both the front-view and top-view

perspective, also called birds-eye-view (BEV). In contrast

to a front-view comparison the BEV enables analyzing our

TABLE II

INTERSECTION OVER UNION FOR LANE CLASSES

Ego Parallel Opposite IoU IoUlane

Front-View 80.01% 46.46% 48.21% 64% 58.26%
Multi BEV 80.02% 53.72% 58.66% - 64.13%

fusion and it therefore allows to interpret the measured error

in terms of continuous planning and driving [19].

We provide front-view, pixel-wise segmentation results us-

ing the intersection over union (IoU) metric, which is widely

used in many vision benchmarks, e.g. Cityscapes [21]. Let

TP denote the true-positive, FP the false-positive, and FN

the false-negative values for each class l ∈ L. Then, the IoU

metric for a specific label is

IoU l =
TPl

TPl + FPl + FNl

(3)

and the weighted IoU metric for a set of classes L is

IoU class =

∑
l IoUl

|L|
. (4)

This metric has the advantage that all classes are repre-

sented equally independent of their size in the dataset. Since

the focus of this paper is on lane detection we further restrict

IoU class to the lane classes and refer hereby to as IoU lane.

This allows us to evaluate only the lane segmentation.

For the evaluation, we utilize the validation data from

the Cityscapes dataset, which, in addition to semantic label

ground truth, contains disparity images, the corresponding

right image and 10 images before and after the labeled one.

Using this data, our pipeline can process both the ground

truth and our segmentation results. We convert the ground

truth images given by the Cityscapes dataset into the top-

view perspective using the provided disparity values and

camera calibration parameters. Having this representation of

both the ground truth data and our results, we can easily

apply the metrics to the BEV space.

A. Semantic Segmentation of Lanes

To compare our results with state-of-the-art segmentations

we analyze the lane segmentation isolated from the overall

pipeline. Tab. II summarizes the quantitative results we

achieved on our dataset. On average we achieve an IoU lane

of 58.26% on all lane classes. For the ego lane, which is the

main focus for driving, we achieve 80.01% on average. In

spite of a different focus and different datasets, we compare

our results to [18], because their approach is mostly related.

They achieve an IoU up to 85% on the KITTI dataset. Here

we highlight, that the KITTI dataset only contains simple

roads and no intersections, whereas Cityscapes contains

intersections and up to four lanes in one direction. An excerpt

from the segmentation results is shown in Fig. 5 and in the

attached video file showing a sequence from the demo video

of Cityscapes.
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Fig. 5. Example images from the segmentation of semantic lanes. We show that we can handle both non-marked roads (third row), vanished markings
(7th row) and construction sites (second row). The first column shows the scene image, the middle column visualizes the labels including the lanes and
the right column shows the resulting segmentation from our approach. The colors are as follows. Yellow: The left lane parallel to ego. Right: The right
lane parallel to ego. Green: Ego Lane. Red: Opposite Lane. White: Road parts that do not have semantics for vehicles. Pink: All road vehicles, e.g. cars.
As can be seen, we are in fact able to identify multi-lane roads precisely even in the absence of lane markings and presence of tram rails.
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B. Top-View Evaluation

As described in Sec. II our approach works best for

sequences of images, because we utilize the temporal move-

ment of the vehicle in order to enhance the grid map. A

single frame approach leads to top-views with very sparse

information towards greater distances as can be seen in

Fig. 6 on the top. This problem is solved by our approach

with the multi-frame accumulation of the grid map, where

multiple frames captured from different view angles reduce

the sparsity.

To apply our pipeline to the Cityscapes sequences we

require a precise ego motion between two adjacent frames.

Using the yaw rate, speed and timestamps of each image

an accurate vehicle motion could be estimated. A resulting

top-view built from about 10 frames per sequence is shown

in Fig. 6 on the bottom. In real scenarios the topview is

even more dense, when dealing with a continuous stream of

images.

To evaluate our accumulation approach for the grid map,

we calculate in addition to the IoU for all lanes classes also

the precision, recall and F1-Score for ego lane. The results

are shown in Tab. II and III. As can be seen from the results,

we could improve the results of the single-shot front-view

segmentation with our multi-frame topview approach for the

separate lane classes.

Since we developed our own dataset it is hard to compare

our results with others. However, [14], [24] and [17] use

the KITTI benchmark in order to estimate road and ego

lane borders, but without any further semantic information,

resulting in an F1-score of up to 94.07% resp. 90.54% and

89.88%, representing the current evaluation top 10 at the

KITTI ROAD Benchmark. Our results are therefore within

the range of current KITTI submissions. However, when re-

garding our dataset, we could clearly state, that the images of

Frankfurt available for validation are far more complex than

the KITTI dataset with a single ego lane. Additionally we

provide further details on the road semantics, that facilitate

even more robust driving.

Fig. 6. Comparison between single-shot (top) and multi-frame (bottom)
top-view images. The multi-frame has a higher density over the single-shot
top-view since the data is aggregated over time. The input sequence is in
Frankfurt and is shown in Fig. 5 in the last row.

TABLE III

BEV METRICS FOR COMPARING EGO LANE SEGMENTATION RESULTS

F1 Precision Recall

Lidar CNN [14] 94.07% 92.81% 95.37 %
RBNet [24] 90.54% 94.92% 86.56%
Up-Conv-Poly [17] 89.88% 92.01% 87.84%
Ours (Front-view) 88.89% 89.61% 88.19%
SPRAY [25] 83.42% 84.76% 82.12%

IV. CONCLUSIONS

In this work, we presented a deep neural network to

extract semantic lane information in order to reduce the

dependency on maps. We estimate not only the lane geometry

but also the semantics of each lane (ego lane, ego-parallel

lane and opposite lane) purely based on RGB images. A post-

processing step refines the output and aggregates information

in a top-view.

We show that we are able to robustly estimate the ego lane

with an IoU of 80% on different street scenes. Our approach

also copes with difficult road structures, including one way

streets and streets with up to four lanes. Furthermore, our

method can deal with incomplete or missing road markings

and tram rails.

In future work, we will extend the work on other rep-

resentations for the lane and also improve the support for

intersections. Since we further work on the topic, we will

also extend the dataset.
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