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Abstract— While motion planning techniques for automated
vehicles in a reactive and anticipatory manner have already
been widely presented, cooperative motion planning has only
been addressed recently. For the latter, interaction between
traffic participants is crucial. Consequently, simulations where
other traffic participants follow simple behavioral rules can
no longer be used for development and evaluation. To close
this gap, we present a multi vehicle simulation framework.
Conventional simulation agents, using a simple, rule-based
behavior, are replaced by multiple instances of sophisticated
behavior generation algorithms. Thus, development, test and
simulative evaluation of cooperative planning approaches is
facilitated. The framework is implemented using the Robot
Operating System (ROS) and its code will be released open
source.
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I. INTRODUCTION

In the last decades, tremendous progress has been made in
the field of advanced driver assistance systems [1]. Current
projects of research facilities and industry are aiming at
SAE level 4 or 5, i.e. full automation [2]. Consequently, the
algorithms must be able to perceive, understand and act in
various, complex environments.

In the development of perception algorithms for automated
driving, datasets such as KITTI [3] and Cityscapes [4] play
a key role. They do not only contribute by allowing com-
parisons through several benchmarks, but also by providing
preprocessed input data and desired output, so called ground
truth. Thus, researchers can focus on the development of new
algorithms rather than spending their time for cumbersome
collection and labeling of experimental data.

In the field of motion planning, datasets are less well
suited. While static or quasi-static scenarios can be provided
as input, the desired output or optimal solution is highly
dependent on the goal. The latter can be objective, such
as time-optimality, or subjective, such as passenger comfort.
Consequently, a ground truth for application-oriented goals
is hard to determine.

Considering interactions, as necessary in cooperative mo-
tion planning, even the comprehensive definition of scenarios
is not possible anymore, as the behavior of other traffic
participants largely depends on the action of the ego vehicle.
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Fig. 1: CoInCar-Sim: In contrast to classical vehicle-in-the-
loop approaches (left), CoInCar-Sim (right) facilitates the
simultaneous simulation of several instances of sophisticated
behavior generation algorithms instead of using simple driver
models.

In a merging scenario for example, traffic participants in a
lane will (only) open a gap, if they recognize a desired lane
change onto their lane.

Still, developing and testing algorithms solely on the road
is not an option, due to high costs, time effort and security
reasons. Moreover, approaches that are not yet real-time
capable cannot be tested on the road. Furthermore, repeata-
bility is limited in real road experiments. Consequently, an
evaluation on the road is inappropriate for research purposes.

As the evaluation on the road is not an option, using
a simulation framework suggests itself. However, existing
simulation frameworks, as explained further in the following
section, typically do not focus on the interaction of traffic
participants, but rather simulate a single vehicle very com-
prehensively.

Contribution

This work presents concepts and implementation of an
open-source simulation framework, which allows to simu-
late scenarios arising from potentially cooperative situations
(cf. Fig. 1). The framework focuses on the interaction of
traffic participants by enabling the simultaneous simulation
of several instances of one or more automated vehicles. Re-
search topics that are already covered by existing simulation
frameworks or datasets, such as sensor data processing and
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(a) Classical simulation frameworks commonly focus on the full
simulation of a single vehicle, including both the perception and the
control algorithms. Other traffic participants, often called "agents",
are provided by the framework and use simple driver models.
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(b) CoInCar-Sim: The multi vehicle simulation framework facili-
tates the use of a sophisticated behavior generation algorithm per
object. Different objects can use different algorithms or different
instances of the same algorithm. Perception and control algorithms
are not in-the-loop, but their effects on the vehicles’ behavior can
be evaluated, allowing a different configuration in each wrapper.

Fig. 2: Comparison of CoInCar-Sim to classical simulation frameworks.

low level control, are not focused on in the framework.
However, the effects of uncertain perception and control
on the behavior generation can of course be modeled (cf.
Fig. 2). In the presented framework, behavior and trajectory
planning algorithms that incorporate interaction between
traffic participants can be developed, tested and compared
in various cooperative scenarios.

Alongside with the simulation framework, we propose a
common, basic interface for behavior planners.

Outline

The remainder of this paper is structured as follows:
Section II introduces the related work. Subsequently, the
required features for a simulation framework for cooperative
behavior generation are derived. After that, the concept and
implementation of the framework is presented, followed by
examples for its application. Finally, the work is concluded
in Section VI.

II. RELATED WORK

Simulation frameworks have supported the development
and validation of advanced driver assistant systems from
the beginning. Those mostly commercial simulation frame-
works, such as IPG CarMaker, TASS PreScan [5], VIRES
VirtualTestDrive, dspace ASM, SiVIC [6] and many more,
provide emulation of raw sensor data and simulate vehicle
dynamics, based on detailed physics models. These detailed
environment models facilitate the test of the complete ve-
hicle, including the hardware such as the electronic control
units. However, they typically focus on the simulation of a
single vehicle, and provide simple driver models for other
traffic participants in the scene. These driver models are for
example provided by the traffic flow simulation SUMO [7].

Here, the focus is often on longitudinal behavior and traffic
participants can only follow fixed paths, such that smooth
lane changes are replaced by teleportation from lane to lane,
as Zofka et al. describe in their simulation approach [8]. This
is of course a strong restriction and makes those approaches
unsuitable for the desired purpose.

Existing open-source multi-car simulation platforms such
as TORCS [9] often are designed for the purpose of a racing
game. Consequently, they lack pedestrians, intersections,
traffic rules and other characteristics of public road traffic.
The recent open-source simulation platform CARLA [10]
presents the full complexity of urban road traffic. It is,
however, built upon the proprietary Unreal Engine 4 (UE4),
focusing on a detailed physics modeling for approaches such
as end-to-end learning. Receiving abstract object information
and providing a desired trajectory, which is state of the art
in modular approaches, is not intended.

The goal of comparability and reproducibility in the field
of motion planning is addressed by CommonRoad [11].
In order to benchmark motion planning approaches, they
provide both recorded and hand-crafted scenarios alongside
with vehicle models and cost functions. However, in contrast
to this work, they distinguish between one or more agents
that are controlled by a single planner, and obstacles with a
predefined motion. While this approach is helpful for exact
and deterministic benchmarking, it does not model interac-
tion between obstacles and agents. Thus, it is not intended
for motion planning approaches focusing on mixed traffic1.
Rather, the CommonRoad scenarios can be integrated into
the proposed framework, allowing to replace the obstacles
by agents with a different planning approach.

1Human drivers and automated vehicles sharing the road.



III. REQUIRED FEATURES

The goal of this simulation framework is to support re-
searchers in the development, testing and comparison of co-
operative behavior generation algorithms. The requirements
for this purpose are derived in the following.

Multi Vehicle Simulation: The symbiosis of multiple in-
stances of the same behavior generation algorithm alongside
each other is a basic requirement. However, in real traffic,
vehicles running different algorithms and human drivers will
share the road. In order to test such situations, different
implementations have to run simultaneously in the same
framework. This necessitates common interfaces, including
the frequency with which they provide information2, and
the provision of a simulation time. These interfaces must
allow for communication. Both implicit communication, e.g.
via the driven trajectory, as well as explicit communication,
such as V2X-messages is necessary. Furthermore, enabling
human drivers to control a vehicle in the simulation frame-
work allows for the evaluation of human-machine interaction
in a safe environment. For testing confidential algorithms,
the interconnection of multiple vehicles over network (e.g.
TCP/IP) should be facilitated.

Visualization: For better notion and first analysis, the
framework should provide a vivid visualization, yet allowing
to use own visualization.

Replicability: The co-simulation of different, interacting
approaches under the influence of noisy perception is per se
not deterministic. Hence, the simulation should be recordable
in order to allow downstream in-depth analysis of corner
cases.

Usability: The framework should be open-source and
free for commercial use, as there is much contribution from
industry in the field of automated driving. Obviously, the
framework therefore should not be based on or contain any
closed-source or limited-use libraries.

IV. CONCEPT

In this section, the architecture of the framework, along
with its underlying concept is presented. As the Robot
Operating System (ROS) [12] already meets some of the
required features natively, and it is well-suited for automated
driving in general [13], we decided to use ROS as underlying
middleware. To be precise, ROS provides an interface defi-
nition language, it allows for communication via network,
and it supports recording all data sent via the interfaces.
Furthermore, it provides many tools to improve the usability
and facilitate visualization. Readers that are new to ROS are
referred to [12] and [13] for a better understanding of the
remainder of this work. In the following, we will outline our
environment model along with the purpose and definition
of its key interfaces. After that, the wrapper, connecting the
algorithms to be tested to the environment model, as well as
the scenario definition are explained.

2The frequency does not need to be equal for all algorithms, but a
controller proven to be stable at 100Hz should not rely on a 20Hz visual
odometry, for example.

A. Environment Model: Time and Localization Management

The simulation framework must model all relevant inter-
action between the system under test and its environment.
This functionality is covered by the environment model. In
order to both maximize the performance and minimize the
maintenance effort, the environment model is kept as lean
as possible: Only those parts of the environment that are
key to the interaction of traffic participants are modeled.
In real road traffic, participants interact when they compete
for a certain space at the same time. Motivated by this, the
environment model manages only the time and the location
of all objects. Other environmental circumstances such as the
road condition, the weather and many more certainly have an
effect on the interaction, but their effect differs from vehicle
to vehicle3.

The time management provides the simulation time, which
can be real time, slower or faster. The localization man-
agement provides an array of object states, each containing
the current position of the object. Motion is reported to the
localization management by providing a desired motion in
form of a delta trajectory. The delta trajectory contains poses
at certain times, with reference to the current pose of the
object at the current time. It will be explained in more detail
in the next subsection. In-between the poses, the localization
management interpolates linearly. The motion model, as it
also largely depends on the object dynamics, is provided by
the object itself in the wrapper. This outsourcing facilitates
a lean core of the simulation framework, yet allowing to
integrate detailed motion models. The wrapper will also be
explained in-depth in the following.

B. Interfaces

As the framework uses ROS as middleware, ROS mes-
sages as interfaces to the environment model are an obvious
choice. The two major messages of the localization manage-
ment are the ObjectState, respectively an array of those,
and the DeltaTrajectory. Since their source code in the
ROS interface definition language is available on github4,
they are only discussed briefly: The object state consists of
an object identifier, an object classification and the current
motion state of the object. Furthermore, the object state
contains the object’s shape. When used by the localization
management in the presented simulation framework, all parts
of of the motion state except for the pose are marked
invalid, as the localization management does not prescribe
any underlying motion model.

The delta trajectory depicts the future motion of an object.
It consists of delta poses that each describe the delta between
the current pose and the desired pose, along with the time
difference in which the desired pose is to be reached. Thus,
for a physically feasible motion, it should start with pose

3While camera-based perception is weaker at night, LIDAR-based per-
ception is weaker in rain, for example.

4https://github.com/fzi-forschungszentrum-
informatik/automated_driving_msgs/
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zero5 at time difference zero, meaning that it does not jump
at the start.

In addition, since sending messages is a core ROS
functionality, the framework natively supports V2X-
Communication. We defined an additional message called
AdditionalHeaderForCommunication. It contains
information about who sent the message, and from which
pose the message was sent. With this information, effects
of message transmission can also be modeled, as further
explained in the following.

C. Wrapper

The algorithms under test should not be modified to
avoid discrepancies between their behavior in practice and
in simulation. Since their interface does not necessarily meet
the interface of the simulation framework, we make use of
a wrapper. Further, sensor and actuator characteristics are
modeled in the wrapper, which allows to simulate the effects
of those characteristics on the system under test. The charac-
teristics that can be modeled include for example uncertainty
and sensor range, but also reduced friction in the motion
model (cf. Fig. 3). As well, ghost objects can be inserted
in the wrapper. When behavior generation algorithms are
developed within the framework, we encourage the use of
the above described interfaces also inside the wrapper. A
module that computes velocity and acceleration of objects
by building finite differences, assuming a rigid body motion,
can then for example serve as a minimal wrapper.

Regarding V2X-communication, phenomena like message
drop or delays can be modeled in the wrapper, and can also
be tuned per object.

Thus, approaches in an early stage can access exact and
comprehensive data, while being combined in the same
simulation environment with more advanced approaches that
access realistic data, or even model sensor failure.

Fig. 3: Example of a wrapper for an object in the simulation
framework: As input for the algorithms under test, the
output of sensor processing algorithms is modeled from the
information of the localization management. The output of
the algorithms under test are fed to a controller with a
simulated actuator, which then passes the desired motion
back to the localization management.

5zero translational difference and zero rotational difference

D. Scenario Definition

As stated previously, cooperative scenarios cannot be com-
prehensively defined, since they are largely affected by the
objects’ interaction. Rather, we can define the initial scene
along with goals for the objects in the scene that lead to a co-
operative scenario. For this, it is recommended to first define
a place and map for the simulation6. The authors encourage
the use of real places in the simulation, allowing every
researcher to build an own map with the desired information.
The use of lanelet maps [14] for behavior generation and
planning is recommended but not mandatory. However, as the
localization management is based on Cartesian coordinates,
but real places are described on the surface of the Earth, a
common map projection must be utilized when using real
places and maps of them. We decided to use Universal
Transverse Mercator (UTM).

Once the place is set, we define objects with an ID, a
classification (car, truck, ...), a shape and an initial pose along
with a delta trajectory. Each object can then be operated
by a behavior generation algorithm, along with a suitable
wrapper and a goal, or a human driver with a manual control,
e.g. through a steering wheel connected to the simulation
framework. The goal can be defined in different levels: It
can be collision avoidance, the minimization of a certain
cost functional, or reaching a certain space at a certain time.
If an object is not operated, it just follows its initial delta
trajectory.

E. Usage

ROS facilitates launching multiple ROS nodes with the
tool roslaunch. To use the latter, the previously described,
abstract scenario definition must be translated into ROS
launchfiles. While a more detailed manual is provided with
the source code, we now briefly introduce the launchfile
usage.

First, a wrapper for the behavior generation algorithm
to be tested must be written. Again, when algorithms are
developed within the framework, the use of the presented
interfaces inside the wrapper is recommended. By doing so,
modules that are provided with the framework can be used
as a wrapper, without the need to implement a wrapper from
scratch. Then, a launchfile is created, launching the algorithm
to be tested wrapped in its wrapper. This launchfile can
be made configurable, for example regarding the modeled
sensor setup. It is called object launchfile in the following,
since it operates an object in the simulation framework.

Next, the initial trajectory has to be defined. Here, the Java
OpenStreetMap Editor (JOSM)7 can be used to determine a
path. An initialization module, provided with the framework,
transforms this path and a desired initial velocity into a
trajectory.

Subsequently, the overall launchfile, also provided with
the framework, has to be modified: Parameters such as the

6Technically, the simulation can also take place in empty space, but this
complicates the goal definition.

7https://josm.openstreetmap.de/

https://josm.openstreetmap.de/


simulation speed have to be set. Objects have to be defined
as a combination of an initialization with a trajectory, and an
object launchfile. Of course, several objects can be defined
with the same behavior generation algorithm, as requested in
Section III. This is done by using the same object launchfile
with a different initialization.

Finally, this overall launchfile contains the scenario defi-
nition. It can be launched via roslaunch.

F. Visualization

For visualizing the scenarios, we make use of the 3D
visualizer RViz that is provided with ROS. RViz can be
extended by plugins, visualizing custom ROS messages.
To illustrate the environment, we provide plugins for the
lanelet map, the object states, as well as the desired motion,
depicted by the delta trajectory. For the latter, we use a
color code for the absolute time, as in the Bertha Benz
Memorial Drive [15], to facilitate the estimation of potential
collisions: Overlapping circles of the same color denote a
future collision. A sample view of the plugins is given in
Fig. 4.

Fig. 4: RViz Plugins: The vehicle is visualized by the
ObjectStateArray-Plugin. The lanelet map (right bound:
green, left bound: red) is visualized by the Lanelet-Plugin.
The current plan for the future trajectory is visualized by
the DesiredMotion-Plugin. The time is color-coded as further
explained in the text.

V. USE CASE

In order to show the benefits of our framework, we have
wrapped our previously introduced prototype implementation
of a cooperative motion planner [16] and created an object
launchfile. The motion planner generates cooperative trajec-
tories for a single vehicle in mixed traffic, without explicit
communication. The idea behind the approach is to find the

globally optimal solution for all participants in a situation.
Then, the ego vehicle acts according to this optimal solution.
The implementation is based on path velocity decomposition:
Assuming a fixed path for every traffic participant, velocity
profiles are sampled. The optimal solution is chosen as the
combination of velocity profiles, that yields the lowest value
of a predefined cost functional. For further details on the
approach and its implementation, it is referred to [16].

As this planner is a prototype, it is implemented in python
and not yet real-time capable. Consequently, we make use of
the ability to slow down the simulation time. Furthermore,
measurement uncertainties are not yet considered in the
approach, so we do not use simulated perception output, but
access the ground-truth data, provided by the localization
management. Also, for this prototype testing, we assume per-
fect control. That is, the desired trajectory, determined by the
planner, is passed straight to the localization management,
without emulating a controller and an actuator.

Fig. 5: Testing a cooperative planning approach in the
simulation framework: The two vehicles (magenta and cyan)
are approaching a narrowing. Looking at the color-coded
future trajectories, we see that the vehicles will pass each
other in front of the narrowing, indicated with the white
arrow.

As a first test for the cooperative planner, we have ini-
tialized two instances of the same planner, approaching a
narrowing (cf. Fig. 5). In order to do so, we just had to launch
the respective object launchfile twice, providing a different
ID and initial trajectory for each vehicle. In Fig. 5 we can
see that both vehicles agree on the globally optimal solution,
even without explicit communication: the cyan vehicle drives
first, and the magenta vehicle drives second though the



narrowing.

VI. CONCLUSIONS AND FUTURE WORK

We have presented CoInCar-Sim, an open-source simula-
tion framework for cooperative interacting automobiles. In
contrast to existing frameworks, this work focuses on the
interaction of traffic participants. It facilitates to instantiate
several objects with SAE4+ capable behavior generation
algorithms, allowing to replace widely-used reactive driver
models that do not allow for development and evaluation of
cooperative planning algorithms. Different objects can either
use different behavior generation algorithms or different
instances of the same algorithm. Perception and control
algorithms as well as V2X communication algorithms are
not in-the-loop, but their effects on the vehicles’ behavior can
be evaluated. As each object has an individual wrapper, dif-
ferent perception, control and communication setups can be
tested simultaneously. This allows to test early approaches,
accessing ground truth data and assuming perfect control,
along with more advanced approaches that access realistic
data, or even model sensor failure.

In the future, the authors intend to extend the frame-
work by a benchmark for cooperative behavior generation.
The simulation framework will be released open-source at
https://github.com/coincar-sim.
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