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Abstract— The future of automated driving in urban areas
will most probably rely on highly accurate road maps. However,
the necessary precision of a localization in such maps has so far
only been reached using extra, sensor specific feature layers for
localization. In this paper we want to show that it is possible to
achieve sufficient accuracy without a separate localization layer.
Instead, elements are used that are already contained in high-
resolution road maps, such as markings and road borders. For
this, we introduce a modular approach in which detections from
different detection algorithms are associated with elements in
the map and then fused to an absolute pose using an Unscented
Kalman Filter. We evaluate our approach using a sensor setup
that employs a stereo camera, vehicle odometry and a low-
cost GNSS module on a 5 km test route covering both narrow
urban roads and multi-lane main roads under varying weather
conditions. The results show that this approach is capable to
be used for highly automated driving, showing an accuracy of
0.08 m in typical road scenarios and a is available 98% of the
time.

I. INTRODUCTION

The use of high-definition maps is of unbroken impor-

tance for highly automated driving. Especially in urban

environments, such maps are indispensable as they need

to provide information that is very hard to infer during

driving because of occlusion, limited sensor range, because

they are computationally expensive or simply because the

available algorithms are not sufficient. Maps must therefore

provide the location of road borders, lane markings and

neighbouring lanes for navigation, valuable information for

pedestrian prediction and include traffic rules such as traffic

lights or speed limits for each individual lane. Such maps

(often referred to as high definition maps) are to a small

degree already available from commercial map providers,

such as [1] or [2].

With a higher level of detail of the maps, the demands

on localization accuracy increase as well. While localization

only by means of a GNSS receiver is possible for simple

navigation maps, this is no longer sufficient for lane-level

accurate maps. Firstly, because the accuracy of using only

GNSS is insufficient [3], and secondly, the geo-annotation

of the maps themselves is inaccurate. To solve this problem,

many algorithms for many sensors have been proposed and

shown their value in practical usage (e.g. [4]–[6]). These

approaches originate from classical simultaneous localization

and mapping (SLAM) approaches in robotics, where an agent

is supposed to localize in an unknown indoor environment.
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Fig. 1: Map projected into camera image based on current

pose determined by our algorithm

Even if these approaches can achieve high precision within

a few centimetres [7], these algorithms have disadvantageous

properties when used in automated vehicles. Because the

maps are generated with the same sensor that is used for

localization, they are inherently sensor-bound. This is very

unfavourable for persistent road maps, which need to be

usable for as many current and future vehicles as possible.

In addition, the features are part of a separate map layer

which needs to exactly coincide with the other map layers.

The features are also not maintainable or comprehensible

by humans, which makes subsequent correction of the map

much more difficult. This is all the more problematic because

these maps are known for rapid aging. Changes in vegetation

due to seasonal changes may require a map update every few

months in vegetation-rich sections.

In contrast to SLAM-based approaches, a second class

of approaches exists where structures are used that have a

semantic meaning for driving such as road markings and

guardrails (often referred to as road features). The advantage

of these structures is that, since they have a direct signifi-

cance for road traffic and are therefore very concise, they

can be detected comparatively easily and by various sensors.

The functionality to detect them is often already part of

today’s production vehicles. Since these elements are also

used for high-definition maps, there is no need for a further

layer in the map. Instead, the localization information can be

derived directly from the map, which makes this approach

much more suitable for highly automated driving than SLAM

approaches. And because these features are very persistent,

such maps only need to be updated if structural changes have

been made, which requires an update of the map anyway.

Most of such approaches rely on the detection of road

markings (e.g. [8]–[12]). Compared to SLAM approaches,

these are characterized by a lower – but for most applications

still tolerable – accuracy of typically about 0.2 m in lateral

and 0.5 m in longitudinal direction on main roads. The

reduced accuracy is explained by the lower density of the

features used. The maps are mostly created by hand, so

that the maps itself are inaccurate as well. The higher



error in the longitudinal direction can be explained by the

fact that markings are usually extended in the direction of

travel, which makes the position in longitudinal direction

more difficult to observe. The mentioned approaches also

do not distinguish between different types of road markings.

Instead, a parametric model is often fitted to the detections in

the camera image. This means that e.g. for individual dashes,

the exact position of each dash is lost. Furthermore, when

few or no road markings are available (as on most small roads

in European cities), the performance of these approaches

quickly decreases so that they become unusable. Therefore,

some approaches combine the road marking detection with

more features to increase robustness. As an example, for the

Bertha-Benz drive [13], curbstones were used in addition

for localization [14]. As a result, it was possible to achieve

satisfying accuracy even off the main roads.

Still, there are many situations left, where curbstones are

hard to detect, not present or occluded by parking vehicles.

For these situations, the approaches mentioned above are

not generic enough because they have either been developed

around a particular detector or for a specific scenario. At

the same time, modern maps can provide significantly more

information than just the position of lane boundaries, such as

guardrails, traffic lights, traffic signs – and more information

might be added in the future. Similar progress can be

observed in the detection of such structures. Developments in

the field of semantic labeling with artificial neural networks

have made it possible to detect more and more relevant

objects in road traffic. A localization approach must therefore

be modular and generic in terms of the primitives used for

localization to keep pace with these developments instead of

using hand-selected features.

With this paper, we aim to present such a modular lo-

calization procedure that is built around using information

already present in high-definition road maps. It is designed

to provide sufficient accuracy, possibly even on small urban

roads. If our approach is combined with a SLAM approach

to obtain accurate vehicle positions for mapping, we can also

demonstrate that is possible to automate the process of map

generation to avoid the lower accuracy of manually created

maps and to speed up the map generation procedure.

II. OUR APPROACH

A. Association

Compared to the information contained in map layers

for SLAM approaches, the information provided by road

maps for localization has some properties that make the

design of localization algorithms more difficult. The main

difference is that unique descriptors are used in SLAM-

based approaches so that the association of detected and

mapped elements can be made directly. In addition, point

features are usually used, so that each feature can always

be observed unambiguously. However, this is not the case

for the elements of a road map. Instead, a map can contain

an infinite number of elements of the same type, and the

elements can have any shape, not just a point. Therefore,

such an approach always requires an intermediate step in

which associations are formed between the detection and

elements of the map. We call this step Map Matching. To

limit the search radius in the map, it is advisable to use a

GNSS receiver. This effectively reduces the search radius

to a few meters, depending on the accuracy of the receiver

and the method used for evaluating the signals. Neverthe-

less, ambiguities cannot be resolved completely because, for

example, markings from adjacent lanes have a distance of

about 3 m to each other [15], which is less than the accuracy

provided by low-cost GNSS receivers. In literature, a nearest-

neighbour association relative to the currently estimated pose

is often used as a solution (e.g. [12], [14], [16]). It is obvious

that mistakes in the association are impossible to correct.

Furthermore this approach ignores the dynamic properties

of a vehicle, because it is not checked if the estimated

position is even reachable from the last known position

given the current vehicle motion. Other publications (e.g.

[11]) therefore use a particle-based approach, which allows

several possible positions to be tracked and compared with

the observed detections. However, particle-based approaches

have the disadvantage that an oscillation of the most likely

position between several equal positions can occur, which

is highly undesirable for automated driving. We therefore

suggest that ambiguities in the determination of the position

should instead be passed on to a separate fusion step in which

a selection can be made based on the history of vehicle poses

and current movement reported by odometry sensors.

B. Representation of detections

Since elements in the map do not only consist of points,

a representation form must be chosen which can be used

for all primitives (and thus also for all detectors). This is

also important for the extensibility of the localization system.

Structures along the map are generally flat and long, so

that the representation by polylines (or an individual points

as a special case of a very short line) offers itself. Nearly

all three-dimensional structures along the road are vertical

(such as poles, walls and buildings), so that they can be

completely described by their outline by a polyline. In the

literature splines are also used as an alternative, especially on

highways, because they are characterised by a more compact

representation. However, it is difficult to describe corners and

sharp curves that dominate in urban areas.

C. Fusion

As mentioned above, a fusion step is required in which the

vehicle position is estimated from the chronological order

of observations of elements from the map and the motion

state of the vehicle. In SLAM-based approaches (e.g. [4],

[7]), a bundle adjustment procedure is used for this. Here,

the vehicle position is determined, which optimally explains

all point-shaped landmark observations. In principle, this

adjustment can be made over the whole temporal sequence

of observations. Since each individual landmark is thus taken

into account when determining the position, a high degree

of accuracy can be achieved. This is not common in road

feature-based approaches, however, because the formulation



Fig. 2: Structure of the localization procedure

of a line-based bundle adjustment problem is characterized

by significantly higher non-linearities and thus a worse

convergence behavior. Instead, probabilistic methods such as

Kalman filters are used here (see [8], [14]). The observed

features are here combined into a single normal distribution

around an estimated position. The influence of the individual

observed lines on localization is lost. This is particularly

unfavourable because the probability distribution of possible

positions for an observed line is generally also line-shaped,

which cannot be expressed by a normal distribution. In this

paper we therefore present a fusion approach based on an

Unscented Kalman Filter (UKF), in whose measurement

model the influence of the observed elements can be consid-

ered individually. The filter is continuously updated by high-

frequency odometry and steering angle measurements from

inside the vehicle to keep the prediction up to date. We do

not recommend to use the GNSS as additional measurement

in the filter, because they are often offset relative to the map.

D. Structure

A generalized structure of the proposed localization pro-

cedure described in the previous lines is shown in Fig. 2.

For each type of element in the map, a separate detector

can be used, which is specialized in the detection of this

element. In this paper we will limit ourselves to the detection

of markings and road borders, more and different detectors

would be conceivable here. The detections are then passed to

a map matching step, where associations between detection

and the closest element in the map are created using GNSS

and the last known pose as initalization. These associations

are then passed to the final fusion step, where the actual pose

is determined.

III. ALGORITHM DETAILS

The details of each processing step are explained in the

following sections.

A. Road Marking Detection

Road marking detection on accumulated topview images

instead of the original images. Topview images have the

Fig. 3: Processing steps of the detection algorithms (top left

to bottom right): Original image, semantic labelling (road

pixels in violet), marking detection is performed on accu-

mulated topview (detected markings in blue), road border

detections on accumulated semantic topview (detections in

red).

advantage of providing images which are sensor and perspec-

tive independent and the accumulation over multiple time

steps increases robustness and detection range. Accumulated

topviews are created by mapping a stereo pointcloud [17]

with intensity values from the image to a two-dimensional

grid map that will then be interpreted as the topview image.

Points in the pointcloud that are too far away from the ground

plane are discarded to avoid that trees or bridges are mapped

into the grid map. Between two pointclouds from different

time steps, the gridmap is shifted by the vehicle motion

reported by the odometry sensors. The actual detection

of road markings is performed by the detection approach

introduced in [18]. Detected markings are characterized by

their centerline (i.e. a polyline) and a probability distribution

over the most likely classes. Results are shown in Fig. 3

(bottom left), with the marking candidates drawn in dark

blue and the most probable classifications as text on each

marking. The topview image was created using a resolution

of 50 px/m at a 20 m×20 m window.

B. Road Border Detection

For road border detection, Semantic Labelling is used so

that each pixel in the input image is assigned to a class. The

classification is done by a Convolutional Neural Network

(CNN) based on ResNet-38 [19]. This neural network is

trained on the Cityscapes dataset [20] that contains 5000

images with fine annotations and 20000 images with coarse

annotations. The network distinguishes between 19 different

labels. An example is shown in Fig. 3 top right. The

image includes the following labels: road (violet), vegetation

(light green), trees (dark green), vehicles (blue), sidewalk

(magenta) and sky (turquoise). However, only a small portion

of these labels are used for the recognition of the road border:



We define road border as the transition from road to any

other label. This also includes vehicles, as the road is often

bounded by parked vehicles (see Fig. 5 bottom for examples).

Similar to the road marking detection described above, the

labelled image is transformed to an accumulated topview.

As a result, the image only contains three classes: Unknown

(black), road (dark grey) and non-road (light grey). From

here, road borders can be easily detected by finding edges

between road and non-road regions. We solved this by

applying morphological closing to the image for reducing

noise and filling gaps, then using Canny edge detection [21]

on road to non-road edges to detect the road borders and

finally applying a post-processing step to reject too short

edges and simplify the shape as a polyline.

C. Map Matching

The map matching step serves to find sets of associations

between elements in the map and detections reported by

the individual detectors. Compared to the mentioned SLAM-

based approaches, additional challenges must be considered:

Global ambiguities: The features in the map are not

unique. Even with a wide detection range around the vehicle,

there are still endless possible poses in a map. To reduce

the search area the algorithm needs one or multiple search

areas in the map. Because the algorithm is allowed to

report multiple sets of associations, every search area can

be considered separately. The associations are then collected

and passed on to the next step. We use the GNSS signal and

the predicted pose from the fusion algorithm (if available) in

parallel to find valid associations. Thus, the algorithm does

not have to distinguish between an initialization phase (use

of GNSS) and normal operation (use of prediction).

Local ambiguities: Even if the pose is known to within

a few meters, many ambiguities arise. For example, with a

search radius of 5 m, up to four associations are possible for

the detection of one of the dashed lines as shown in Fig. 4:

The true marking, the respective predecessor or successor of

the detection and the continuous lines on the left and right

side of the road. We can partly eliminate these ambiguities

by considering the line type. Those ambiguities that cannot

be resolved will be passed on to the fusion.

Inaccuracies in classification: Detectors often report a

likelihood or probability distribution for a detection or

classification result. The marking detector used by us for

example reports a probability distribution for the type of

each detection (including dashed lines, continuous lines, stop

lines, pedestrian crossings, different types of arrows, etc.).

That is why we consider not only the best classification

result, but also the alternatives if they are classified with

a considerably high probability.

Partial occlusion and limited sensor range: Many elements

in the map – especially continuous lines and road borders

– can be many hundreds of meters long. Because of their

length, these lines are important to determine the lateral

position in the lane and the vehicle orientation. However,

the position along the line cannot be determined because the

endpoints are often unobservable due to the limited sensor

Fig. 4: Schematic representation of the fusion step. Dashed

polylines in the map are shown as solid blue lines, continuous

lines as solid green lines. Detections are dashed lines of

the same color. Subsampled points on these lines are shown

together with a connecting line (yellow) to their respective

closest point on the element in the map (light blue).

range or occlusion. Therefore, we distinguish between types

where the endpoints of a detection are usually observable

(e.g. dashed line markings or arrows) and those where they

are not observable (e. g. continuous lines and roadsides).

Our proposed solution to these problems consists of three

steps: First, to eliminate global ambiguities, we reduce the

search space to the elements in the map that are closer

than a distance dmax to a prior (either GNSS or predicted

pose), where dmax is the sum of the search radius plus the

sensors maximum viewing range. Secondly, to reduce local

ambiguities, we search for pose hypotheses that explain as

many detections as possible with matching elements from the

map. Lastly, for each such pose, we calculate the number of

inliers as the number of points equally spaced along each

detected line that are closer to the matching element than a

certain threshold. This inlier rating serves as a measure to

select the best sets of matches to be passed on to the fusion

while the other, less significant sets are discarded.

The process of generating the pose hypotheses could be

described as continuous hough transform [22] in continuous

space. We generate votes for an individual position by

forming pairs of detections and an element in the map of

the same type and computing possible vehicle poses in the

map where such a detection could be observed. Similar votes

(i.e. poses that are closer than a threshold) are then grouped

together. A group with a large number of poses then indicates

that a large number of detections support this position. If

the type of a detection is not clear because – as mentioned

above – the classification result is given as a probability

distribution, pairs are generated if one of the classification

results matches.

D. Fusion

Our proposed fusion approach is based on an Unscented

Kalman Filter (UKF) [23] used during the Bertha Benz Drive

[24]. The vehicle state is represented using a dynamic single

track model and continuously updated with on-board vehicle

odometry data composed of current speed, yaw rate and

steering angle.

To filter matches between detections and elements in the

map, a new observation model is introduced. Fig. 4 shows a



simplified example. For every set of matches from the map

matching step, a number of associations between detections

and elements in the map is given. For this processing step,

these associations remain unchanged. Instead, any set of

associations is interpreted as a possible observation, and then,

from all of these sets, the one that best fits to the filter

state is selected. In this point, our method differs from other

methods such as Iterative Closest Point (ICP). This is because

the associations given a suspected pose are very clear (road

markings are usually more than 2 m away from each other)

and also because better convergence can be achieved if the

assignments do not change during the fusion step.

Furthermore, we formulate the problem not on a point-

to-point basis (P2P), as is the case with ICP, but on a

point-to-polyline basis (P2L), where the point is a point

on the detected polyline and the polyline is the matched

element from the map. The error is therefore the distance

to the closest position on the polyline. This eliminates the

need to subsample the elements from the map as well,

which increases accuracy and improves convergence. This

formulation does not punish if only some parts of a longer

line could be observed, since only the distance of a detection

point to the polyline in the map is calculated, not vice

versa. To achieve an even weighting, we sub-sample the

detections with equal spacing. Fig. 4 shows an example of

this formulation. Every yellow point is one subsampled point

on a detection.

An observation model for an Unscented Kalman Filter

consists of three things: An observation vector ~z, a function

h(~x), which transforms the state ~x or a sigma point χ into the

domain of the observation, and a covariance matrix Q for the

observation. In our case, the sub-sampled points of the detec-

tion correspond to the observation, i.e. ~z = [~p1, ~p2, . . . , ~pn],
where n is the number of points. To define the function

~̂z = h(~x), we proceed as follows: For each point ~pn in ~z,

the corresponding polyline of the map is transformed into the

vehicle coordinate system using the pose, which is part of ~x.

Now the point ~pnext,i on the polyline closest to the detected

point is determined (this corresponds to the light blue points

in Fig. 4). Thus ~̂z = [~pnext,1 ~pnext,2, . . . , ~pnext,n]. Finally,

the covariance matrix Q indicates the uncertainty of the

individual points observed. We assume an equal covariance

matrix for all points, but more complex formulations (for

example, based on the distance to the vehicle) would be

possible. The described formulation also applies to the case

where an element is just described by a single point, because

this is just a special case of a very short polyline.

To select the most suitable set of associations from the

associations generated in the map matching step, we can

make use of the state of the UKF itself to find the likelihood

of an observation: When filtering n new sets of matches,

for each observation ~zk with k = 1 . . . n and dimension dk,

we compute the innovation covariance Sk and the predicted

observation ~̂z of the UKF. These properties represent the state

of the filter as well as its covariance in the domain of the

observation. From this, we compute the innovation residual

~rk = ~zk − ~̂zk and obtain the observation likelihood pk as:

pk =
1

√

(2π)dk det(Sk)
exp

(

−

1

2
~rTk Sk

−1~rk

)

.

We then select the pose with the highest observation likeli-

hood, update the filter with it and discard the others.

IV. MAP GENERATION

As mentioned in Section I, our method is intended to

be applied to existing high-definition maps with lane-level

accuracy. However, it is comparatively easy to use the

methods described above to generate a map for localization

from a previous drive. A precondition is that geo-referenced

vehicle positions are known with great accuracy. Since the

method described here is not suitable as a SLAM method

(the accuracy would not be sufficient for mapping), we use

a different method for this, which we describe in Section IV-

A. Once the vehicle positions are known, we can combine

them with the results from the detectors during the drive

to determine geo-referenced positions of all detections. To

filter out multiple detections, fragmented markings and false

detections, we use a procedure described in Section IV-B.

A disadvantage of automatic mapping is that not all ele-

ments of the map can be detected. This is partly due to errors

by the detectors, but also because elements are occluded in

the mapping drive. One example for this are other road users,

but especially parked vehicles that occlude the road border

(see Fig. 5 bottom). The map is therefore designed to be

editable by humans so that missing (or wrong) elements can

be corrected. For that, we used the OpenStreetMap (OSM)

file format that is already used for mapping and has publicly

available editors.

A. Pose Bundle Adjustment

Determining the poses from the driven route is the most

important part for the mapping as it directly impacts map

accuracy. A complex, exact geo-annotation is however not

necessary, because GNSS is only used as a hint for the

required search area. Therefore it must only be ensured that

the search area is large enough so that the correct position

is guaranteed to be covered. It is however important that

the map is consistent and smooth. For that we used an

algorithm that generates a pose-graph from the observation of

visual landmarks and optimises them in a bundle adjustment

problem [25]. We extended the bundle adjustment problem

by adding the GNSS measurements obtained during the

mapping drive as constraints to obtain geo-referenced poses.

B. Grouping of Detections and Outlier Rejection

The grouping step serves to distinguish correct detections

from false detections, multiple detections or misclassifica-

tions. This is done by making use of the relations between the

individual detections to validate them with each other. The

algorithm used is described in [26]. It validates detections

by testing if they can be clustered with other detections in

the proximity to form continuous lines (e.g. from individual

dashes) or clustered multiple detections from the element



type on the same position. If this is not possible, they are

rejected.

V. EVALUATION

For evaluating the performance of our approach, we reuse

the mapping poses from the landmark-based posegraph de-

scribed in Section IV-A as a reference. Because the whole

map is based on these poses, an optimal localization would

be able to exactly reproduce them. High-precision GNSS

sensors, which are often used as a reference at this point,

have been found to be unsuitable for urban environments

with a provided accuracy of more than 20 cm. We therefore

used the data from the mapping drive again for localization

with our approach and compared the poses obtained to the

poses used to create the map. This gives us the opportunity

to test the maximum performance of our approach under

the most favourable conditions because the detections should

fit particularly well to the elements of the map, whereas

the influence of the detectors on the localization result is

reduced. Under these conditions, we can examine the effects

of certain aspects of our approach (considering different

types of markings (lines, dashed lines, arrows, stoplines,

etc.) for matching, multiple hypotheses, using road border

as additional feature) on the localization result.

In order to assess the quality, besides the average error

in the x-direction (longitudinal), y-direction (lateral) and the

yaw angle we also use the availability and the reliability as

quality measures. We define availability as the proportion

of the total time, in which two global updates by our

approach are not more than one second apart. Reliability

is the proportion of the total time, in which the localization

error is smaller than 0.5 m. Vehicles typically have a width

of 2 m while the width of a typical lane is 3 m. Therefore,

we chose 0.5 m as a just tolerable error.

To ensure that localization quality is also satisfactory in

other drives, we calculate the lateral distance of the poses

from other drives to the trajectory of the mapping drive. For

that, we recorded the same route under different weather

conditions (sunny, cloudy, rain) to test the robustness of the

approach. Here, a higher deviation is to be expected because,

of course, the trajectories of the test drive and the other drives

are not identical. However, the expected deviations should be

at around 10 cm, except at locations where lane changes were

made.

A. Data Set

The data was acquired in four drives of the same route in

dense urban area in Karlsruhe, Germany of approximately

5 km length under different weather conditions. The route

was selected because it featured a lot of different road

types from narrow single-lane roads to multi-lane major

roads under varying road conditions and included many

intersections. Fig. 5 shows some images from the dataset.

For the evaluation, we divided the drive into two sections:

Narrow and normal roads. Narrow roads are areas with

virtually no road markings, so that the localization is only

based on road border detections, which is very challenging.

Fig. 5: Scenes from our data set with the map projected into

the image based on the estimated pose.

Fig. 6: Weather comparison during measurement drives.

Fig. 7: Results from the mapping process. Detected dashed

markings are drawn in blue, road border detections in red.

We have included these areas in our dataset because they

are very common in inner cities, but have been almost

completely ignored in existing literature. In our data set, the

proportion of the total distance is about 20%.

The data was recorded with two BlackFly PGE-50S5M

cameras for stereo vision at 5 Mpx and 8 Hz, Ublox C94-

M8P receiver for the GNSS data and the on-board vehicle

odometry by the research vehicle BerthaONE [27].

We also evaluated the average online processing times of

our implementation using two 2.6 GHz Intel Xeon CPUs,

64 GB memory and a Nvidia Geforce Titan X for semantic

labelling and stereo processing. The total cycle time for one

image is 255 ms. However, as the whole process chain is

pipelined, it is able to process data in the rate of the slowest

element (semantic labelling with 120 ms per image) so that

the average processing rate is 8 Hz. Map matching processing

time was 5 ms and the UKF required 15 ms.

B. Evaluation of Map Generation

Some example images of the map are shown in Fig. 7. It

can be seen that almost all line markings on the road were

detected, most of the arrows on the ego lane and some of



TABLE I: Localization performance compared to mapping poses: Availability, average error in x (longitudinal), y (lateral)

and yaw angle and reliability when using the full approach compared to when using only the first hypothesis, when not

using road border, and when not considering any classes for matching.

Scenario Availability [%] Avg. ex [m] Avg. ey [m] Avg. eφ [◦] Reliability [%]

Normal

Full 97.7 0.19 0.08 2.17 97.1
No multi hypotheses 97.7 0.21 0.09 2.11 96.7

No road border 90.48 0.17 0.08 1.78 98.9
No classes 95.57 1.54 0.16 4.36 89.1

Narrow

Full 53.5 0.58 0.37 1.71 75.4
No multi hypotheses 60.7 0.71 0.34 1.45 78.0

No road border 38 0.5 0.46 3.03 60.7
No classes 64 1.6 0.49 13.5 50.7

Overall

Full 85.24 0.26 0.14 2.10 93.4
No multi hypotheses 87.27 0.35 0.16 1.93 91.5

No road border 81.77 0.26 0.18 2.12 88.5
No classes 86.05 1.57 0.25 6.36 82.7

the arrows from the neighbouring lane. In the normal road

regions, almost all of the road border was correctly detected,

however most of the road border detections in the narrow

regions of the drive had to be manually corrected in the map

because long rows of parking vehicles occluded the road

border. It is also visible, that the satellite images drawn in

the background do not perfectly align with our map. This is

partly because satellite data is often not correctly aligned but

also because the geo-annotation of our map is only accurate

within 3 m due to GNSS receiver inaccuracy.

C. Evaluation of Localization Performance

Table I summarizes the collected results. It is noticeable

that the lateral accuracy in narrow streets with an average

error of 0.37 m differs very much from the accuracy on

normal roads with an average error of 0.08 m. Obviously,

localizing alone with road border in the presence of parked

vehicles is not accurate enough. Nevertheless, the accuracy

is considerably higher compared to the scenario where road

borders are not used at all (0.46 m). The same is shown by the

availability measure. This is 53% for narrow roads in the full

case and drops to 38% if no road border detection is used.

The same holds true for normal roads, where availability

is 97.7% in the full case and falls to 90.5% without road

border detection. The use of the road borders for localization

therefore increases the availability, but not necessarily the

accuracy. On the one hand, this has to do with the fact that

road border detection in our dataset was often influenced

by parked vehicles, on the other hand with the fact that

for the detection of road boarders images at a resolution of

512x256 pixels are used for performance reasons. Therefore

the detection of road borders is very coarse.

Considering several hypotheses for localization did not

bring any noticeable improvements. If only the first hypoth-

esis (the one with the most inliers) is taken into account,

the average accuracy decreases by only 0.02 m. The reason

for this is probably that road markings are usually at least

3 m away from each other. The localization uncertainty must

therefore be at least 1.5 m, so that mismatches are possible.

This uncertainty was never reached during the entire test

drive. We therefore conclude that the consideration of several

hypotheses improves the localization result only during the

initialization, or re-initialization after an error. If the vehicle

position is already known with sufficient accuracy, the effect

is negligible.

In contrast, the consideration of the different types of

markings in the matching step was very important. Without

this, the localization error in y direction increases by more

than 1 m. This was mainly caused by small deviations in

the estimated orientation that caused dashed lines to be

assigned to straight lines at the side of the road. If this

causes the vehicle to be mistakenly matched to the adjacent

lane, correction of that error is no longer possible without

knowledge of the road marking types.

D. Evaluation of Performance in Different Drives

The comparison of the results with other test drives (see

Fig. 8) generally shows very similar results to those of

the mapping drive. It should be mentioned again that no

exact results can be given, because only the distance to the

trajectory of the localization drive was calculated. When

comparing the different weather scenarios, it is noticeable

that sun and shadows casted by it had no effect on the

localization result. Average deviation from the reference

trajectory on normal roads is 0.20 m in cloudy weather

and 0.18 m during sunshine. Thus, the difference to the

measurement drive with 0.08 m is about 0.1 m which seems

plausible. During rain, however, the deviation increases to

0.28 m. This can be explained by the lower detection rate

of the road markings: The wet road reflects so bright that

markings can no longer be properly segmented. Moreover,

the windshield wiper in the image causes artifacts.

VI. CONCLUSION AND FUTURE WORK

The results show that a localization method based solely

on high definition map data, is accurate enough under typical

circumstances to allow highly automated driving. This is

demonstrated by the availability of 97.7%, the reliability

of 97.1% on normal roads and the insensitivity to weather

conditions. The integration effort is low, since most detectors

are already part of existing and near future series vehicles

and the additional computational effort for the matching and

fusion steps is very low. Our algorithm significantly reduces

the mapping effort because existing detectors can be used



Fig. 8: Distance to reference trajectory in (from top to

bottom) the mapping drive, cloudy weather, sunny weather

and rain. Sections with narrow roads are highlighted in green.

to create new maps. The effort required for the 5 km long

track was about 10 min, in which elements obscured by other

vehicles were corrected.

Because our approach is modular in terms of the de-

tectors used, it is easy to add more detectors to improve

the localization result in specific situations. The quality of

localization can thus benefit directly from future advances in

high definition maps and progress in detection algorithms.

Our results suggest that this makes sense especially in areas

with lots of parked vehicles at the side of the road. Here,

additional detectors, e.g. for house facades or trees could

provide an improvement, since the detection of road borders

alone is not sufficient to achieve the required accuracy.
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