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Abstract— We propose a 3D object detection and pose es-
timation method for automated driving using stereo images.
In contrast to existing stereo-based approaches, we focus not
only on cars, but on all types of road users and can ensure
real-time capability through GPU implementation of the entire
processing chain. These are essential conditions to exploit an
algorithm for highly automated driving. Semantic information
is provided by a deep convolutional neural network and used
together with disparity and geometric constraints to recover
accurate 3D bounding boxes. Experiments on the challenging
KITTI 3D object detection benchmark show results that are
within the range of the best image-based algorithms, while the
runtime is only about a fifth. This makes our algorithm the
first real-time image-based approach on KITTI.

I. INTRODUCTION

Estimation of the full motion state of all other dynamic
objects is an essential information that enables fully auto-
mated driving. Because of the accurate depth information,
currently, most of the 3D object detection methods heavily
rely on LiDAR data. But depending on the exact model of
the LiDAR sensor there are several disadvantages compared
to a stereo camera regarding especially higher costs, but also
shorter perception range and sparser information. Secondly,
over-reliance on a single sensor is an inherent safety risk and
therefore it is advantageous to have a second sensor available
for detection of objects.

A stereo camera provides disparity images to detect, localize
and reconstruct arbitrarily shaped objects in the scene. With
semantic information obtained by a CNN the disparity based
clustering can be improved and the type of the object can
be established. This allows a complete reconstruction even
for partially occluded or truncated objects by using a class-
specific shape prior.

In this work we present a real-time capable stereo-based 3D
object detection approach for all kinds of road users. Due
to the estimation of a confidence score per object, these
detections can easily fused with other sensors for object
detection as LiDAR or RADAR.

The paper is organized as follows: The next section
presents related work and distinguishes it from our work.
Section III gives a coarse overview of the method before the
object detection is discussed in more detail in Section IV.
Some results and the evaluation are shown in Section V
before the paper is concluded by a summary and an outlook.
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Fig. 1: 3D bounding boxes of objects projected into the
input image (red) with corresponding orientation estimations
(green).

II. RELATED WORK

Robust environment perception with different sensor data
is a well-studied problem. Here we give a brief overview
about the related work that has been done on 3D object
detection with LiDAR point clouds and images.

As LiDAR systems provide a high geometric accuracy for
3D world points, most of the approaches use a combination
of both sensors by generating object proposals from RGB
images and then estimating precisely segmented bounding
boxes from the LiDAR point cloud. Du et al. [1] propose
a flexible 3D vehicle detection pipeline to fuse the output
of any 2D detection network with a 3D point cloud. Ku et
al. [2] use LiDAR pointclouds and RGB images to generate
features that are shared by a region proposal network and
a second stage detector network for accurate oriented 3D
bounding boxes. In the work of Schlosser et al. [3] they
directly fuse LiDAR with an RGB image by converting the
point cloud into an HHA map (horizontal disparity, height
above ground, angle) and process the resulting six-channel
RGB-HHA image with a CNN. Some methods [4] include
the bird’s eye view of the point cloud as additional input,
because it has no projective loss as compared to the depth
map and thus 3D proposal boxes can be generated directly.
Liang et al. [5] project the image features into the bird’s
eye view and use continuous convolutions to fuse image and
LiDAR feature maps at different levels of resolution.

Instead of generating proposals from RGB images or project-
ing the point cloud to bird’s eye view or voxels, Shi et al.
[6] directly generate 3D proposals from LiDAR point clouds
in a bottom-up manner via segmenting the point cloud into
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Fig. 2: The proposed pipeline for our stereo-based 3D object detection: The left image is used to generate a semantic
map and optional bounding box suggestions, together with the right image disparities are calculated. These are clustered
and projected into a grid map with elevation information, which is then used to estimate the 3D bounding boxes.

foreground points and background. In the approach of Li et
al. [7] the 3D point cloud data is projected in a 2D point
map and a single 2D end-to-end fully convolutional network
is used to identify the vehicle bounding boxes. Engelcke et
al. [8] perform object detection in point clouds with CNNs
constructed from sparse convolutional layers based on a
voting mechanism.

Other approaches [9] try to estimate complete 3D bounding
boxes by using geometric constraints provided by a 2D
bounding box from monocular images. Similarly in Deep-
MANTA [10], the vehicle orientation, size and location of
key points on the car are estimated by a CNN and a 2D/3D
shape matching algorithm is applied to estimate the 3D pose
of the vehicle. Xiang et al. [11] detect 3D Voxel Patterns, that
capture the key properties of objects including appearance,
3D shape, viewpoint, occlusion and truncation in the 2D
image. Chen et al. [12] propose an energy minimization
approach that samples candidate bounding boxes in the 3D
space by assuming a prior on the ground-plane and then
score each candidate box projected to the image plane by
exploiting multiple features like semantic or shape. A draw-
back of all these approaches is that they are very sensitive
to the assumptions made.

Surprisingly, there are only a few works that use stereo
vision to recognize 3D objects. Most of them take advantage
of a two-stream CNN where the RGB channel and either
the disparity map [13] or an HHA image [14] go through
two separate CNN branches and are concatenated before the
prediction layers, where class labels, bounding box coordi-
nates and the object orientation is predicted jointly using a
multi-task loss. According to the KITTI evaluation, the most
promising methods currently available are Stereo R-CNN
[15], which detects and associates objects simultaneously
in the left and right image and then recovers the accurate
3D bounding box by a region-based photometric alignment.
And secondly, a so called "Pseudo-LiDAR" approach [16]
converting image-based depth maps to a LiDAR represen-
tation and apply different existing LiDAR-based detection
algorithms.

In contrast to our method, none of these approaches is able
to provide an object list of all relevant other road users in
real time (total latency less than 100 ms). However, this is
an essential criterion for highly automated driving.

III. SYSTEM OVERVIEW

Figure 2 summarizes our system: As input we need a
stereo image pair, either grayscale or color. The left image
is used to obtain pixelwise semantic information using a
CNN. Additionally a 2D bounding box detection can be
performed with this network. This changes the results of our
approach only slightly, but provides a better parallelization
of the clustering and thus a lower runtime. In parallel
to receiving the semantic information, a block matching
algorithm is used to calculate the disparities between left
and right image. Subsequently, a clustering of the disparities
is performed using Connected Component Labeling to obtain
object proposals. A lower threshold is used if pixels belong
to the same semantic class and have a higher confidence.
For all cluster points found in image domain the position
in world coordinates is computed and projected into a Grid
Map in the xz-plane with height information representing
the y-coordinate. After filtering outliers, the orientation and
dimensions of the object are optimized by using class specific
shape priors. Finally the 3D bounding box can be calculated.

IV. OBJECT DETECTION
A. Semantic Classification and Bounding Box Detections

For pixelwise semantic segmentation and object detection
in images, we use a Convolutional Neural Network. The
backbone is an encoder based on ResNet-38 [17]. Due to
feeding the output of the backbone into two heads, this
network solves both tasks simultaneously. The first head
decodes the backbone output to a semantic segmentation map
with the original image resolution. The second head performs
bounding box detection and regression. It uses a proposal-
free approach that takes ideas from SSD [18] and RetinaNet
[19]. The detailed architecture of our network is described
in [20].



B. Disparity Estimation

For disparity estimation, a block matching algorithm based
on [21] is used. This algorithm takes advantage of a slanted
planes approach and is still among the fastest block matching
approaches due to the GPU implementation, while providing
quite good results. By combining the following metrics
obtained by the block matcher we are able to calculate a
confidence metric which can later be used for clustering
and estimation of an existence probability per object. This is
essential in order to be able to fuse the resulting stereo-based
object detections with those of other sensors. The Peak-Ratio
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Cmin With the second lowest costs cpine. A high value
represents a distinct minimum and thus a higher certainty
that the determined disparity is correct. The Left-Right-
Consistency
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describes the consistency between both disparity maps.
Here low costs ensure coherence of the left-view disparity
l . . . . . T
map d and the projected right-view disparity map d".

C. Clustering

The computed disparities are now clustered into groups
of similar values. For this purpose, an undirected graph is
built up where each pixel is considered as node and adjacent
nodes that lie within an semantic and confidence dependent
adaptable threshold are connected by edges. From this graph,
the connected components are computed using a DFS-based
approach. Each connected component is a set of vertices in
this graph that are all reachable from each other. This step is
also parallelized by dividing the image into individual blocks
and then performing the Connected Component Labelling
(CCL) in parallel within each block. Afterwards, clusters that
go beyond the boundaries of the blocks must be combined.
To do this, all block boundaries are sequentially checked for
equivalent labels and afterwards the labels in each block are
updated in parallel. However, the fact that the second step
must be executed single-threaded results in a synchronization
barrier before and after this step and due to that to runtime
losses. As already mentioned above, these can be avoided by
using 2D bounding boxes as additional input. In this case,
the CCL is performed in parallel in all bounding boxes. Then
only the few adjacent or overlapping bounding boxes are
searched for clusters that need to be combined. The latter
step is only used to be robust against wrong bounding box
proposals. Furthermore, in all image areas without bounding
boxes, a coarse clustering is applied in order to prevent
to depend too strongly on the bounding box proposals and
detect also objects that were not recognized by the CNN.

D. 3D Bounding Box Estimation

The resulting clusters are used as object proposals. All
points of each cluster are projected into a Grid Map with
resolution [resy, res,] in x-z-plane by using the position of
the pixel in the image [u,v], disparity d, baseline b and the
focal length f:
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In addition, a minimum and maximum height per grid cell
is calculated from all the
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Fig. 3: Left camera image and a part of the resulting grid map
including occupied cells (black) and reconstructed bounding
rects for cars (blue), pedestrians (red) and cyclists (green),
the displayed grid has a cell width and height of 0.5 m each,
the actual resolution of the grid map used for reconstruction
is 0.1 m in x- and z-direction.

Afterwards, a morphological opening (erosion followed by
dilation) is done for filtering of outliers. A bounding rect-
angle is estimated per object around the remaining occupied
grid map cells. Due to the mostly lower mounting position
of cameras compared to LiDAR sensors, it may happen,
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Fig. 4: Precision-recall curves for 2D detections on our

depending on the observation angle, that the complete object
cannot be reconstructed. For example, in the case of another
vehicle directly in front of our vehicle, where you would
only be able to perceive the rear side.

Therefore, in such cases we use a "shape prior", which has

different sizes (and variances) depending on the previously
determined semantics of the object. Additionally we calcu-
late the convex hull of all occupied grid map cells per object.
Using this convex hull we optimize the orientation and exact
dimension of the object, which maximizes the number of
inlier grid map cells. It is assumed that additional unobserved
cells of the object can only be located behind occupied cells
in the direction of the observation angle. An exemplary grid
map resulting from these steps including the corresponding
left camera image is depicted in Figure 3.
A confidence score per object is calculated from all confi-
dence values per pixel and the size of the object cluster in
image domain. Since the area of an object in the image de-
creases quadratically with its distance in world coordinates,
the quadratically growing depth error which occurs using
stereo cameras is implicitly considered.

V. RESULTS AND EVALUATION
A. Implementation Details

We evaluate our approach on the KITTI object detection
benchmark [22], which has 7481 training images with avail-
able ground truth labels and 7518 testing images. To enable
the estimation of a disparity image, corresponding rectified
right images are also provided. The benchmark contains three
different object classes: Car, Pedestrian and Cyclist. For each
class, the evaluation is divided into easy, moderate and hard
groups based on their visibilities. Even though the evaluation
only focuses on these three classes, our approach provides
detections for all semantic classes listed in TABLE I. For the
optimization of the bounding box orientation as described in
Section IV-D, the mean values and standard deviations of
height h, width w and length [ provided in this table are
used as shape prior. The evaluation on KITTI is split into
2D, 3D and bird’s eye view evaluation. For all three the
average precision is calculated by using an Intersection over

validation set.

Union (IoU) threshold of 0.7 for cars and an IoU of 0.5 for
cyclists and pedestrians.

Class Occurrence Hdim Odim
% h, w, l [m] h, w, l [m]

Car 70.8 1.53, 1.63, 3.88 0.14, 0.10, 0.43
Pedestrian 11.1 1.76, 0.66, 0.84 0.11, 0.14, 0.23
Van 7.2 2.21, 1.90, 5.08 0.32, 0.17, 0.83
Cyclist 4.0 1.74, 0.60, 1.76 0.09, 0.12, 0.18
Truck 2.7 3.25,2.59, 10.11 | 0.45, 0.22, 2.86
Misc 2.4 1.91, 1.51, 3.57 0.81, 0.67, 2.86
Tram 1.3 3.53,2.54, 16.09 | 0.18, 0.22, 7.86
Sitting person 0.6 1.27, 0.59, 0.80 0.11, 0.08, 0.22

TABLE I: Semantic Classes available in the KITTI Object
Detection Evaluation 2017. Occurrences, mean values and
standard deviations are shown here for the training data set.
In the evaluation, vans are not considered as false positives
for car and sitting persons are not considered as false positive
for pedestrians due to their similarity in appearance.

B. 2D Bounding Box Evaluation

We train our neural network for object detection and
semantic segmentation on the Cityscapes dataset [23] and
the KITTTI dataset [22]. From the Cityscapes dataset we use
both the 5000 training images with fine annotations and the
20000 training images with coarse annotations. From the
KITTI training dataset we randomly selected 5930 images for
training. The other images are used for our validation. Even
if, as mentioned in section I'V-C, the 2D bounding boxes only
serve as an optional input for our clustering, the evaluation
results of the detections in the image are briefly discussed
here, as this also indicates the quality of the semantic map
used. Figure 4 illustrates the precision-recall curves for all
three object classes on KITTI. By training on Cityscapes
and KITTI, the results cannot fully compete with the best 2D
detection approaches on KITTI. But they deliver good results
independent of the exact camera model, for example in our
test vehicle BerthaOne, which are sufficient as bounding box
proposals for our clustering. The collapse of precision for
cars even with small recall values is mainly due to the often



too large number of bounding boxes in lines of parked cars.
However, these faulty bounding boxes are reliably filtered
during clustering.

C. 3D Bounding Box Evaluation

Since an Intersection over Union of 0.7 is relatively

difficult to achieve, especially for stereo-based approaches,
Figure 5 depicts the accuracy depending on the IoU in the
easy benchmark. There, it gets comparably high accuracies
up to an IoU of about 50 %. For pedestrians and cyclists,
who have much smaller dimensions, very good results are
achieved up to an IoU of 30 %. Since the focus of our work
is on the application for automated driving and in the case
of cars an IoU of 50 % still means that the longitudinal and
lateral position deviation is in the range of about 0.5 m, these
results are sufficient to allow high-level scene understanding
and trajectory planning for automated driving.
Furthermore it should be mentioned that experiments on
our test vehicle have shown that with a higher resolution
than KITTT’s 0.4 MP significantly better results are achieved
especially for distant and small objects such as pedestrians
and cyclists.
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Fig. 5: Overall validation accuracy depending on the
Intersection-over-Union (IoU) in the easy benchmark.

Nevertheless, TABLE II summarizes the quantitative eval-
uation results using the above mentioned benchmark metric
of KITTI. Although the results on the test dataset may
not fully match those on the validation dataset, they are
within the range of the best stereo-based approaches [15]
[16] while having a runtime of only one fifth. A comparison
with LiDAR based algorithms should not be made anyway
for several reasons. Firstly, it provides a higher geomet-
ric accuracy, which is in addition approximately constant
over all distances. Secondly, the higher mounting position
of the LiDAR compared to the cameras allows a better
reconstruction of the depth of several objects. Last but not
least, it should not be forgotten that even small errors in the
given calibration between camera and LiDAR can cause 3D

position errors, as KITTI’s ground truth was labeled in the
LiDAR point clouds.

Benchmark Easy Moderate Hard
Car (2D Detection) 57.56 % 48.92 % 42.81 %
Car (3D Detection) 28.50 % 24.10 % 20.32 %
Car (Bird’s Eye View) 59.32 % 49.48 % 43.16 %
Pedestrian (2D Detection) 44.54 % 32.01 % 31.50 %
Pedestrian (3D Detection) 4.27 % 4.25 % 4.26 %
Pedestrian (Bird’s Eye View) 5.39 % 5.30 % 5.19 %
Cyclist (2D Detection) 23.73 % 17.66 % 11.94 %
Cyclist (3D Detection) 6.62 % 6.63 % 4.03 %
Cyclist (Bird’s Eye View) 7.70 % 7.59 % 7.51 %

TABLE II: KITTI evaluation results on the test dataset.

Figure 6 presents the runtimes for the individual process-
ing steps when using the bounding boxes as additional input
for clustering or not. As already described in section IV-C,
the differences in computation times result from the better
parallelization capability when using the bounding boxes.
The processing times are evaluated on an NVIDIA TITAN
X GPU with 12 GB graphics memory. These are the mean
times over the complete test dataset and can vary accordingly
per image depending on the number and size of the objects
to be detected.
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Fig. 6: Breakdown of runtimes of the processing steps
involved in the proposed method. The semantic segmentation
by the CNN and the stereo block matching can be executed
in parallel and are therefore not listed here individually.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented the first real-time capable
stereo-based 3D object detection approach on KITTI. Also,
it is the first method using images which focus not only on
cars but on all types of road users. Due to the calculation
of confidence values during the stereo block matching we
are able to estimate a confidence score per object which is
needed for the potential fusion with other object detecting
sensors. Even if there is still a gap in the results to LiDAR-
based approaches due to the worse geometric accuracy of
stereo, this method offers a cost-effective alternative or a
reliable backup in the event of a sensor failure.



Experiments on our test vehicle BerthaOne have also shown
that using a resolution of 2 MP, even objects at a distance
of 100 m can reliably be detected. Although with a slightly
higher position uncertainty, but still within a sufficient range
for high level scene understanding and trajectory planning.
As a next step we want to use not only a single image pair for
the detection of objects but several consecutive ones which
will allow for a more robust reconstruction and tracking of
the objects while still maintaining real-time capability.
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