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Abstract—In this paper we propose a Reinforcement Learning
(RL) algorithm for path tracking of a real car-like robot. The RL
network is trained in simulation and then evaluated on a small
racing car without modification. We provide a big number of
training data during off-line simulation using a random path
generator to cover different curvatures and initial positions,
headings and velocities of the vehicle for the RL agent. Com-
paring to similar RL based algorithms, we utilize Convolutional
Neural Network (CNN) as image embedder for estimating useful
information about current and future position of the vehicle
relative to the path. Evaluations for running the trained agent on
the real car show that the RL agent can control the car smoothly
and reduce the velocity adaptively to follow a sample track. We
also compared the proposed approach with a conventional lateral
controller and results show smoother maneuvers and smaller
cross-track errors for the proposed algorithm.

I. INTRODUCTION

Controlling an automated vehicle in order to follow the
desired path is always an important task specifically for com-
plex curvatures. Assuming non-holonomic one track model,
the control law can be applied to command the steering and
acceleration of the vehicle in order to minimize cross-track
error (i.e. the distance between vehicle and path) and follow
the desired reference path [1]-[4]. The main drawback for
these approaches is considering only a few parameters for
representing the path and vehicle state such as distance and
curvature of the path at current and near future moments. Such
low dimensional representation prevents to control the vehicle
with long term optimal maneuvers similar to human driving
style that pays attention to both factors: distance to the path
and also lateral jerk.

Reinforcement Leaning (RL) is an efficient learning frame-
work for robotics that can learn optimal control commands
according to predefined reward function. Some researchers
used RL for training a path-following controller for robots
and specifically vehicles in order to have more intelligent
and smoother maneuvers [5]-[7]. However, all of these works
consider only a few parameters for representing the path and
vehicle pose characteristics similar to model based control ap-
proaches. As a result, they still suffer from lack of information
for estimating the situation and can not provide long term
optimal solutions according to the provided reference path.

There are so called end-to-end learning approaches that take
raw sensor data as input and directly compute control com-
mands in the output [8]. They extract meaningful information
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from sensor data and then learn the best policy for optimal
control commands. Although such methods show promising
outcomes, they are not suitable for widely accepted modular
structure of automated driving which require specific modules
for specific tasks such as perception, planning and control
with better feasibility of maintenance and safety verifications
[9]. Another drawback for all existed learning based control
approaches is restriction in amount of training data due to
training only on the real car [5], [8] or only training and
evaluating in simulation without any experiments in reality
(61, [71, [9].

The main contribution of this paper is in two folds. First,
we apply a model free state representation for the path by
utilizing a convolutional neural network (CNN) as image
embedder for the task of path representation, see Figure 1.
This part estimates features that represent the path curvature
and pose errors of the vehicle for the current and future horizon
according to the history of local path images. Comparing to
similar approaches like [5]-[7] that only use parameterized
representation of the path, the proposed approach can follow
more complex paths and produce smoother maneuvers. It also
becomes less sensitive to the measurement error for estimating
path parameters that may come from noise in lane detection
or road mapping.

The second contribution is learning a generic path tracking
controller from simulation and evaluating it on the real car-
like robot without any modification. We propose domain ran-
domization for generating different kinds of path with random
curvature and length as well as initial lateral and heading
errors for the vehicle during simulation in order to cover
all possible situations for training. Such strategy prevents the
network from becoming over-fitted to the few training samples
from dataset or small number of scenarios in simulation
which makes it more generic than similar approaches [S]-[9].
According to our experiments, without further learning on real
car and any modification, the trained path tracker follows the
path smoothly and reduces the speed at locations with big
curvatures.

II. PRELIMINARIES
A. Reinforcement Learning

Reinforcement Learning (RL) is an efficient learning ap-
proach to solve different control problems for robotics through
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Figure 1: Path randomization for training only in simulation (left) and testing the trained agent for real small car (right).

learning the best policy which provides most desired behavior.
RL models such problem as a Markov Decision Process
(MDP). At each discrete time step ¢, the RL agent considers
the current state coming from environment (s;) and decides
about an action (a;). The action is executed and the agent
gets new state from the environment (s;41). It also receives
a reward value 7(s;,a;) according to the new situation in
the whole environment. A policy function maps each state
from the environment into action. The main goal of the
reinforcement learning is to learn the best policy that provides
actions for each step with maximum discounted future reward,
as defined below assuming v € [0, 1]:

Ry =X A Dr(s;,a) (1)

In order to find the best policy, action-value function helps
to find out the future reward of each action for each state:

Q" (s¢,at) = By, s, np[re +YQ™ (S041,(5011))] Q)

If we have optimal Q function, a greedy policy selects
actions with maximum Q value as the best action for each
state [10]:

u(s;) = arg maz, Q(si,al0?) (3)

The Q function can be approximated using deep neural net-
works known as Deep Q Networks (DQN)[11].

Assuming 69 as the parameters of the Q function estimator,
the Q function is learned through minimizing the loss function
using B random samples from reply buffer:

B
L(69) = (yi — Q(si, u(s:)169)) 4)
i=1
where y; is the network training target:
yi = (80, i) +YQ(si41, u(si11)10°) o)

DQN is developed for discrete action spaces which makes
it usually not well-suited for continuous control problems.

B. Continuous Control with Deep Deterministic Policy Gra-
dient

Deep Deterministic Policy Gradient [12] is an actor-critic
network suitable for learning policies with continuous action
space. The actor network is a policy network 7(s¢|0™) with
parameters 6™ that generates continuous actions according to
current state. The critic network Q(s, a|6?) estimates Q value
for each action and state pair with parameters §9. The critic
network is learned similar to DQN by minimizing the loss
function for estimating Q values:

B

L(O9107) = > (i — Q(si, m(si|07)[69))

i=1

(6)

where y; is computed assuming actor network as policy
function:

Yi = (i, a;) + 7Q(si+1, m(si41[07)) )

The main advantage of DDPG is benefiting from the critic
network in order to estimate gradients of Q value for the
actions selected by actor network and utilize that in order to
update the actor network via policy gradient:

VorJ = Z

Such strategy makes DDPG to be able to learn continuous
actions with higher Q values that provide higher cumulative
future reward. Therefore, comparing to discrete action space,
DDPG is more suitable for learning steering and throttle
control commands for robots and vehicles similar to our
problem.

(500 Q515 m(50)[09)Vgrm(si07))  (8)



III. LEARNING BASED PATH TRACKING MODULE

In this section we explain our RL algorithm for the task
of path following. The goal to train the network is not only
minimizing cross-track error, but also generating smoother
control commands in order to provide maneuvers more similar
to human.

A. State & Action Representation

For a better understanding of the situation, the network
has to know about the vehicle pose relative to the reference
path not only for the current moment but also for previous
vehicle poses, see Figure 1. Therefore, we feed last five local
path images which are received during last second (the RL
is updated every 0.2 second assuming 5 Hz for control rate
is enough). Using such sequence of images, the network can
obtain information about jerk as well as speed when reaching
curvatures. However, for the situations where the path is a
straight line with zero curvature, the local path image would
not change if the car follows it perfectly. Furthermore, besides
vehicle heading the RL agent needs to know previous steering
to have less lateral jerk. Considering these reasons, we also
feed to the RL network last 5 throttle and steering values
executed on the vehicle before. Therefore, the final state is
defined as here:

St = (ptv"' s Pt—4,Qt—1," " 7at75) (9)

where p; are binary matrices that specify the local path
in vehicle coordinates and a; are the last actions from RL
executed on the vehicle.

Since reference path is only one pixel wide in the local path
image, this causes input of network being very sparse which
give rise to an inefficient learning. So we apply a Gaussian blur
on the path matrix before giving it to the network. Gaussian
blur can also make input images more dense while keeping
detailed information of the path curvature. It is also beneficial
by removing noises in the input path, as in real world the
given reference path can be noisy due to measurement errors in
estimating drivable corridor or during mapping of the desired
path as road-maps.

In the output of actor network, the proposed RL algorithm
decides about current steering and throttle values of the
vehicle. Therefore, the action is defined as a two dimensional
vector:

a=(6,T); 46T¢€[-1,1] (10)
where § is vehicle front wheels steering and 7" is vehicle
throttle. Note that both of these values should be scaled before
sending for the vehicle actuators:
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Figure 2: Illustration of randomized reference path generation
during training.

B. Domain Randomization for Generating Training Data

Domain randomization is a key point of proposed approach
in order to generate diverse data in simulator during training
which helps to learn a generic and robust path tracker network
that can be also applied for real car. Without such randomiza-
tion, the agent only learns to follow sample paths used during
training and can not be general. For that purpose, a module
called random path generator provides random curve path for
each episode (Figure 2). The random path consists of curve
radius (r), arc angle («), length of curve initial part (L;,)
and vehicle initial pose (ye, ). Loyt 1S a big constant value
to ensure that the agent learns to drive stable after turning.
According to the length of the initial part of the path, the
vehicle can approach the curve by different speeds which also
provide more random situation during training.

C. Network Architecture

Figure 3 depicts the architecture of proposed DDPG net-
work. In both actor and critic networks, we use several
convolutional layers to extract features from local path image
as image embedder. The outputs are then flatten into a feature
vector and concatenated with last 5 action pairs before feeding
to fully connected layers to compute action and Q values
in actor and critic networks respectively. In addition to state
values, the critic network also gets current action pair as input
and also the reward for learning the Q value. For down-
sampling of input path image, we use 3x3 convolutional layer
with stride 1 and then 3x3 max pooling layer with strides
2. All convolutional layers and dense layers except the last
dense layer use batch normalization. Activation function for
convolutional layer is ReLU and for dense layer is Leaky
ReLU with slope 0.2, except the last one which does not have
activation function. In the second dense layer one branch uses
square function as activation function.

D. Reward Function

We make a combination of different targets, including
stability, utility and comfort in order to design the reward
function of proposed RL algorithm. For that purpose, we take
into account current cross-track error (y.), steering (§) and
throttle (7") for computing the reward at each state:
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Figure 3: Overview of image embedder, actor and critic
networks utilized in the proposed RL algorithm.

-1 if |ye| > 0.5
R=X0 if |6 > D or T < 0.1
1 - 0.8y, —0.30 — 0.3272T1 otherwise

13)

Using such reward function, the agent will have a big

punishment for having lateral distance to the path greater than

0.5 meter. It does not get any reward for jerky maneuvers

where difference of current and last steering values is larger
than D that is a variable getting smaller during training:

D, = { } (14)

where n is the sequence number of episodes during training.

Moreover, we set the reward to O if throttle that is sent for
actuator is less than 0.1 in order to enforce the car to drive
forward and never stop. During our experiments, we figured
out that the network can learn quickly to avoid actions assigned
with minimal reward (-1 or 0). However, constant reward
values like -1 or 0 does not provide too much information for
the network during back-propagation to learn best policy due
to same punishment for all actions. For fast convergence and
allowing the network to explore steering changes very rapidly
at the beginning, we set the steering punishment threshold D
being a relative large value 1 at the beginning, and let it to
decay with training.

The part of positive reward represents the goal of smooth
and fast path tracking. We give higher reward when the vehicle
has lower cross-track error, lower steering and has throttle
similar to the desired throttle which is set to 0.7 in our
experiments.

0.9997D,,_1
0.05

if D,_1 > 0.05
otherwise

E. Policy Exploration

Policy exploration is very helpful for our RL algorithm
in order to experience different situations and compare the
impact of different actions during training. Most exploration
heuristics rely on random perturbations of the agent’s policy,
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Figure 4: Example of random noise during one episode.
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for instance by adding a zero mean Gaussian distributed noise
to the output. However, we observed in our experiments that
such kind of independent exploration noise is inefficient for
fast convergence of RL algorithm, mainly because of the
reason that the vehicle system is a low pass filter for high
frequency changes in control commands and responses slowly
to big changes. Moreover, we believe that for specific state
value, a group of neighbor values in action space are better
than others and the agent should only search for the optimal
one by exploring in that area. Therefore, sudden big variations
of control values can not demonstrate effective impacts for the
RL algorithm to realize the best policy. For that purpose, we
use Gaussian distributions with random sinusoid means and
random deviations as steering and throttle noises which are
called €5 and e respectively:

€s, e ~ N (u,az)
s = Asin (wt + 5)

pr = Asin (wt + or) (15)
where 02, A, w are sampled from zero mean Gaussian
distribution and s, @7 are sampled from uniform distribution
of range (—, ) all at the beginning of each episode and will
be constant during that episode. Figure 4 depicts an example
noise values that were selected during RL steps for one specific
episode.

Since the output of actor network is theoretically between
(—00, 00), we have to clip the throttle and steering into range
[-1,1]. Then the problem is that the actions are mostly
either minimum or maximum as all the values out of this
range have been clipped to the boundaries. This would make
the exploration invalid. In consideration of this the network
explores with pure noise between -1 and 1 in the first n = 500
episodes, which help the actor network to experience more
action values in this range . After that, the network further
explores adding noise to the agent’s actor network outputs as
usual.



IV. RESULTS AND EVALUATION
A. Simulation for Training

We have used Carla simulator [13] in order to train the
proposed RL agent as an off-line process benefiting from
unlimited amount of training data. As visible in Figure 1,
the vehicle is driving in an empty playground without any
obstacle. It drives in order to follow the desired path generated
from random path generator at the beginning of each episode
as explained in III-B. During the training in each episode,
state, action and reward tuple for each step is saved in the
memory with size of 20000 elements. Each episode can be
terminated by one of these conditions: Driving to the end of
sample path, having cross-track error bigger than 2 meters
or finishing the time limit (20 seconds). After terminating
an episode, random samples from memory are selected in
order to train actor and critic networks which both have one
evaluation and one target network using the update formulas
for the DDPG network explained in II-B. The training is only
applied on the evaluation network and then the target network
is updated using soft replacement with TAU of 0.005 which
progressively replaces small amounts of the target network.
See [14] for some videos.

Figure 5 shows the average lateral error and steering values
over evaluation episodes during training. As visible in this
graph, the average lateral error and steering values are both
getting lower during training. The lateral error even simply
converges after the first 100000 steps which is about 6 hours.
In comparison to conventional zero mean Gaussian noise
which even could not converge in our experiments at all, our
new effective exploration helps the network to find optimal
actions much faster and more efficiently.
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Figure 5: Average lateral error and steering difference for
each episode during training. Note that both error terms are
normalized.

B. Experiments on Real Car

In order to test how the learning approach is able to transfer
to the real world, we run the trained RL network on a real
small car in order to follow a sample track similar to a
coupled lateral and longitudinal controller. See [14] for a
video about testing the trained algorithm on a real car without
further training. The car we used for experiments is visible

in Figure 1 which has one motor on rear wheels for forward
movement and one motor to control the steerings of the front
wheels. The location of robot during experiments is provided
by an indoor localization system called Stargazer similar to
[5] which provides X-Y position and headings of the car. The
orbital tracking controller proposed in [4] is also implemented
in order to compare with the proposed RL based path follower.
Figure 6 depicts the path traversed using the lateral con-
troller and our proposed RL based path follower both with
the same constant velocity of 0.5 m/s. In other words, here
we only used steering commands from RL agent. According
to this Figure, the RL agent has smoother maneuvers and less
cross-track error specially at parts with high curvatures.
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Figure 6: Traversed path by lateral controller and proposed RL
algorithm both with constance velocity of 0.5 m/s.

We have also compared cross track error and steering com-
mands of the two controllers running with constant velocity of
0.5 m/s (low speed test) and 1.1 m/s (high speed test) in Figure
7 (a and b). As it is visible, the cross track error for RL control
is close to zero and much smaller than lateral controller for
both low speed and high speed tests.

Finally, the trained RL agent has been used to control both
steering and throttle commands of the car in order to evaluate
coupled longitudinal and lateral control of the vehicle. In this
case, the velocity is not constant anymore and can be adapted
by RL agent according to its state observation. Note that for
running the trained network on real car, T tyator 15 Tescaled
in order to make sure that the vehicle never exceeds the stable
velocity which is 2 m/s. Figure 7 (c) shows the cross-track
error of the vehicle using RL agent in this experiment. The
cross-track error is smaller than high speed test and close
to zero similar to the low speed cross-track error. The main
reason for this improvement is that the agent can lower the
speed according to its speed and upcoming path curvature in
order to prevent the vehicle from being unstable and have large
cross-track error.

V. CONCLUSIONS AND FUTURE WORK

In this paper we presented a reinforcement learning based
path tracker in order to control a real vehicle smoothly.
In contrast to other RL based approaches, we used high
dimensional path representation as images of path in vehicle
coordinates. We utilized CNN layer as feature extractors in
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Figure 7: Cross track error for the lateral controller and RL algorithm in low speed (a), high speed (b) and adaptive RL velocity
(c). All experiments started and ended at the same positions on the same track.

order to provide important information about vehicle state and
its position for the RL agent. The second novelty of this paper
is training the algorithm in simulation with several random
configurations in order to cover variety of situations and using
sinusoid based random noise for fast convergence. The trained
network was then directly executed to control a real car in
order to follow a sample track. According to our experiments,
the trained network can control the vehicle in order to have
minimum cross-track error and lateral jerk comparing to other
lateral controller.
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