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Abstract— In the developement of safe intelligent vehicles,
intentions of other road users need to be estimated in order to
plan a safe and convenient trajectory. The present work tries
to approach the answer to the question of how a prediction
could be assessed holistically using the example of pedestrian
prediction. Recently used metrics are compared on a state of
the art (SOTA) prediction method. A good prediction does not
only have to verify itself on a limited data set, so machine
versus human pedestrian prediction are compared. A study
with test persons points out the similarity of human predictions
compared to SOTA prediction. However, further research is
required since we cannot propose a holistic metric that answers
the question in the title, yet.

Index Terms — pedestrian prediction, human prediction,
prediction metrics, human machine interaction.

I. INTRODUCTION

Superordinate to saving energy, accelerating traffic, im-
proving comfort and enabling efficient usage of travel time,
increasing traffic safety is the primary demand on automated
vehicles. If traffic safety decreases due to automated vehicles,
it is likely that automated driving will not prevail compared
to manual driving. Minding the safety of third party traffic
participants is inseparably included in the demand of driving
safely. In the future, intelligent vehicles will be connected
and share information about desired future trajectories. So-
called vulnerable road users (VRU) that participate in traffic
will not be able to share detailed information of future
trajectories. A significant proportion (46% [1]) of road deaths
represent VRUs which mainly include pedestrians, cyclists
and motorcyclists. The focus of attention currently is on
pedestrians because they represent the weakest type of VRU.

If the motion of traffic participants can be predicted
successfully, the behaviour of the ego vehicle can adopt to
the changing traffic situation in advance. This will affect
all demands on automated driving metioned above. Like all
measurement tasks, prediction is only useful if assumptions
about its uncertainty are provided.

We would like to tackle two questions with the present
work:

1) How may prediction quality be quantified?
In contrast to other tasks in perception, prediction
measures a quantity which is not defined at the moment
of measuring. Even if all existing knowledge was
available, events in the future could not be predictied
with absolute certainty.
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The knowledge necessary to estimate the scale of an
object - e.g. a vehicle’s dimensions - exist as a physical
quantity, they are written in the car’s manual and
some people might know those value by heart 1. From
this, we derive the necessity to evaluate prediction
differently from classical estimation tasks.

2) How accurate does a prediction need to be for auto-
mated driving?
We assume that the way humans predict is good
enough for driving. This is a rather strong assumption
since there obviously are traffic fatalities due to bad
intention interpretation. Still, in the overwhelming ma-
jority of road conflicts human intention interpretation
seems to be sufficient. The remaining question is:
How accurate is human prediction compared to SOTA
prediction and recorded Ground Truth (GT)?

II. RELATED WORK

A summary of current pedestrian detection, prediction and
interpretation SOTA can be found in recent surveys. Herein,
Riedel et al.[2] published a literature survey of progress in
pedestrian intention estimation. Earlier, Brouwer et al. [3]
and Schneider et al. [4] quantitatively compared state of the
art motion prediction models.

In general, research work in pedestrian behaviour pre-
diction can be divided in two kinds: Prediction as binary
intention interpretation and forecasting of destinations.

Contributions of the first kind are means to an end, they
constitute a service providing module for automated driving
[5]–[11]. In these works, pedestrians’ intentions are derived
corresponding to potential conflicts with the ego vehicle in
the near future. Here, predictions provides scalar states 0 ≤
s ≤ 1, s ∈ R with i.e. 0 being a risk free state and 1 being
an assured conflict.

Contributions of the second kind work on estimating
pedestrians’ future positions as a stand-alone field of re-
search. Future positions can be predicted independently of
interaction with road traffic [12]–[15], by taking road topol-
ogy into account [16], [17] and by modeling the interaction
between road traffic and pedestrians [18].

Schmidt et al. [19] conducted similar experiments with
test persons in order to figure out which visual features are
used by observers to predict whether a pedestrian crosses a
road. They masked constituent visual features and analyzed
how the prediction quality changes if the masked feature is
not observable for the test person.

1This deliberation is independent of the observability of the object’s scale.



The present work does not focus on the importance
of visual features and how they affect prediction quality.
Instead, it focuses on prediction quality obtained by test
persons and compares their prediction results with prediction
generated by a SOTA approach [17]. The overall goal of our
ongoing work is to find a holistic prediction metric. Hub
et al. [15] also identified the problem of not having good
prediction metrics.

III. TOWARDS NEW PREDICTION METRICS

A. Motivation

This work was inspired by a specific finding mentioned
in Rehder et al. [17]: we found the superiority of learning
from the maximum error of a batch

lmax = − log(min(pi)) (1)

when a batch is the path of a tracked pedestrian for which
corresponding GT is known. pi is the reward corresponding
to timestep i. The default option in machine learning is to
train with the mean error

lavrg = − log(avrg(pi)). (2)

This superiority of learning with lmax, however, was only
observed when looking at the output PDF manually. The
output PDFs look smother and more intuitive. The mean loss
when evaluating was roughly in the same scale for both loss
functions, so numerically, one option is not preferable over
the other.

For training, two slightly different cost functions to calcu-
late the rewards pi are used. The first reward function is given
by the Gaussian term of eq. 3 in Rehder et al. [17] and is the
2D extension of Bishop’s Mixture Density Network (MDN)
[20]. Here, GT is modeled as a point ~xGT :

pDot =

Mix∑
j=1

ΠjN (~xGT ; ~µj ,Σj). (3)

The second cost function led to visually smoother and more
intuitive results. It models a pedestrian as a Gaussian with
fixed variance σ2

Ped = 0.252. This complies roughly with
the physical expansion of a person and was emperically ver-
ified. The predicted PDF is multiplied with the pedestrian’s
Gaussian, which results in

pV ol

=

Mix∑
j=1

Πj

+∞∫∫
−∞

NPred(~x| ~µj ,Σj)NPed(~x|~xGT ,ΣPed)d~x

=

Mix∑
j=1

ΠjNPred( ~µj |~xGT ,Σcj)

(4)

with

Σc
j = Σj + ΣPed,ΣPed =

(
σ2
Ped 0
0 σ2

Ped

)
(5)

being the combined covariance matrix [21]. The cost is
calculated as in Bishop [20] by using the negative logarithm
of the reward p

l = − log(p), (6)

with either p = max(pi) or p = avrg(pi). To summarize, we
do now have a set of 2×2 cost functions2. Each of them can
be used for training while the others are used for evaluation
purpose only.

Visually, PDFs generated by a network trained with the
combination lmax ↔ pV ol look best but the superiority
of this combination could not be proven numerically. In
conclusion, we are looking for a metric or a set of metrics
which can assess the holistic quality of a prediction.

B. Recent Prediction Metrics

Metrics for prediction are used in all kind of data driven
research fields: In economics stock prices get predicted, in
meteorology weather and climate forecasts are a major field
of interest, and critical machine states shall be predicted in
engineering.

In order to assess the quality of a prediction, scoring rules
can be used. They provide a value that is interpreted as a
measure for sharpness and concordance between predicted
and „real“ distribution [22]. By doing so, the goodness of a
prediction model can be assessed which allows a comparison
between different models [23].

There are numerous types of scoring rules. Well known
examples are the quadratic scoring rule and the Kullback-
Leibler divergence.

The quadratic scoring rule is given by

Sdisc(~xGT , pPred) = 2 · pPred(~xGT )−
Bins∑
k

pPred(~xk)2 (7)

in discrete formulation with Sdisc ∈ [−1,+1] ∩ R and

Sconti(~xGT , pPred) = 2·pPred(~xGT )−
+∞∫∫
−∞

pPred(x, y)2dxdy

(8)
in continuous form. Higher scores correspond to higher
prediction quality. For the discrete scoring rule, the Gaussian
mixture was discretized in equidistant bins and at least
99, 9% of probability mass was used. pPred(~xGT ) is the
probability of the bin containing the GT position. A baseline
was defined by deploying the „pedestrian’s distribution“ with
covariance ΣPed defined in eq. 5. The Kullback-Leibler
scoring rule is applicable by using the predicted and the GT
PDF. If 1

2π
√

det ΣPed
= pPred(~xGT ), the score is 0.

The Kullback-Leibler divergence given by

KL(pPed||pPred) =

∫∫
pPed · log

(
pPed
pPred

)
d~x (9)

can be used to measure the loss of information between
a given distribution and its approximation [24], [25]. To

2The notation lreduction method ↔ pprob. model states which cost funtion was
used.



assess a prediction, the information loss can be regarded
as a measure of unsuitability to approximate the original
distribution.

Furthermore, the well-known χ2-test which tests a sta-
tistical model for its validity on a given set of data shall
be applied [26]. It is not commonly used to test prediction
methods because approaches based on classical statistical
methods like (Extended or Unscented) Kalman filters are
optimal estimators and fulfill a χ2-test adequately.

In order to perform Pearson’s χ2-test with respect to the
goodness of fit on a set of samples, the expected distribution
needs to be discretized in n bins for which the expected
probability mass pn is known. The numbers of samples in
those bins are then compared to a model which is supposed
to represent this set of samples.

For the present use case, each input of the prediction
network produces a different prediction. Each prediction
consists of a Gaussian mixture. In order to test the goodness
of fit, the PDF needs to be discretized in a constant number of
bins. These bins are supposed to contain the same probability
mass for each prediction. For Gaussian mixtures, this cannot
be achieved in a useful way3. However, it can be achieved
for a single 2D-Gaussian as described in Moore et al. [27].
A 2D-Gaussian can be analytically separated into a number
of elliptical probability rings with a desired probability mass.

Assuming a Gaussian

f(x) = exp

(
−1

2
(µ− x)TΣ−1(µ− x)

)
(10)

that only differs from a valid PDF g(x) in the scaling
term 1√

2πσ
. The maximum of f(x) is located at f(µ) = 1.

By assigning a desired value (e.g. 10% for the first bin)
to the integral from µ − xbin to µ + xbin of g(x), xbin can
be determined and a constant threshold cbin = f(µ + xbin)
is calculated. The region {x : f(x) > cbin} now contains
the same probability mass for every PDF g(x) of same
dimension. This procedure can be conducted until all of the
Gaussian’s probability mass is split to one of n (e.g. 10) rings
that now all contain 10% of probability mass. The split to
10 elliptical bins is shown in Fig. 1. With knowing these
thresholds, the χ2-test can be applied.

Fig. 1: Shares of 2D Gaussian with equal amount of proba-
bility mass (10%) in each ellipse ring

3Discretize with a equidistant grid in a limited region does not work,
because the cells would always contain different shares of probability mass.
Integrating each grid cell so that it contains a fixed share of mass is possible
but the shape of cells might not be steady and therefore, cells of two PDF
cannot be associated. Integrating independently in each dimension is an
option, but we found a different and more useful method.

Still, it is necessary to form a single Gaussian from
the present mixture. When observing the scales of mixture
coefficients Πi, it is noticeable that a significant share of this
mass (roughly around 80%) is often united to only a few of
the mixture components. Furthermore, all mixture compo-
nents with significant share of probability mass are often
close to each other compared to the corresponding standard
deviations. Combining Gaussian mixture components is a
separate field of research (e.g. Henning [28]) we do not want
to enter in-depth. A simple estimate based on a weighted sum
was used according to the following Algorithm 1.

Data: vari : µx,i, µy,i, ρi, σx,i, σy,i,Πi, i ∈
[1,Mix] ∩ N

Result: Approximate Gaussian mixture components
as a single Gaussian that incorporates at least
80% of prob. mass

initialize varc : µcx, ν
c
y, ρ

c, σcx, σy,Π
c = 0

while Πc < 80% do
m = argmax(Πi)
varc = varm
σcx =

σx,m·Πm+σc
x·Π

c

Πc+Πm
+

µx,m·Πm+µc
x·Π

c

πm+πc

σcy =
σy,m·Πm+σc

y·Π
c

Πc+Πm
+

µy,m·Πm+µc
y·Π

c

Πm+Πc

ρc = ρc·Πc+ρm·Πm

Πm+Πc

µcx =
µx,m·Πm+µc

x·Π
c

Πm+Πc

µcy =
µy,m·Πm+µc

y·Π
c

Πm+Πc

Πc = Πc + Πm

Πm = 0
return µcx, ν

c
y, ρ

c, σcx, σy, π
c

Algorithm 1: Procedure to simplify Gaussian mixture
based on weighted sum.

With combining Gaussians mixtures to a single Gaussian
and dividing it in 10 bins it is now possible to apply χ2-test
in order to verify the model.

C. Human Prediction

Fig. 2: GUI used for experiments. The pedestrian marked by
the red dot shall be predicted. The uncertainty σhu defines
the radius of the covariance ellipsis.

In order to obtain a better prediction metric, experiments
ware conducted. The test persons watched 22 videos of traffic
scenes recorded by an experimental vehicle. Each video was
about 10 sec. One pedestrian per video was marked. At the
end of each video, test persons were asked to predict this
pedestrian by annotating the presumed destination in the



image. Three types of prediction were tested: predicting a
destination with uncertainty, predicting only the direction
of a destination with uncertainty, and predicting a path.
All methods were evaluated with a prediction horizon of
2.5sec. To make the concept of uncertainty more intuitive,
test persons had to choose a human uncertainty σhu ∈
[0, 100] ∩ N (Fig. 2). This value is then mapped to a
Gaussian or a von-Mises uncertainty (σ2 or 1

κ , respectively)
by a nonlinear function whose parameters were determined
empirically. They are categorized subjectively as „easy“,
„moderate“ and „hard“.

The goal is to discover how good a prediction needs to be
in order to drive with it and to derive rules for the prediction
quality required for automated driving. For the experiments
only people who participate in traffic on a regular basis were
chosen. In total, the set of test persons is Ωtp = 32.

IV. RESULTS

A. Prediction Metrics Applied to Single Pedestrian Network

According to Fig. 3 all prediction metrics clearly rate
lmax ↔ pV ol higher than the competing approaches. How-
ever, according to these metrics, learning from the largest
error seems to have a smaller impact on the score than
modeling a pedestrian as a PDF (eq. 4) instead of a point (eq.
3). When looking at a set of PDFs manually, the difference
of lmax ./ lmean is more remarkable than pDot ./ pV ol,
so none of those metrics used in other research fields fully
confirm our observations.
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Fig. 3: Results of 2 × 2 different loss functions, evaluated
with three different scoring rules. Green dashed line: Best
score, red dashed line: Worst score. pV ol outperforms pDot
but none of the scores reflect the observed superiority of
lmax over lavrg.

Last, results of the χ2-test are shown in Fig. 4. For all
tests a statistical significance of 5% is used. According
to Pearson’s goodness of fit test, pV ol ↔ lavrg does not
represent the dataset (300 < χ2 < 600), since its histogram

is far from the uniform distibution expected. Compared to
lavrg, a model trained with lmax yields to a valid distribution
on the given test dataset (5 < χ2 < 15). The χ2-test is the
only metric that is able to substantiate our observations.
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Fig. 4: Histogramm of GT destinations in 10 ellipse bins
according to color scheme of Fig. 1.

B. Prediction Results of Humans

The images shown in Fig. 6 and 7 represent the overall
results that are statistically shown in Fig. 5.

In Fig. 6, point-shaped predictions are shown. Predictions
of test persons (blue points with uncertainties as circles) and
the automatically generated predictions (green ellipses) have
a large uncertainty. In Fig. 7 directions of the future des-
tination are shown. With both prediction methods direction
in which a future position is located is met quite precisely.
However, both the human and the machine prediction often
misestimate the correct distance to the pedestrians’ destina-
tions. The third kind of prediction, a pedestrian’s path, led to
similar results. Note that test persons determined the future
position in the image which was then mapped to the ground
plane by raycasting. This means the result is not biased by
the lack of humans to numerically estimating distances4.

The average Euklidean distances EΩtp
(|~xhp − ~xGT |) of

human predictions ~xhp is larger than the networks error
(Fig. 5 (a)). Test persons overestimate their ability to predict
pedestrians. We derive that from the smaller uncertainties
in Fig. 5 (c) and the fact that the ANN is a valid model
according to Fig. 4 and has smaller errors according to 5
(a). The classification of sequences seems to be reasonable,
since the humans’ errors and uncertainties increase with the
difficulty class. When comparing the results for the direction
prediction, humans predict slightly better than the ANN.

C. Discussion

A new holistic prediction metric cannot be stated at the
moment. A superiority of pV ol over pDot is observed and
numerically shown by all tested metrics. Still, it is necessary
to evaluate destinations and uncertainties separately, because
the observed advantage of lmax over lavrg could only be
shown with a goodness of fit test.

When comparing the combined human versus machine
prediction, both are surprisingly close to each other. The
mean error of ANN and humans have roughly the same

4Such a bias might be implicitely introduced by the numerically fixed
prediction horizon of 2.5 sec, though.



easy moderate hard
0

0.5

1

1.5

2

(a)

A
vr

g
Po

si
tio

n
E

rr
or

in
m

Point-shaped Destination Prediction

easy moderate hard
0

20

40

60

80

(b)

A
vr

g
A

ng
ul

ar
E

rr
or

in
◦

Angular Direction Prediction

Test Persons
ANN

easy moderate hard
0

5

10

15

(c)

A
vr

g
U

nc
er

ta
in

ty
in

%

easy moderate hard
0

5

10

15

20

25

(d)

A
vr

g
U

nc
er

ta
in

ty
in

%

Fig. 5: Statistics of experiments with test persons. Left
column: Position prediction, right column: Angle prediction.
Upper row: Error, lower row: Uncertainties. For easier in-
terpretability, the Euklidean distance to maximum mode of
PDF is shown.

scale. The network, however, does not fully represent the
human predictions. This is interpreted as a risk introduced by
the artificial prediction. Even though neither the human pre-
diction nor the uncertainty stated by the test persons seems
to obviously correlate with GT, the human prediction could
take information into account that is only implicitly available
by observing the traffic situation as a whole. However, we
neither sought nor casually found any indications of this
conjecture.

Futhermore, better predictions of point-shaped destinations
might stem from the numerical superiority of the ANN. The
numerical differences of the results of ANN and humans are
not considered large enough to derive a holistic superiority
of the machine made prediction.

V. CONCLUSION

The present work summarizes new findings with regards
to a better prediction metric, especially related to pedestrian
prediction in public traffic. A collection of metrics recently
used is presented and tested on a SOTA prediction method. A
new loss function for Mixture Density Networks is presented
(eq. 4). Furthermore, machine prediction was compared ver-
sus human prediction in a experiment with test persons. For
our future work, we conclude with the following findings:
• Position and uncertainty need to be evaluated separately

in order to assess a prediction holistically. The χ2-test
might be a suitable and well-established option.

• Learning from minimum or maximum (or a specific
quartile) error might be an easy empirical regularization
method in order to prevent uncertainty misestimation.

• Human and machine made predictions are surprisingly
close to each other. Either current prediction approaches

are already sufficiently good to drive with it or bad pre-
diction skills are a major cause of man-made accidents.
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