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Abstract— Generating annotations which can be used to
train new models has become an independent field of research
within machine learning. Its goal is producing highly accurate
annotations as cost efficient as possible. 3D point clouds are
the common sensor output when recording 3D data from
a mobile platform. The latest ways of annotating 3D point
clouds include their visualization on a 2D screen. This method
contradicts the goal of time-efficient annotating since it is
unintuitive and therefore unnecessarily time consuming. We
present a novel labeling technique in Virtual Reality. Using our
tool, we accelerate the process of data annotation significantly
compared to existing approaches. Furthermore, we will give
the machine learning community access to our tool and create
a new community-labeled dataset for autonomous driving.
Furthermore we plan to set up an annotation benchmark in
which primarily commercial annotation companies but also
researchers active in annotation can take part in. We present
results from an experimental plattform based on Oculus Rift
indicating a huge potential for VR annotations.

Index Terms — label tool, dataset, benchmark, machine
learning.

I. INTRODUCTION

Annotating data in a fast and consistent way has recently
become an independent field of research. An increasing num-
ber of companies chooses the manifacturing of huge amounts
of data annotations in a cheap way as their business model.
In machine vision, this trend started with annotating images.
With increasing quality and point density at a decreasing
cost of LiDAR sensors, especially in the field of automated
mobile systems annotating in 3D point clouds has become
important for data annotators.

Meanwhile, in the field of consumer electronics and gam-
ing, tools for visualizing three-dimensional environments in
its native way are getting more popular. With a large amount
of cheap or free software tools and games for these Virtual
Reality (VR) devices — such as the game engine Unity' — the
VR community, its tools, tutorials and forum contributions,
are permanently growing. Therefore, it is getting easier for
researchers not active in game designing, game development
or VR applications to benefit from this development.

The automated driving community, however, is still anno-
tating 3D point clouds on 2D computer screens with 2D mice
or touch screens, thus sacraficing a whole dimension due to
hardware. Therefore, we try to leverage the development in
game design and the natural human way of perceiving its
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Fig. 1: Scene recorded from a mobile plattform, labeled
exemplarily.

environment in 3D. We developed a VR label tool which
allows annotating point clouds in their natural habitat: A 3D
representation projected around the human annotator.

According to our experiments, people not participating in
the development of this tool are able to learn annotating data
quickly after receiving a brief introduction in tool handling.
Our tool accelerates the process of data annotation by a
factor of three compared to the latest publication in this
field. Experiments with KITTI [1] labels show the benefit in
annotation accuracy our method offers. During data annota-
tion for several private and public datasets at our institute >
we observed a fast decreasing work motivation of student
assistants not working with their annotations themselves
afterwards. Our tool tackles this problem by gamifying data
annotation and we would like to motivate the community
working actively with Ground Truth themselves to contribute
to our project. We open-sourced the label tool and some post
processing scripts on github® and in the Unity AssetStore®.
Furthermore, our tool is the only known tool to set 3D
bounding boxes with 9 degrees of freedom (DoF). Two more
DoF than usual are especially useful for objects on tilted
roads, like in [2] Fig. 6: On the right side cars park at a steep
road in San Francisco, but the bounding boxes are parallel
to the ego vehicle.

II. RELATED WORK
The state of the art in annotating 3D data is to visualize a

point cloud on a 2D screen and choose a subset of points by
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drawing a hull around them. This process is often supported
by camera images taken in the same scene. By making use of
extrinsic calibration, the 3D annotation can be projected into
the image. Antsy 3D is a browser based tool for point-wise
annotations® without related conference contribution. Russel
et al. [3] extended their online labeling tool ,LabelMe*“® with
a toolbox for Matlab’.

Wong et al. [4] proposed a learning based annotating
tool which proposes cuboid candidates in RGB-D images
given e.g. by Microsoft Kinect. According to the authors,
this tool is meant for annotating indoor scenarios only. Xiao
et al. [5] proposed a browser based open-sourced annotation
tool to annotate RGB-D images. By annotating the same
object in consecutive frames with different camera positions
the objects 3D shape can be reconstructed. It is presented
in indoor scenarios only but it can also be used outdoors.
However, this procedure can be used within static scenarios
only.

Veit et al. [6] published a framework to annotate points
in 3D using Unity3D. However, they stated the superior
manipulation of 3D data using a 2D interface so they tracked
a smartphone with 6 DoF for having a large variaty of input
possibilities, such as writing text or choosing cuboids on a
touch screen. Wilkes et al. [7] observed that tracked multi-
touch mobile devices do not lead to advances in performence
when used in VR. Furthermore, they suggest to use a 6 DoF
device visualized in VR or use VR buttons and sliders to
replace the smartphone functionality. Yu et al. [8] developed
algorithms for spatial, structure-aware selection method that
allow users to draw a lasso around a 2D projection of charac-
teristic structures within a point cloud. However, this method
is computationally expensive and therefore ineffective for
setting up large databases as machine learning requires them
at the moment. Coffey er al. [9] presented a VR system
which is making use of two displays for navigation. Multi
gestures on the touch screen allow interfering with the object
while the user only sees the 3D object in VR. Spectators can
follow the users presentation on the second, larger screen.
This tool was developed in the field of medical visualization
of internal organs and isn’t tailored to the problem of
annotating convex objects which most traffic participants
can be reduced to. Bacim ef al. [10] and Lubos et al. [11]
present two methods to annotate point clouds with free-hand
gestures. Their accuracies may be higher for the application
of segmenting complex 3D point clouds. Since we are
interested in geometrically simple objects, their methods
would unnecessarily increase the annotation effort and cost.
Monica et al. [12] developed a control point based tool. It
allows the user to set several control points around a single
instance within a point cloud. A segmentation algorithm
then provides real time feedback for the annotator who can
then provide an improved cluster of control points. [12]
are the only ones conscientiously evaluating their label tool
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Fig. 2: Monica et al. [12] propose a tool to annotate point
clouds pointwise. They evaluate their tool by measuring the
time needed for unexperienced annotators to annotate a point
cloud. We try to compare ourselves with their results, even
though their scene is not publicly available.

with regard to annotation speed. They use a 2D rectangle-
based method as baseline. Therefore, we try to compare our
approach with theirs.

There are already several datasets which include 3D anno-
tations of road users. The KITTI dataset [1] includes 80,256
annotated objects in about 15,000 LiDAR scans. Nuscenes
[13] is the largest known dataset at the moment. It contains
around 1.1 bounding boxes for traffic participants in 400,000
LiDAR sweeps recorded from a Velodyne HDL 32. H3D
dataset [2] contains 1.0 million objects, that are labeled in
27,000 Velodyne HDL 64 sweeps, so their scenes are more
crowded. Furthermore, the TUBS Road User Dataset [14]
was announced for early 2019. It contains 12,000 semi-
automatic labeled scans from a Velodyne HDL 64.

Even though there are datasets which already tackle the
problem of 3D object detection/tracking by making use of
Ground Truth generated from high resolution point clouds,
the requirement for data by emerging deep learning tech-
niques demands for getting access to more data from dif-
ferent sensors in different environments and different traffic
situations.

III. 3D LABELING IN VIRTUAL REALITY

We created a tool for annotating 3D point cloud data in 3D
by making use of the Virtual Reality device Oculus Rift and
its Touch Controllers. The data can be sequence based so it
is possible to annotate a whole sequence in one run and keep
track of the same object over time. The tool is supposed to
be easy to use and simple to modify for the individual needs
of research groups that would like to benefit from our work.
We introduced some common parameters which can be set
easily for the individual needs dependent of the sensor setup
used.

A. Concept

During the whole process of data annotation, we see a
transparent dummy bounding box between our controllers.
This box has 9 DoF: Its position and scale is defined by
the red anchors mounted directly to the virtual controllers.
The orientation of the box is determined by the orientation
of the right controller only. To make the annotator aware
of this at any time, we mounted a coloured set of axes to
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Fig. 3: Tool environment: Point cloud and images are vi-
sualized. Two cyclists are labeled. Dummy bounding box
between between controllers shall be adopted to the shape
of an object.

the right controller. It is the goal of our annotation tool to
make the shape of the box represent the real world object
as well as possible. Therefore, the point cloud and the
images from the measurement run of a stationary or mobile
plattform is visualized in Unity (Fig. 1 and 3). In many
cases, the shape has to be guessed for the most part. We
will add a postprocessing script which improves the boxes.
The orientation has to be set manually as precise as possible.
When annotating data, all points belonging to one object have
to be inside the dummy box, all points not belonging to the
object have to be outside. We tried to support the annotator
on that task by making the back wall of the box black and
intransparent and the front of it dark but transparent. All
points of the object have to be visible (in front of the back
wall) but slightly dimmed (behind the front wall). The tool
outputs a text file with a list of objects for each point cloud.
Position, scale, orientation (as a quaternion) relative to the
LIDAR and meta information are exported for each object.

B. Controller Key Assignment

We strictly separated the functionality of both Oculus
Touch controllers to make the annotation process as intuitive
as possible. The left controller contains functionality related
to scene understanding and scene managing only. The right
controller only contains functions directly related with an-
notation. Functionality is assigned to buttons and joystick as
follows:

1) Left Oculus Touch Controller

a) Hand trigger: Grab PCL Press to move the
point cloud with 6 DoF. We accelerated the
translational movement, otherwise the annotation
process would be physically demanding after a
short time span.

b) Index trigger: Fix Rotation Often, the bounding
box does not require all of the 9 DoF to be
released. The index trigger can be pressed to
release two rotational DoF both of the box and
of the point cloud.

¢) Thumbstick: Switch PCLs Since the label tool
is meant to work sequence based, the thumbstick
allows to switch scenes.

Fig. 4: 3D visualization of the key assignment. Keys on the
left controller are used for scene understanding, keys of the
right controller are used for data annotation.

d) Button Y: Show Images To get a good overview
of the current scene four images can be shown,
one for each direction.

e) Button X: Switch Scale To comfortably annotate
objects of different scales the scene’s scale can be
changed.

2) Right Oculus Touch Controller

a) Index trigger: Accept Meta data is added by
dialogs which pop up when a new track or a new
box is created. These dialogs can be accepted
with the index trigger.

b) Thumbstick: Switch Tracks The track the an-
notator currently works on can be changed by
pushing the thumbstick to the left or to the right.

c) Button A: New Track Create a new track by
hitting A. The ,,new track®- dialog will pop up
and meta information can be added.

d) Button B: New Box By hitting B, a new bound-
ing box for the current scene is created within the
current track. The ,,new box*“- dialog will pop up
and information about the label quality can be
added.

C. Meta Information

Besides knowing the precise location of a road user it is
important to understand its current role in the traffic scene
and the resulting relation to the ego vehicle. To tackle this
problem we add meta information to each object which is
queried within dialogs that pop up everytime a new track
gets started. We, for a start, added five properties, which are
the most important for our needs:

1) Type of Road User: We distinguish between five types
of road users. One class contains road users that have
the same physical model.

a) Pedestrian: Slow vulnerable road user (VRU).
It can change its velocity and its direction of
movement anytime and uses primarily its own
road infrastructure. (pedestrian, wheelchair user,
pedestrian with buggy, child)



b) Two Wheeler: Fast VRU. It steers by weight
transfer and can therefore not change velocity
and direction of movement independently. Both
DoF of the bicycle model used for four-wheeled
vehicles introduced by Taheri et al. [15] are
connected by a non-holonome contraint leading
to the model presented by Neimark et al. [16].
It shares the road with the ego vehicle but has
the spatial dimensions of a pedestrian rather than
of a car. (cyclist, motorbike, segway PT, scooter,
motorized wheel chair)

c¢) Car: Same physical model like to ego vehicle
[15]. (everything with three or more wheels,
including trucks)

d) Train: Vehicle with only one DoF, its velocity.
(train, tram, subway)

e) Trailer: Moveable object strictly following an-
other moveable object. Only body shall be within
a box, not the trailer hitch. (trailer(s), rear
wagon(s) of a train, rear part(s) of an articulated
bus)

2) Priority: Does the road user have priority with respect
to us if dynamic road signs (traffic signs, traffic police-
men) are ignored? Only applies to road user crossing
our road. Otherwise the priority is indifferent.

3) Direction: Does the road user drive in our direction or
in the opposite direction? Crossing road user shall be
labeled as indifferent.

4) Lane: Lane on which the traffic participant is currently
located relative to the ego vehicle’s lane. We consider
more than £2 lanes to be not directly relevant for the
ego vehicle.

5) Participating in Traffic: Is the vehicle participating
in traffic or is it parking?

A more detailed label instruction is given online.

IV. RESULTS AND EVALUATION

When annotating data in a large scale for a dataset, two
characteristic numbers related to the method of data annota-
tion matter: The annotation time since it is proportional to the
annotation cost and the annotation accuracy. The annotation
cost shall be minimized, the annotation accuracy shall be
maximised.

To the best of our knowledge there is no benchmark
for data annotation to compare ourselves with. As the only
reference [12] evaluated their tool in a conscientious way.
They annotate data point wise, however, the objects they use
indeed can be assumed to be cuboid-like. Except for the
toy horse and the vase the concave parts of the objects they
use are negligible as much as the concave parts of a traffic
participant. [12] did not publish their evaluation data. We try
to mimic their evaluation method as precisely as necessary
to roughly make our results comparable to theirs.

Monica et al.[12] chose two scenerios each with four ob-
jects which shall be labeled pointwise. They use unstructured
indoor scenes shown in Fig. 2. The first scene is a messy
workbench with around 20 different objects. The second

scenario is a plate with around 10 objects standing upright
next to each other. Only 4 objects (colorized in Fig. 2) of
each scene are supposed to be labeled. Monica et al. measure
the time the annotators need to annotate the scenes with two
techniques. The first one is their proposed control point based
method. The second method is based on selecting rectangles.
The annotator chooses a rectangle which contains all points
for the current direction of view. It is applied from several
viewing directions. The average result of 10 annotators is
given in Table 2. and 3. in [12].

For our use case, the annotation speed can be evaluated
easily by measuring the annotation time of unexperienced
annotators. We did so by making use of four KITTI 3D
Object Detection scenes. We asked students in one of our
courses to annotate data. We offered an automated ride with
our experimental vehicle Bertha [17] as reward for the three
best results compromized between annotation speed and
accuracy. The students hadn’t used the tool before. They had
30-45 min for getting familiar with the tool while we gave
them some hints how to label objects efficiently. Afterwards
they labeled four KITTI training scenes which they had not
seen before.

The accuracy is rather difficult to evaluate. As the images
of the KITTI 3D bounding boxes show in Fig. Se, the labels
differ from a box an annotator would choose in VR. For
example, most boxes in the distance are below ground level
(images in third row) which can also be observed when
looking at the images provided within the KITTI develop-
ment kit (forth row). Therefore, we use KITTI scenes for
evaluation but generate our own Ground Truth (GT). We, the
developers of this tool, do already have a lot of experience
in annotating in VR, so it is likely that we produce more
accurate annotations than our student annotators. Labeling
those four GT scenes took us 37.5 seconds per object. For
our students, we specified three requirements: All points of
the current object are supposed to be within the box, all
points not part of the current object shall be outside the box,
and the shape of the box shall match the shape of the physical
object as good as possible. To assess the label accuracy, we
count the relative number of False Positive (FP) and False
Negative (FN) points per object, as shown in table I.

TABLE I: Results compared with KITTI and our GT.

FP / FN ratio
per Object

PointAtMe (GT) Experiments KITTI

PointAtMe (GT) 0% / 0% 72% [/ 33% | 17.2% / 19.7%

Experiments —% | —% 30.7% 1 13.7%

KITTI 0% / 0%

Note that our students’ results are way closer to our
generated GT than to the GT offered by KITTI which
indicates the commensurability of relabeling KITTI data for
our needs. The comparatively high FP of our students is due
to objects which were hit by a few points only.

We can now roughly compare our results with Monica et
al. [12]. They evaluated the average task completion time,
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Fig. 5: KITTI Ground Truth visualized both in Unity (first and third row) and with KITTI development kit (second and
fourth row). The Ground Truth accuracy is not precise enough to evaluate our label tool with it (as is shown in the third

and fourth row). In conclusion, we labeled these four scenes ourselves.

the number of undo operations per minute, and the number
of annotation errors. One annotation error is one wrong label
assigned to a point. Their unstructured point clouds consist
of 150,868 and 124,966 point which roughly corresponds to
the point clouds used in KITTTI (recorded with one Velodyne
HDL 64 S2: ~140,000 points / scan). Stats for 9 annotators
can be found in the table below.

TABLE II: Results compared with baseline.

[ Method | PointAtMe (ours) | control points [12] |
Time/Object (sec.) 55.2+12.1 96.0 £ 22.5
Undo/Object. 0.42+£0.43 21+1.2
Errors (Points/Object) 28.7+5.1 266.1 £+ 96.2
FP ratio / Object 7.16% unknown
FN ratio / Object 3.27% unknown

To compare the results, we refer to a single object (Monica
et al. used 8 in total, we used 20). The time necessary to
label one object decreases approximately by a factor of two
compared to the baseline. The amount of errors per Object
is not directly comparable since Monica et al. used artificial
scenes and we used real world scans. Some objects of ours
only where hit by a few dozens of points. Therefore, we
added the FP and FN ratio per object to show that on average,
our students added 7.16% more points than our GT contains.

Also, they left out 3.27% of the points our GT contains.

Our tool promises to generate an interesting new dataset
that can be produced in a cheaper and more precise way
than before. Furthermore, we can tackle the problem of
tired labeling students because labeling data in VR gamifies
the annotation process. Still, about a third of the students
reported VR sickness or comparable phenomena after the
experiments, so one needs to examine applicants for this
issue before hiring them for annotating in VR for a long
period of time.

V. CONCLUSIONS AND FUTURE WORK

We presented a new label tool for annotating cuboid-like
objects in point clouds. Our primary application is 3D data
annotation in the environment of mobile robots like they
occur in the context of automated driving. We contribute
to the community by making our tool publicly available and
open-sourced. Furthermore, we announce a benchmark for
automated driving which shall be based on community data
annotation. We do not only want to benchmark methods in
the field of automated driving but also the process of data
annotation itself. Our tool outperformes SOTA solutions with
regards to annotation speed. Furthermore, we showed the
superiority of annotating 3D data in 3D compared to existing



solutions. We did so by visualizing Ground Truth data used
within the KITTI 3D Object Detection training set.

Our next steps will be to directly visualize points within
a placed bounding box. This is expected to improve the
label quality. Furthermore, we will publish raw data for
everyone willing to participate in our community-labeled
dataset. We experienced a huge benefit when forcing people
who have to work with those labels afterwards to annotate
data themselves. They label data in a more conscientious way
than paid people who never use the data nor the labels ever
again. However, we did not evaluate the problem of working
in VR for a long time span, yet.
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