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Abstract— The breakthrough of intelligent vehicles will also
be determined by the safety gain they provide. In order to
perform accident avoiding reactions at the earliest point in
time possible, predictions about the future behavior of other
traffic participants are needed. The most exposed share of
traffic participants regarding this issue are single-track two-
wheelers (1T2W): they share the road with cars and trucks but
are not as agile due to their kinematics. Furthermore, they are
faster than pedestrians but comparably vulnerable as those.

In order to guarantee their safety, we make use of their
movement restricting kinematics. We simulate three typical
classes of 1T2W under conservative assumptions about their
agility in order to generate a spatial region in which they have
to be due to physics after a fixed prediction horizon of up to
1.5 seconds. The proposed approach was verified in experiments
with real high-dynamic driving maneuvers.

Index Terms— prediction, safety, cyclist

I. INTRODUCTION

Increasing safety not only for vehicle occupants but also
for Vulnerable Road Users (VRUs) is promised when arguing
about the benefit of intelligent vehicles in urban traffic.
Whilst close attention regarding traffic safety is payed to
pedestrians, actually bicycles, motorcycles, and an increasing
fleet of motorized scooters – subsumed as single-track two-
wheelers (1T2W)1 – make up nearly two thirds of VRU
fatalities and casualties. Furthermore, the number of fatalities
and injuries of two-wheelers tends to increase while the
number of pedestrian fatalities and injuries tends to decrease
in Germany [1].

In order to avoid accidents between automated vehicles
and VRUs, it is required to correctly detect, track and
predict them. Predicting VRUs is a particularly difficult
task, because they obey traffic rules far less than two-track
vehicles which in many cases can be predicted along lanes.
In this paper, we propose a method to predict two-wheelers
based on a dynamic model which is combined with worst-
case assumptions about the kinematic variables. It results in
boundary points of a geometric space where the 1T2W has
to be due to physics after a defined period of time, often
referred to as „reachable set“.

In comparison to pedestrians, 1T2W are significantly faster
and due to their kinematics [2]–[4] less flexible regarding
quick changes of direction. In comparison to a two-track
four-wheeler (e.g. car, bus, truck) for which the kinematic
single-track model [5] (commonly referred to as bicycle
model) approximately represents the dynamics, the 1T2W
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1This scales to trikes (3T3W), cars (2T4W) and excludes self-balancing
scooters such as Segways (2T2W).

Fig. 1: A cyclist on an unstructured road. Possible trajecto-
ries for observation ot = (ϕt, ϕ̈t, vx,t, ψ̇t) are simulated with
different parameter combinations si,j = (vend,i, ϕmax,j).
The end points of the simulations determine the region
(petrol) inside of which the cyclist has to be after a fixed
time span.

has only one degree of freedom (DoF)2. The rider or a con-
troller can choose either the steering angle or the acceleration
force, and has to adopt one to the other in order to keep
the vehicle in a stable, upright position. With the kinematic
single-track model as it is used for cars, speed and steering
angle can be chosen independently to a great extent. Those
disadvantages – 1 DoF, higher speed compared to pedestrian,
combined with protection gear rather comparable to those
of pedestrians than to the bodywork of a car – make two-
wheelers the most vulnerable share of VRUs.

In our work, we refer to the vehicle model developed by
Riekert et al.[5] as single-track model and to the models
which include a roll angle as bicycle model.

The contribution of this work is to make use of a kinematic
model of a generalized single-track two-wheeler in order
to generate a geometric space where the 1T2W has to be
inside of after a small prediction horizon of up to 1.5
seconds. Originally, this model was developed for control of
autonomous riderless motorbikes by Zhang [6]. We describe
two common models and evaluate our prediction on real
world data recorded in an unstructured environment with
three common parameter combinations: Cyclist, motorcyclist
and motorized scooter. The approach can be used as a single-
shot approach, if conservative assumptions about the current
state of the 1T2W are made.

2Technically, it has two DoF and one nonholonomic constraint for the
roll angle, namely |ϕ|< ϕmax.



II. RELATED WORK

While many researchers focused on VRU safety as a
demarcated problem [7]–[10], only few publications tackle
the problem of cyclist prediction. We did not find any
publication tackling two-wheeler safety by making use of
their unique kinematics.

Jia et al. [11] found the necessity of developing a special-
ized model for cyclist crash prediction from the viewpoint
of a heavy goods vehicle after testing a collision avoidance
system [12].

Zernetsch et al. [13] applied an artificial neural network
(ANN) to the task of cyclist prediction and compared it
against a Kalman Filter (KF) and a 1-D kinetic approach
in which they fit the unknown parameters to recorded data
of 566 cyclist tracks. Both the ANN and the kinetic model
outperform the baseline KF for prediction horizons between
0.5 and 2.5 seconds.

Pool et al. [14] trained the parameters of a probabilistic
single Gaussian and a Gaussian mixture linear dynamic
system with data of 108 cyclists which they recorded with
a mobile platform. They tuned the linear models based on 5
common driving directions (straight, half right, half left, right
and left) of cyclists in their dataset. This dataset was also
used by Saleh et al. [15] who trained a bidirectional recurrent
ANN to predict future trajectory points of cyclists without
an underlying vehicle model. In [7], Kooij et al. proposed a
generic probabilistic prediction approach based on Switching
Linear Dynamical Systems that can be fit to several types of
traffic participants. They validated their approach with the
example of pedestrian and cyclist prediction. Zernetsch et
al. [10] used a dataset with 1,311 cyclist trajectories at an
urban intersection in order to train an ANN to predict future
waypoints with uncertainty. Xiong et al. [9] compared the
predictions of VRUs with different recurrent ANNs in image
coordinates. Pool et al. [16] presented a recurrent ANN that
predicts the future position of cyclists as a 2D Gaussian. The
model is trained with high level context information extracted
from 51 cyclist tracks.

Further work was done in the classification of cyclist
starting behavior at intersections [8], [17]–[20].

Besides the basic equilibrium of forces in longitudinal
direction proposed by Zernetsch et al. [13], no approach
makes use of the unique physical characteristics of cyclists.
Furthermore, there is no generic safety approach that tackles
all kind of 1T2W and we cannot find any publication that
approaches the well-known problem of motorbike safety or
the increasing problem of motorized scooter safety from the
third party viewpoint of an intelligent vehicle.

III. PROPOSED APPROACH

A. Goal

In this work, we propose to use a kinematic model for
1T2W in order to obtain a novel safety approach customized
for the most endangered group of traffic participants: cyclists,
motorcyclists and motorized scooter riders. Due to the kine-
matics of a 1T2W, the area it can reach in a limited prediction

Fig. 2: Sketch of the mathematical model for single-track
two-wheelers.

time span ∆tpred of a few seconds is confined. With some
assumptions about the possible maneuvers of the 1T2W it is
possible to derive the boundaries of this area. An automated
vehicle can then ensure safety similarly to the Responsibility
Sensitive Safety (RSS) approach proposed in a white paper
by Shalev-Shwartz et al.[21]. Position prediction is assumed
to be a two-dimensional problem. Those 1T2W our approach
is supposed to predict are assumed to drive normally3 but not
necessarily traffic rule compliant.

We consider an unstructured environment according to
3.7.2. in [21] in order to get the most conservative estimation
of future positions. Let t0 be the current point in time. Let
Ta,t1 be a set of two-dimensional trajectories of a 1T2W
and let Te,t1 be the set of possible trajectories of the ego
vehicle until t1 = t0 + ∆tpred. The planning module of the
ego vehicle is aware of Te,t1 and at time t0 it has chosen a
certain trajectory τe,t0 ∈ Te,t1 but it is not necessarily the
same for each t0. Following definition 21 in [21], the ego
vehicle knows the occupied region Te,brake,t1 furthest away
on the possible trajectories which it would still reach if it
conducted an emergency braking maneuver at t0. According
to definition 22, a situation is safe, if

1) one of the traffic participants can come to a full stop
in order to avoid a crash or

2) both can come to a full stop without crashing.
The most conservative estimate would be to not expect

the cyclist to react to the ego vehicle, therefore the second
case lapses and the first case can be formulated as Ta,t1 ∩
Te,brake,t1 = ∅ and Ta,t1 ∩ Te,t1 6= ∅. Our approach can be
seen as a proposal on how to calculate Ta,t1 for single-track
two-wheelers.

B. Generic Prediction Model for Single-Track Two-Wheelers

In literature, two kinematic models are frequently applied.
The first was introduced by Getz [4], the second was de-
veloped by Zhang [6]. Both model the rider and the bike
as a combined mass above and between both wheels (see

3I.e. non-acrobatically, even though the kinematic model would allow it.
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Fig. 2). The state of each model can be described by two
variables, roll angle ϕ between the plane in upright position
and the frame of the bike, and velocity vx of the rear wheel’s
ground contact point WR. Neither of them is considering the
wheels as bodies of a multi body system. The only effect of
the wheels that is considered is the nonholonomic constraint
given by the wheel-ground interaction: A wheel-ground con-
tact point cannot move perpendicular to its velocity vector.
The intersection of the lines perpendicular to the contact
points WR and WF between wheels and ground determine
the instant center of rotation if the roll movement is not
considered.

The difference between both models is the consideration
of a caster angle between the upright z-axis and the axis of
the steering joint ξ. The kinematic equation derived by Getz
[4]

hϕ̈ = g sinϕ+ ((1 + hψ̇
sinϕ

v
)vψ̇ + lmψ̈) cosϕ (1)

solved for ψ̈ and sorted for ψ̇ yields to

ψ̈ = −ψ̇2 h
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where ψ is the angle relative to a world fixed reference
frame, h is the height of center of gravity (CoG) and lm is
the distance between WR and CoG.

We find the equivalent equation for a kinematic model
with caster angle ξ according to Zhang [6]
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where v̇x/y are the accelerations of WR, lt is the trail, σ =
l/R is the kinematic steering variable and l is the distance
between WR and WF.

The side slip velocity vy contributes to the kinetic energy
in the Lagrangian and yields to the second term in eq.
3, which equals zero, since side slip is neglected. As in
eq. 1, the steering angle σ shall be determined implicitly.
Therefore, it is substituted with

σ = lψ̇
1

vx
(4)

which yields to
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after some transformations. The terms are separated
for constants (h, lm, lt, ξ, g) and time dependent variables
(vx, ϕ).

If an observation ot = (ϕt, ϕ̈t, vx,t, ψ̇t) is given, this
differential equation can be evaluated by assuming the worst
case steering maneuvers represented by ϕ(t) and vx(t) for
t ∈ [0,∆tpred].

In order to get a differential equation that is only depend-
ing on derivatives of ψ, we define worst case speed and roll
angle profiles. Therefore, we make similar deliberations like
those used in Zernetsch et al. [13]. For each pair of obser-
vation ot and parameter combination si,j = (vend,i, ϕmax,j)
at time step ta, we run a simulation with eq. 5 and obtain
an end position pta,i. For each simulation, a differentiable
velocity profile and roll angle profile is designed. Instead
of those profiles, a controller could be implemented. For a
probabilistic treatment, an Unscented Kalman Filter (UKF)
[22] can be used.

C. Boundary Models

1) Velocity Profile: The current speed of the 1T2W is
assumed to be given. It can be estimated for all tracked
vehicles. If our approach is used in a single-shot application,
the speed can be measured with two radars which are
mounted with a horizontal offset. The maximum absolute
deceleration is determined either with the stiction margin
or by geometry, therefore braking maneuvers in which the
rear wheel (due to uplifting) or the front wheel (due to
transition from stiction to dry friction) looses stiction are not
considered. According to a literature survey [23]4 the usual
braking deceleration with antilock braking system (ABS) at
both wheels can be 0.642 - 0.842 g. Therefore, the maximum
absolute deceleration is abrake = −min(g l−lm

h , 0.7g) with
g = 9.81m

s2 . To simulate a braking maneuver of the 1T2W,
we assume abrake until it stops starting from the current
speed v0 which leads to vdecel(t) = abraket+ v0.

For the acceleration, we assume convergence to an es-
timated end speed vend which could be the physical limit
of the 1T2W, that is around 40 km/h in case of a bicycle,
25 km/h for a restricted motorized scooter, or the current
speed limit plus a safety margin of +20% of the speed limit
for motorcycles. Furthermore, the maximum acceleration
amax is limited by the torque of the vehicle or the rider,
respectively. The resulting speed profile in case of maximum
acceleration is given as

vaccel(t) = vend · tanh

(
amax

vend
t− arctanh

( v0

vend

))
. (6)

2) Roll Angle: The current roll angle ϕ0 is assumed to
be given. It could be derived from a lidar point cloud, or
it could be estimated directly from the trajectory of the
1T2W: The local curvature R can be estimated from the
trajectory. With inserting the relation ψ̇ = vx/R into eq.

4This is a non-reviewed online secondary reference. For one of the
primary references, see e.g. Dunn et al.[24].



Fig. 3: Schematic roll angle profile between ϕ0, ϕmax and
0◦.

5 and assuming initial conditions for ψ̈ and ϕ̈, φ can be
calculated numerically. However, in this work we focus on
the prediction concept only.

Assuming ϕ0 is given, we form a differentiable profile
which consists of shifted cosines and straight lines. It con-
nects the initial roll angle ϕ0 with the maximum roll angle
ϕmax. In order to increasing realism for simulations with a
standstill, we introduce an end phase of ∆tend = 0.3s for
which the 1T2W keeps a roll angle of 0◦ in case of vend = 0.
|ϕmax| can be up to 45◦ for motorcycles. According to

our measurements, bicycles have a roll angle of up to 27◦,
motorized scooters can reach up to 25◦.

IV. RESULTS AND EVALUATION

Fig. 5: Trajectories of cyclist (red), motorcyclist (green) and
scooter (blue) on an empty square of size 60 m times 90 m.
Dots highlight actual measurements.

A. Experimental Setup

TABLE I: Parameters used for simulation.

Bicycle Motorbike Scooter
Model FIXIE Inc.

Floater
Suzuki
GSF600 ’94

Voi
Voiager 2

l in m 0.82 1.15 0.70
lm in m 0.42 0.60 0.40
lt in m 0.20 0.40 0.15
h in m 1.10 0.65 0.80
ξ in ◦ 15 25 5

For evaluation, we recorded a bicycle, a motorbike and a
motorized scooter for 2-3 minutes on an empty, unstructured
square as shown in Fig. 5. The riders were instructed to

perform „extreme“ driving maneuvers, especially tight curves
with a large roll angle, harsh braking and acceleration both
during straight rides and curves. The three riders are not
professionals but experienced. Therefore, we do not claim
that they reached the physical limit of the ride nor of the
wheels. Still we are confident that we obtained data of
maneuvers which are considered extreme if performed in
normal traffic.

We recorded the sequences with a Velodyne HDL64S2
mounted on a stationary platform. We labeled those three
sequences with 2 Hz by making use of our 3D label tool
PointAtMe [25]. In contrast to an IMU mounted to the ride,
the annotator can label the actual roll angle from WR to
CoG. For the bicycle and the motorized scooter an IMU
might yield to significant errors.

B. Results and Discussion

According to RSS, safety in a situation with an intelligent
vehicle and a S2TW can be guaranteed, if the automated
vehicle can avoid entering the future trajectories of the other
traffic participant with a velocity venter 6= 0. In order to
evaluate our approach we need to check if the 1T2W stays
within the generated convex trajectory hull for all time steps.
The hull needs to be generated for each time step, so the
shape of this hull is unique for each observation ota . For
each corresponding observation ota+∆tpred after the current
observation, we now choose the simulated end position pta,i,j
closest and add one counter to the corresponding bin si,j in
the histogram.

In Fig. 4 the results are visualized in circular histograms
for three different prediction horizons. In simulation, the
specified ticks on the axes of the histograms are used for
vend and ϕmax, respectively. The specific distribution in the
center of each histogram does not correspond to the validity
of the model but the specific distribution at the edge does. If
the counters for edge cases are high (yellow), the simulation
might be not conservative enough.

The result matches the expectations. The rear wheel of
the ride is in the middle of the convex hull for nearly
all observations. The few points which are outside have a
distance to the convex hull of up to 0.15 m which is below
the spatial expansion of a 1T2W. For ∆tpred = 0.5s the
convex hull is extremely small, therefore there are a couple
of outliers outside of the hull. This might be due to the
limitations of the model regarding its assumptions about
fixed CoG, neglected radius of the tyre (flat disc assumption),
neglected slip and due to uncertainties in the measurements
and labeling process. For a prediction horizon of ∆tpred =
0.5s many measurements are rather close to the boundaries
of the histograms, especially to the roll angle boundaries. A
specified parameterization adapted to the recorded data for
each prediction horizon might lead to a more robust model.

C. Practical Application

In a real world application like an autonomous mobile
platform, the simulations have to be conducted in real time.



(a) Experiments with bicycle. Very few observations at the boundaries of the convex hull.

(b) Experiments with motorcycle. Boundary bins are nearly empty, except for a prediction horizon of 0.5 s.

(c) Experiments with electric scooter. Only for a prediction horizon of 0.5 seconds many observations in boundary bins.

Fig. 4: Radial histograms of recorded „extreme“ observations ota . Each ota is assigned to the bin bi,j closest to the simulated
end point pta,i,j . All combinations si,j = (vend,i, ϕmax,j) of the shown ticks are simulated for an observation ota . Prediction
horizons from left to right: 0.5, 1.0 and 1.5 seconds. Dark blue: 0 observations in bin, yellow: many observations in bin.

We are confident this is possible with an efficient implemen-
tation, but it might consume a wrongful amount of computa-
tional resources, especially, since more than one 1T2W might
have to be predicted in crowded urban scenarios. Instead,
we propose to use a small amount of 1T2W classes, e.g.
racing bike, city bike, freight bike, motorbike, scooter and
motorized scooter, and run the simulations with universal
parameter combinations si,j and initial conditions ot – if
such exist – in advance. In the mobile platform, lookup tables
can then be used for direct access to the simulation results.
Also, models could be trained with an arbitrary amount of
simulated data if robustness of the model can be ensured.

For prediction horizons of more than 1.5 seconds, the
prediction approach might not be useful anymore because
the flexibility of a cyclist does not differ anymore from the
single-track model used for cars. Especially in the first few

moments our proposed approach is superior to the single-
track model because it considers the effect of countersteering.

In general, it is proposed to use the presented approach as
a delimiter of safety boundaries, e.g. for the unlimited output
of a trained model in order to make it robust against outliers
and post-process output which is physically impossible.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a safety-guaranteeing prediction
method for single-track two-wheelers (1T2W). Due to their
movement-restricting kinematics, a reachable set can be gen-
erated by simulating the kinematic model of a parameterized
two-wheeler. This is the first work known to the authors
which makes use of the unique kinematics of a 1T2W.
According to real world experiments, the model is able
to predict the spatial outlines for most recorded extreme



maneuvers, but it should not be used without a safety margin.
We propose to make use of the corresponding differential
equation in order to generate a prior which restricts the
possible output of learned or parameterized model. As a
next step, a probabilistic model specifically designed for
the purpose of 1T2W prediction shall be developed and
parameterized.

ACKNOWLEDGEMENTS

The authors acknowledge support for part of this work
by Intel Corporation. We thank our student assistant Nick
Le Large who drove the necessary „extreme“ trajectory with
his private motorbike. We would like to thank our colleague
Tilman Kühner who drove with an electric scooter.

REFERENCES

[1] Statistisches Bundesamt (Destatis), Verkehrsunfälle –
Kraftrad- und Fahrradunfälle im Straßenverkehr 2018,
[Online] https://www.destatis.de, 2019.

[2] J. Fajans, “Steering in Bicycles and Motorcycles”,
American Journal of Physics, vol. 68, no. 7, 2000.

[3] N. Getz, “Control of Balance for a Nonlinear Non-
holonomic Non-minimum Phase Model of a Bicycle”,
Proceedings of the American Control Conference Bal-
timore, Maryland, 1994.

[4] N.H. Getz, “Dynamic Inversion of Nonlinear Maps
with Applications to Nonlinear Control and Robotics”,
PhD thesis, University of California, Berkeley, 1995.

[5] P. Riekert and T. E. Schunck, Zur Fahrmechanik des
gummibereiften Kraftfahrzeugs, [Online], 1940.

[6] Y. Zhang, “Modeling and Control of Single-Track Ve-
hicles: A Human-Machine-Environment Interactions
Perspective”, PhD thesis, Rutgers, The State Univer-
sity of New Jersey, 2014.

[7] J. F. P. Kooij, F. Flohr, E. A. I. Pool, and D. M.
Gavrila, “Context-Based Path Prediction for Targets
with Switching Dynamics”, International Journal of
Computer Vision, 2019.

[8] M. Goldhammer, S. Köhler, S. Zernetsch, K. Doll,
B. Sick, and K. Dietmayer, “Intentions of Vulnerable
Road Users–Detection and Forecasting by Means of
Machine Learning”, IEEE Transactions on Intelligent
Transportation Systems, 2019.

[9] H. Xiong, F. B. Flohr, S. Wang, B. Wang, J. Wang, and
K. Li, “Recurrent Neural Network Architectures for
Vulnerable Road User Trajectory Prediction”, in IEEE
Intelligent Vehicles Symposium (IV), 2019, pp. 171–
178.

[10] S. Zernetsch, H. Reichert, V. Kress, K. Doll, and B.
Sick, “Trajectory Forecasts with Uncertainties of Vul-
nerable Road Users by Means of Neural Networks”,
in IEEE Intelligent Vehicles Symposium (IV), IEEE,
2019, pp. 810–815.

[11] Y. Jia and D. Cebon, “Measuring the Motion of Vul-
nerable Road Users Relative to Moving HGVs”, IEEE
Transactions on Intelligent Transportation Systems,
pp. 1404–1415, 2018.

[12] Y. Jia and D. Cebon, “Field Testing of a Cyclist Col-
lision Avoidance System for Heavy Goods Vehicles”,
IEEE Transactions on Vehicular Technology, 2016.

[13] S. Zernetsch, S. Kohnen, M. Goldhammer, K. Doll,
and B. Sick, “Trajectory Prediction of Cyclists Using
a Physical Model and an Artificial Neural Network”,
in IEEE Intelligent Vehicles Symposium (IV), IEEE,
2016, pp. 833–838.

[14] E. A. I. Pool, J. F. P. Kooij, and D. M. Gavrila, “Using
Road Topology to Improve Cyclist Path Prediction”,
in IEEE Intelligent Vehicles Symposium (IV), IEEE,
2017, pp. 289–296.

[15] K. Saleh and S. Hossny M. and Nahavandi, “Cyclist
Trajectory Prediction Using Bidirectional Recurrent
Neural Network”, Springer International Publishing,
2018.

[16] E. A. I. Pool, J. F. P. Kooij, and D. M. Gavrila,
“Context-Based Cyclist Path Prediction Using Recur-
rent Neural Networks”, in IEEE Intelligent Vehicles
Symposium (IV), 2019, pp. 824–830.

[17] M. Bieshaar, S. Zernetsch, M. Depping, B. Sick, and
K. Doll, “Cooperative Starting Intention Detection of
Cyclists Based on Smart Devices and Infrastructure”,
2017.

[18] A. Hubert, S. Zernetsch, K. Doll, and B. Sick, “Cy-
clists’ Starting Behavior at Intersections”, in IEEE
Intelligent Vehicles Symposium (IV), 2017.

[19] S. Zernetsch, V. Kress, B. Sick, and K. Doll, “Early
Start Intention Detection of Cyclists Using Motion
History Images and a Deep Residual Network”,
in IEEE Intelligent Vehicles Symposium (IV), 2018,
pp. 1–6.

[20] V. Kress, J. Jung, S. Zernetsch, K. Doll, and B. Sick,
“Pose Based Start Intention Detection of Cyclists”, in
IEEE Intelligent Transportation Systems Conference
(ITSC), IEEE, 2019, pp. 2381–2386.

[21] S. Shalev-Shwartz, S. Shammah, and A. Shashua. ().
On a Formal Model of Safe and Scalable Self-driving
Cars. 18.12.2019, [Online]. Available: https : / / arxiv.
org/pdf/1708.06374.pdf.

[22] S. J. Julier and J. K. Uhlmann, “New extension of
the Kalman filter to nonlinear systems”, in Signal
processing, sensor fusion, and target recognition VI,
1997.

[23] A. R. Nathan, Braking Capabilities of Motorcy-
clists - A Literature Review, [Online] Available:
www.nathanarose.com, 12.12.2019.

[24] A. L. Dunn, M. Dorohoff, F. Bayan, A. Cornetto,
R. Wahba, M. Chuma, et al., “Analysis of Motorcycle
Braking Performance and Associated Braking Marks”,
in SAE 2012 World Congress & Exhibition, SAE
International, Apr. 2012.

[25] F. Wirth, J. Quehl, J. Ota, and C. Stiller, “PointAtMe:
Efficient 3D Point Cloud Labeling in Virtual Reality”,
in IEEE Intelligent Vehicles Symposium (IV), 2019,
pp. 1693–1698.

https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Verkehrsunfaelle/Publikationen/Downloads-Verkehrsunfaelle/unfaelle-zweirad-5462408187004.pdf?__blob=publicationFile
https://doi.org/10.1007/BF02086921
https://arxiv.org/pdf/1708.06374.pdf
https://arxiv.org/pdf/1708.06374.pdf
https://www.nathanarose.com/blog/2017/10/4/braking-capabilities-of-motorcyclists-a-literature-review

	Introduction
	Related Work
	Proposed Approach
	Goal
	Generic Prediction Model for Single-Track Two-Wheelers
	Boundary Models
	Velocity Profile
	Roll Angle


	Results and Evaluation
	Experimental Setup
	Results and Discussion
	Practical Application

	Conclusions and Future Work

