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Abstract— Planning an interactive and cooperative behavior
in the vicinity of multiple decision-makers is a challenging task.
The game-theoretic perspective provides a suitable framework
to describe such interactive scenarios. In this paper, we in-
troduce a motion planning algorithm to generate interaction-
aware behavior for highly interactive scenarios. Our algorithm
is based upon a reformulation of a bi-level optimization problem
which frames interactions among two decision makers as a
Stackelberg game. In contrast to existing works in this field,
we solve the prediction and planning problem simultaneously,
which enables the generation of efficient behaviors even in
highly interactive situations. The main novelty of our algorithm
evolves around its ability to consider general nonlinear con-
straints. Further, we present mechanisms to introduce courtesy
and cooperation into behavior planning which prevents overly
aggressive driving, as issue that has been identified in existing
interaction-aware planning approaches. Finally, we evaluate our
approach in the context of automated driving. Our evaluation
first investigates the algorithm’s ability to purposefully influence
and exploit the response of surrounding vehicles. We then
illustrate how the approach can be used for cooperative and
courteous planning.

I. INTRODUCTION

While much progress has been made in motion planning
for automated vehicles (AVs), generating an efficient driving
behavior in interactive scenarios is still an open field of
research. Many planning approaches follow a predict-then-
plan scheme, where the future motion of surrounding agents
is predicted first, and in a subsequent step, the motion of the
AV is planned considering these predictions as fixed. Due to
this separation of prediction and planning, interactions with
other agents are neglected. The influence the AV’s actions
might have on other agents can not be considered during
planning which can result in suboptimal, overly defensive
driving. Some approaches are already able to overcome
this limitation by solving the prediction and planning task
simultaneously. Most techniques can be categorized into
the following three distinct classes: Multi-agent planning,
forward simulation methods, and game-theoretic planning.

In multi-agent planning, the underlying assumption is that
all agents in the environment are part of the same team, i.e.,
working towards a common goal [1]–[4]. Coupled behaviors
are generated by minimizing a joint cost function, further
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Fig. 1: Illustrated is the structure of a Stackelberg game mod-
eled as a bi-level optimization problem. Here, the follower
optimizes its objective function as a response to the given
actions of the leader.

assuming that every agent will follow the joint plan. In such
multi-agent planning approaches, different driver types or
asymmetries in the traffic scene can be incorporated by using
different weights for the costs of individual agents in the joint
cost function [5]. In real traffic, however, the assumption of a
common cost function might not be valid, since some drivers
are only interested in optimizing their own costs. In [6] and
[7], the behavior of other agents is tracked to infer if the
agents optimize for the same objective or something entirely
different.

A different way of generating interactive behavior is to
determine the reaction of other agents by forward simula-
tions of the current traffic scene. To utilize these methods,
transition models are required which describe how other
agents respond to changes in the traffic scene due to actions
taken by the ego agent. We refer to such techniques as



forward simulation methods. Most sampling-based planning
methods that consider interactions can be associated with
this category. One approach is to generate a set of candi-
date motion profiles that consider the disturbance on other
agents [8], another approach is to model motion planning
as a sequential decision-making problem, e.g. as a POMDP
model, and cover interactions in environment state updates
[9]. The reactions of other agents in the environment are
typically modeled with specific driver models such as the
Intelligent Driver Model (IDM) [10] or the Minimum Overall
Braking Induced by Lane change (MOBIL) model [11]. In
contrast to optimization-based methods, the influence the
ego agent exerts on others is not explicitly given, but must
be determined by trying out several actions and subsequent
forward simulations.

Game-theoretic approaches have proven to be effective
for capturing the interactions between agents with different
objectives and have been successfully used for lane changes,
merge scenarios, intersection crossing, traversing round-
abouts, and overtaking [12]–[20]. Apart from these driving
applications, these game-theoretic planning approaches have
been applied for agile maneuvering of multiple ground
vehicles in close proximity [21], and automated car racing
[22]–[25], where they are shown to be superior to baseline
MPC planners.

In game-theoretic formulations, there is no optimal solu-
tion in the traditional sense, but depending on the game’s
structure, different solutions are possible, also referred to
as equilibria. In literature, it is distinguished between Nash
and Stackelberg equilibria. A Nash equilibrium describes a
set of strategies where no individual agent can benefit from
unilaterally changing its strategy, given that all other agents
will stick to their strategy. This type of equilibrium is e.g.
used in [15], [16], [21], [22], [26], [27]. In contrast to a
Nash equilibrium, a Stackelberg equilibrium involves turn
taking and, therefore considers an asymmetry in the decision-
making process. It is typically applied to two player games,
with one agent being the leader and one being the follower.
The leader selects its strategy first and then the follower
optimizes its strategy considering the leader’s decision, see
Fig. 1. Motion planning approaches that solve for Stackelberg
equilibria are presented in [12], [13], [17], [23], [28]–[30].

In this work, we model interaction-aware motion planning
as a Stackelberg game. We assume a turn-taking structure in
interactive scenarios, where the AV initiates an interaction
and the human driver (HD) reacts to the actions of the AV.
This leads to a bi-level optimization problem, where the HD’s
optimization is an optimization inside the AV’s optimization.
To efficiently solve the bi-level problem, it is reformulated
to a single-level representation using the KKT conditions of
the HD’s optimization problem.

Compared to previous works, our algorithm i) is able
to consider general nonlinear constraints, thereby ensuring
feasibility of the solution, ii) is able to consider the impact
that own actions have on the driving behavior and comfort
of other agents, thereby providing a mechanism to introduce
cooperation and courtesy into motion planning which can

then be used to cope with the overly aggressive behavior
produced by previous interaction-aware planning approaches.

The remainder of this paper is structured as follows: In
Section II we present the game-theoretic problem formu-
lation for interaction-aware planning in the considered AV-
HD system. Next, in Section III we present how this game
can be approximated by a bi-level optimization problem. In
Section IV, we transform the bi-level optimization problem
into a single-level representation to efficiently use derivative-
based optimization methods. After presenting the details on
implementation, results from simulation studies are discussed
in Section V. Finally, in Section VI, we summarize our
findings and conclude our work.

II. PROBLEM STATEMENT

In this work, we develop a model to directly capture inter-
actions between automated vehicles and human drivers based
on a game theoretic formulation. We consider a simplified
system with one AV, representing the leader L, and one
HD, representing the follower F . Following the formalism
of [13], the state of the system at time t is given by the
leader’s and follower’s state xLt ,x

F
t ∈ X . The evolutions

of the leader’s and the follower’s state are described by
their trajectories ξL, ξF : [0, T ] → X . Further, each agent
has its individual objective function denoted by JL and JF .
The objective is minimized subject to the initial state of
the vehicle ξ(0) = xinit and ξ(t) which is only allowed
to pass through the set of feasible states Xfeasible(t) ⊆ X .
Xfeasible(t) encodes for instance collision avoidance and the
system dynamics. Additionally, dynamic constraints can be
enforced by F (ξ(t), ξ̇(t), ξ̈(t), . . . ) = 0.

In contrast to traditional multi-agent systems, the follower
is assumed to optimize its own trajectory in response to
the trajectory of the leader. To do so, the follower makes
a prediction of the leader’s future motion ξ̃L and plans its
future motion by minimizing its objective function JF given
this prediction. Therefore, the follower’s optimal trajectory
can be stated as:

ξ∗F (ξ̃L) = argmin
ξF

JF (ξF , ξ̃L) (1)

In our work, we assume that for short time horizons, a HD
can predict the trajectory of an AV sufficiently well, such that
the prediction ξ̃L can be assumed to be the actual trajectory
ξL of the AV. Hence, the optimal trajectory of the HD as a
function of the AV’s actual trajectory ξL is given as:

ξ∗F (ξL) = argmin
ξF

JF (ξF , ξL) (2)

Equation (2) gives the AV the ability to reason about the
HD’s response and allows to indirectly control the HD’s
future trajectory.

This link with the follower’s actions allows the leader in
turn to optimize its own behavior using:

ξ∗L = argmin
ξL

JL(ξL, ξ
∗
F (ξL)) (3)

The derived model can be described as a Stackelberg
game, where the leader decides on its behavior first and



the follower optimizes its behavior given the decision of the
leader.

III. BI-LEVEL FORMULATION

If the best response of the follower to the leader’s actions
is known in closed form, Eq. (3) can be solved as a
standard optimal control problem (OCP). However, in our
formulation, the follower’s response is itself given as an OCP,
resulting in a nested optimization. To efficiently solve the
OCP, we use model-predictive control (MPC) with a multiple
shooting method and discretize the time horizon T into N
intervals. With a slight abuse of notation we subsume the
state and input sequences of leader and follower as x :=
(x1, . . . ,xN ) and u := (u0, . . . ,uN−1). In the following
OCP formulations, the equality constraints h can be used to
represent constraints imposed by the system dynamics model
while the inequality constraints g collect bound constraints,
collision constraints, and dynamic constraints.

A. OCP of the Follower

Given state sequence xL of the leader, the follower’s OCP
can be formulated as:

min
xF ,uF

JF (x
L,xF ,uF ) (4a)

s.t. hF (x
L,xF ,uF ) = 0, (4b)

gF (x
L,xF ,uF ) ≤ 0 (4c)

B. OCP of the Leader

Following Eq. (3) the leader’s OCP is given by:

min
xL,xF ,uL,uF

JL(x
L,xF ,uL) (5a)

s.t. hL(x
L,xF ,uL) = 0, (5b)

gL(x
L,xF ,uL) ≤ 0, (5c)

(xF ,uF ) solves Eq. (4) for xL (5d)

making use of the follower’s optimal response.

IV. SINGLE LEVEL REFORMULATION

If the follower OCP is convex, the Karush Kuhn Tucker
(KKT) conditions are necessary and sufficient for optimality.
In general this is not the case but can be achieved by
linearizing the constraints and approximating the objective
with a second order Taylor expansion.

Henceforth, the bi-level optimization problem, Eq. (5),
can be reformulated as a single level problem by replacing
the follower’s optimization problem, Eq. (4), with its KKT

conditions, resulting in

min
xL,xF ,uL,uF ,λ,µ

JL(x
L,xF ,uL) (6a)

s.t. hL(x
L,xF ,uL) = 0, (6b)

gL(x
L,xF ,uL) ≤ 0, (6c)

∇(xF ,uF )L(x
L,xF ,uF ,λ,µ) = 0, (6d)

hF (x
L,xF ,uF ) = 0, (6e)

gF (x
L,xF ,uF ) ≤ 0, (6f)

µ ≥ 0, (6g)

µ⊥gF (xL,xF ,uF ) (6h)

with the Lagrangian

L(xL,xF ,uF ,λ,µ) =JF (x
L,xF ,uF )

+λThF (x
L,xF ,uF )

+µTgF (x
L,xF ,uF ).

A. Solving the Complementarity Constraints
The leader OCP forms an instance of a mathematical

program with complementarity constraints (MPCC). Due to
the complementarity constraints, MPCCs are non-smooth
and non-convex, which makes them particularly challenging
to solve: At every feasible point, ordinary constraint qual-
ifiers (CQ) such as LICQ or Mangasarian-Fromovitz CQ
are violated [31]. To solve the MPCC, we reformulate it
using relaxation methods [32]. Here, the complementarity
constraints are relaxed as follows:

− ε ≤ µTgF (7)

V. RESULTS AND EVALUATION

In our experiments, we first investigate the ability of the
leader to deliberately influence and exploit the follower’s
response.

Since in real driving applications, the goal of the AV is to
drive efficiently and comfortably rather than to influence the
state of other vehicles, we also illustrate how the approach
can be used for cooperative and courteous planning.

To this end, we showcase the efficacy of the approach
in four selected minimal examples. The leader’s objective
function is augmented with Jinfluence to set the example spe-
cific incentives. For the conducted experiments we assume a
relatively good estimation of the human’s objective function
is given.

A. Trajectory Optimization for AVs
1) Vehicle Model: The vehicle state x = (x, y, ψ, v) of

the leader and the follower is described by the lateral and
longitudinal position (x, y) of the vehicle’s center of gravity,
the orientation ψ, and the absolute velocity v. Together with
the input u = (δ, a) consisting of steering angle δ and
acceleration a, the dynamics of the vehicles are given by
the kinematic single-track model

ẋ =


ẋ
ẏ

ψ̇
v̇

 =


v cos(ψ + β)
v sin(ψ + β)
v
l tan(δ) cos(β)

a

 (8)



Parameter Value

N 30
T 6 s
Q diag(0, 1, 0, 100)
Ru diag(1, 1)
Ru̇ diag(10000, 1000)
vmin, vmax 0 m

s
, 30 m

s
δmax 30◦

amin, amax −8 m

s2 , 3 m

s2
jmin, jmax −10 m

s3 , 6 m

s3
l 4m
lr 2m

TABLE I: MPC parameters

with slip angle β = arctan
(
lr
l tan(δ)

)
. Here, l is the

wheelbase and lr is the difference between the center of
gravity and the rear axle. A discrete dynamics model is
obtained using a fourth order Runge-Kutta method.

To enforce realistic dynamic limits, bound constraints on
the states and input signals are introduced. The values used
are given in Table I. To ensure the validity of the single-
track model, we additionally limit the lateral acceleration by
|vkψ̇k| ≤ 4 m

s2 [33].
2) Collision Avoidance Constraints: We approximate the

collision constraints by overapproximating each vehicle with
two circles (xi, yi, ri). The circles are then pairwise checked
for overlap using:(

xi − xj
2r

)2

+

(
yi − yj
2r

)2

≥ 1 (9)

3) Objective Function: We use the following cost function
to penalize deviations from a desired reference state or
trajectory xref:

Jbase(x,u) =

N∑
k=1

(xk − xref)
TQ(xk − xref) (10)

+

N−1∑
k=0

uk
TRuuk (11)

+

N−1∑
k=1

(uk − uk−1)
TRu̇(uk − uk−1) (12)

+ (u0 − û)TRu̇(u0 − û) (13)

where û is the input from the previous step.
The follower uses this cost function directly with the

weights given in Table I. The leader’s objective function is
also based on Jbase but has an additional scenario specific
cost term Jinfluence.

B. Base Scenario

We evaluate our approach in a multi-lane road with two
vehicles, the leader (blue) and the follower (gray), see Fig. 2.
In the considered scenario, the goal of the leader is to
perform a lane change. Unless otherwise stated, the initial
and reference states used for the leader and follower are
listed in Table II.

Parameter Value

xL
0 [12.0m, 3.0m, 0◦, 10.0 m

s
]T

xF
0 [2.0m, 5.0m, 0◦, 10.0 m

s
]T

xL
ref = xF

ref [free, 5.0m, 0◦, 10.0 m
s
]T

TABLE II: Initial and reference states.

C. Influence the state of the human

To investigate the leader’s ability to influence the fol-
lower’s state, the objective function of the leader is chosen
as a weighted sum of the leader’s individual costs Jbase and
the scenario specific Jinfluence:

J = wLJbase + winfluenceJinfluence (14)

where wL and winfluence are the corresponding weights.
1) Slow down the human: To incentivise the leader to

slow down the follower, deviations of the follower’s velocity
along the road to a certain reference velocity vFref are penal-
ized in the leader’s objective:

Jinfluence =

N∑
k=1

(vFk − vFref)
2 (15)

The results for vFref = 7.5 m
s are illustrated in Fig. 2. As

can be seen, the leader changes to the left lane to get in front
of the follower. The leader then starts to brake which forces
the follower to also slow down, see Fig. 2b.

2) Push the human to the adjacent lane: To demonstrate
the ability to influence the follower in the lateral direction,
the follower’s deviation to a certain lateral position is penal-
ized:

Jinfluence =

N∑
k=1

(yFk − yFref)
2 (16)

In our experiment, the goal of the leader is to push the
human to the adjacent left lane, which is encoded by setting
yFref = 8.5m. The results are shown in Fig. 3a. The leader
brakes harshly and steers to the left to push the follower
to the left lane as soon as possible. The velocity profile is
shown in Fig. 3b.

D. Exploiting interaction

In the following experiment, the leader solely optimizes
its own costs Jbase. To better show the effect, the desired
velocity of the follower is increased to vFref = 15.0 m

s

The resulting trajectories are shown in Fig. 4a. Since the
leader expects the follower to react to him, he changes lanes
right away. To avoid a collision, the follower has to slow
down and is forced to stay behind the slower driving leader,
see Fig. 4b.

By exploiting the follower’s response, the leader plans
a more aggressive driving behavior to further optimize its
costs.



(a)

(b)

Fig. 2: By changing lanes, the leader drives in front of the follower to slow him down.

(a)
(b)

Fig. 3: To push the follower to the leftmost lane, the leader brakes harshly and steers to the left.

(a)

(b)

Fig. 4: When only considering it’s own costs the leader performs an aggressive lane change.

E. Introducing Cooperative Behavior

The bi-level formulation gives the leader the ability to
anticipate the reactions of the follower. To prevent the leader
from exploiting this ability, as it was shown in the previous
experiment, we introduce a cooperative cost function. This
cost function includes the costs of the follower and the
leader:

Jcooperative = αJFbase + (1− α)JLbase (17)

In this formulation the variable α determines to which
extent the leader’s and the follower’s costs are considered.
It therefore provides a way to design a driving behavior that
is between overly conservative and overly aggressive. The
impact the parameter α has on the generated behavior is
investigated in the following.

The effect is best illustrated by the different velocity
profiles. The case with α = 0 represents the egoistic case
which was presented in the previous experiment, see Fig. 4b.

The different velocities for α = 0.5 and α = 0.99 are
illustrated in Fig. 5. Compared to the α = 0 case, with
α = 0.5 the leader accelerates and drives faster than its
desired velocity. With α = 0.99 the leader basically only
considers the costs of the follower and tries to intervene
with the optimal plans of the follower as little as possible.
As shown in Fig. 5b, this value of α can lead to an overly
conservative driving behavior, similar to common predict-
then-react planners.

F. Courtesy constraints

While considering courtesy is not necessary in predict-
then-plan algorithms, it becomes important in interaction
aware method. An alternative to the cooperative formulation
presented in Section V-E is introducing courtesy constraints.

With these constraints the impact the automated vehicle
imposes on others can be limited. E.g., the automated vehicle
is allowed to maximally cause a deceleration of amin to



(a) α = 0.5.

(b) α = 0.99.

Fig. 5: With the parameter α the leader’s level of coopera-
tivity can be set.

surrounding vehicles.
To enforce this, the following constraints are added to the

OCP of the leader Eq. (6a):

gcourtesy,k = aFk + amin ≥ 0 (18)

where aFk is the acceleration of the follower in step k.
The effect for amin = 2 is illustrated in Fig. 6. In

Fig. 6a the acceleration of the leader and the follower without
courtesy constraints are shown. The leader does not adapt its
velocity during the lane change and the follower has to brake
harshly. In contrast, in Fig. 6b the same scenario is shown
with courtesy constraints. To limit the induced deceleration,
the leader accelerates, which successfully reduces the decel-
eration of the follower to at most amin.

G. Discussion

The presented bi-level optimization formulation enables
the automated vehicle to anticipate how surrounding vehicles
will react to its future motion. This gives the AV the
possibility to indirectly influence the state of the human, as
shown in Section V-C. Care must be taken to not generate an
overly aggressive driving behavior, as shown in experiment
Section V-D.

To avoid this, the objective of the leader is extended
to also consider the costs of the follower in Section V-E.

(a) Without courtesy constraints.

(b) Courtesy constraints with amin = 2.

Fig. 6: With the added courtesy constraints the maximal
deceleration of the follower can be reduced.

The parameter α can be used to tune the resulting behavior
between being egoistic and courteous.

Finally, in Section V-F we present a strategy to intro-
duce courtesy constraints to the planning algorithm. These
constraints allow realizing different behaviors. For instance,
the vehicle can be made to act egoistically, provided that a
maximally acceptable deceleration imposed on other vehicles
is not exceeded.

Even though the focus of the evaluation was to investigate
the AV’s ability to indirectly control the state of the human,
the intended use case is to combine cooperative planning
with courtesy constraints.

VI. CONCLUSIONS AND FUTURE WORK

This work presents a bi-level optimization scheme for
interactive and courteous driving behavior. Based on the as-
sumption that human drivers can reasonably well predict and
react to other vehicles on short time horizons, we formulate
a game-theoretic approach to motion planning. The human’s
best response to a trajectory of the automated vehicle can be
determined by solving an optimal control problem (OCP).
Optimizing the autonomous vehicle’s trajectory subject to
the human’s optimal response results in a bi-level problem
formulation. To efficiently solve the bi-level problem, it
is reformulated as a single-level problem using the KKT
conditions of the human’s OCP.

Our evaluation first showcases different ways to influ-
ence or exploit the human driver. We then continue with



implementations of cooperative driving behavior. This can
be achieved by considering the human’s cost function as
part of the objective or by imposing constraints on the
acceleration induced on the human. Our approach allows
interactive motion planning while satisfying constraints on
the surrounding vehicles’ responses.

Our method is able to overcome the limitations of tra-
ditional predict-then-plan approaches enabling the efficient
planning in highly interactive situations.

Promising directions for future research are to apply the
method to more realistic traffic situations. Additionally, the
reward function parameters can be learned from real driving
data using constrained inverse reinforcement learning [34] to
produce more realistic behavior.
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