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Abstract— The breakthrough of intelligent vehicles will prob-
ably be determined by the safety gain they provide. In order
to perform accident avoiding reactions at the earliest point in
time possible, predictions about the future behavior of other
traffic participants are needed. The most exposed share of
traffic participants regarding this issue are single-track two-
wheelers (ST2W): they share the road with cars and trucks
but are not as agile due to their kinematics. Futhermore, they
are faster than pedestrians but equally vulnerable as those. In
order to guarantee their safety, we make use of their movement
restricting kinematics. We simulate three typical classes of
ST2W under conservative assumptions about their agility in
order to generate a spacial region in which they have to be due
to physics after a fixed prediction horizon of up to 1.5 seconds.
In experiments with real data, the proposed approach indeed
creates a convex hull in which the recorded rider stays during
the sequence.

Index Terms— prediction, safety, cyclist

I. INTRODUCTION

Increasing safety not only for vehicle occupants but also
for Vulnearable Road Users (VRUs) is promised when argu-
ing about the benefit of intelligent vehicles in urban traffic.
Whilst close attention regarding traffic safety is payed to
pedestrians, actually bicycles, motorcycles, and an increasing
fleet of motorized scooters - concised as single-track two-
wheelers (ST2W)1 - make up nearly two thirds of VRU
fatalities and casualties. Furthermore, the number of fatalities
and injuries of two-wheelers tends to increase while the
number of pedestrian fatalities and injuries tends to decrease
in Germany [1].

In order to avoid accidents between automated vehicles
and VRUs, it is required to correctly detect, track and
predict them. Predicting VRUs is a particularily difficult
task, because they obey traffic rules far less than two-track
vehicles which in many cases can be predicted lane-based.
In this paper we propose a method to predict two-wheelers
based on a dynamic model which is combined with worst-
case assumptions about the kinematic variables. It results in
boundary points of a geometric space where the ST2W has
to be due to physics after a defined period of time.

In comparison to pedestrians, ST2W are significantly
faster and due to their kinematics [2]–[4] less flexible regard-
ing quick changes of direction. In comparison to a two-track
four-wheeler (e.g. car, bus, truck) for which the kinematic
single-track model [5] (commonly referred to as bicycle
model) approximately represents the dynamics, the ST2W
has only one degree of freedom (DoF). The (motor-) cyclist
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1This explizitly excludes self-balancing scooters such as Segways.

Fig. 1: A cyclist on an unstructured road. Possible trajec-
tories are simulated with different parameter combinations
pi = [vend,i, ϕmax,i]. The end points of the simulations
determine the region (petrol) where the cyclist has to be
inside of after a fixed time span.

or controller can choose either the steering angle or the
acceleration force, and has to adopt one to the other in order
to keep the vehicle in a stable, upright position. With the
kinematic single-track model as it is used for cars, speed and
steering angle can be chosen to a great extent independently
of each other. Those disadvantages - 1 DoF, higher speed
compared to pedestrian, combined with protection gear rather
comparable to those of pedestrians than to the bodywork of a
car - make two-wheelers the most vulnerable share of VRUs.

In our work, we refer to the model developed by Riekert et
al.[5] as single-track model and to the models which include
a roll angle as bicycle model.

The contribution of this work is to make use of a kinematic
model of a generalized single-track two-wheeler in order
to generate a geometric space where the ST2W has to be
inside of within a small prediction horizon of up to 1.5
seconds. Originally, this model was developed for control of
autonomous riderless motorbikes by Zhang [6]. We describe
two common models and evaluate our prediction on real
world data recorded in an unstructured environment with
three common parameter combinations: Cyclist, motorcyclist
and motorized scooter. The approach can be used as a single-
shot approach, if conservative assumptions about the current
state of the ST2W are made.

II. RELATED WORK

While many researchers focused on VRU safety as a
demarcated problem [7]–[10] and on pedestrians in particular
[11]–[16] by generating position predictions, only few pub-
lications tackle the problem of cyclist prediction. We did not



find any publication tackling two-wheeler safety by making
use of their unique kinematics.

Jia et al.[17] found the necessity of developing a special-
ized model for cyclist crash prediction from the viewpoint
of a heavy goods vehicle after testing a collision avoidence
system [18].

Zernetsch et al. [19] applied an artificial neural network
(ANN) to the task of cyclist prediction and compared it
against a Kalman Filter (KF) and an 1-D kinetic approach in
which they fit the unknown kinematic parameters to recorded
data of 566 cyclist tracks. Both the ANN and the kinetic
model outperform the baseline KF for prediction horizons
between 0.5 and 2.5 seconds.

Pool et al. [20] trained the parameters of a probabilistic
single Gaussian and a Gaussian mixture linear dynamic
system with data of 108 cyclists which they recorded with
a mobile platform. They tuned the linear models based on
5 common driving directions (straight, half right, half left,
right and left) of cyclists in the dataset. This dataset was also
used by Saleh et al.[21] who trained a bidirectional recurrent
ANN to predict future trajectory points of cyclists without
an underlying vehicle model. In [7], Kooij et al.proposed a
generic probabilistic prediction approach based on Switching
Linear Dynamical Systems that can be fit to several types
of traffic participants. They validated the approach with the
example of pedestrian and cyclist prediction. Zernetsch et
al.[10] used a dataset with 1311 cyclist trajectories at an
urban intersection in order to train an ANN to predict future
waypoints with uncertainty. Xiong et al.[9] compared the
predictions of VRUs with different recurrent ANNs in image
coordinates. Pool et al.[22] presented a recurrent ANN that
predicts the future position of cyclists as a 2D Gaussian. The
model is trained with high level context information extracted
from 51 cyclist tracks.

Further work was done in the classification of VRU
starting behavior at intersections [8], [23]–[26].

Besides the basic equilibrium of forces in longitudinal di-
rection proposed by Zernetsch et al. [19] no approach makes
use of the physical characteristics of cyclists. Furthermore,
there is no generic safety approach that tackles all kind of
ST2W and we cannot find any publications that approach the
well-known problem of motorbike safety or the increasing
problem of motorized scooters from the third party viewpoint
of an intelligent vehicle.

III. PROPOSED APPROACH

A. Goal

In this work, we propose to use a kinematic model for
ST2W in order to obtain a novel safety approach customized
for the most endangered group of traffic participants: cyclists,
motorcyclists and motorized scooter riders. Due to the kine-
matics of a ST2W, the area it can reach in a limited prediction
time span ∆tpred of a few seconds is confined. With some
assumptions about the possible maneuvers of the ST2W it is
possible to derive the boundaries of this area. An automated
vehicle can then ensure safety similarly to the Responsibility
Sensitive Safety (RSS) approach proposed in a white paper

by Shalev-Shwartz et al.[27]. Position prediction is assumed
to be a two dimensional problem. Those ST2W our approach
is supposed to predict are assumed to drive normally2 but not
necessarily traffic rule compliant.

We consider an unstructured environment according to
3.7.2. in [27] in order to get the most conservative estimation
of future positions. Let t0 be the current point in time. Let
Ta,t1 be a set of two-dimensional trajectories of a ST2W
and let Te,t1 be the set of possible trajectories of the ego
vehicle until t1 = t0 + ∆tpred. The planning module of the
ego vehicle is aware of Te,t1 and at time t0 it has chosen
a certain trajectory τe,t0 ∈ Te,t1 but it is not necessarily
the same for each t0. Following definition 21 in [27], the
ego vehicle knows the occupied region Te,brake,t1 furthest
away on the possible trajectories which it would still reach
if it conducted an emergency braking maneuver. According
to definition 22, a situation is safe, if

1) one of the traffic participants can come to a full stop
in order to avoid a crash or

2) both can come to a full stop without crashing.
The most conservative estimate would be to not expect

the cyclist to react to the ego vehicle, therefore the second
case lapses and the first case can be formulated as Ta,t1 ∩
Te,brake,t1 = ∅ and Ta,t1 ∩ Te,t1 6= ∅. Our approach can be
seen as a proposal on how to calculate Ta,t1 for ST2W.

B. Generic Prediction Model for Single-Track Two-Wheelers

In literature, two kinematic models are frequently applied.
The first was introduced by Getz [4], the second was devel-
oped by Zhang [6]. Both model the rider and the bike as a
combined mass above and between both wheels. The state
of the models can be described by two variables, roll angle
φ between the plane in upright position and the frame of the
bike, and steering angle ψ. Neither of them is considering the
wheels as bodies of a multi body system. The only effect of
the wheels that is considered is the non-holonomic constraint:
a wheel cannot move perpendicular to its velocity vector. The
intersection of the lines perpendicular to the contact points
between wheels and ground determine the instant center of
rotation if the roll angle is not considered.

The difference between both models is the consideration
of a trail angle between the upright z-axis and the axis of
the steering joint ξ. The kinematic equation derived by Getz
[4]

hϕ̈ = g sinϕ+ ((1 + hψ̇
sinϕ

v
)vψ̇ + bψ̈) cosϕ (1)

solved for ψ̈ and sorted for ψ yields to

ψ̈ = −ψ̇2h

b
sinϕ− ψ̇ 1

b
v +

h

b

ϕ̈

cosϕ
− g

b
tanϕ (2)

where ψ is the angle relative to a world fixed reference
frame, h is the height of center of gravity (CoG), l is the

2I.e. non-acrobatically, even though the kinematic model would allow it.
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distance between the contact points of both wheels to the
ground and v is the speed of the rear wheel.

We find the equivalent equation for a kinematic model
with caster angle ξ according to Zhang [6]

bhσ

l
v̇x cosϕ+ hv̇y cosϕ+ h2ϕ̈

+
(

1− hσ

l
sinϕ

)hσ cosϕ

l
v2x

−g
(
h sinϕ+

ltb cos ξ

l
σ cosϕ

)
= −bh

l
vxσ̇ cosϕ

(3)

where vx/y are the accelerations of the rear wheel contact
point, lt is the trail, b is the horizontal distance between rear
wheel and projected centre of mass and σ is the kinematic
steering variable. The side slip velocity v̇y contributes to the
kinetic energy in the Lagrangian and yields to the second
term in eq. 3, which equals zero, since side slip is neglected.
As in eq. 1, the steering angle σ shall be determined
implicitly. Therefore, it is substituted with

σ = lψ̇
1

vx
(4)

which yields to

ψ̈ =ψ̇2
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)
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h

1
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− 1

b
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(
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)
(5)

after some transformations. We separated the terms for
constants (h, b, lt, ξ, g) and time dependent variables (ϕ, vx).

Those differential equations can be evaluated by assuming
the worst case steering maneuvers represented by ϕ and vx.

C. Boundary Models

In order to get a differential equation that is only de-
pending on ψ, we define worst case speed and roll angle
profiles. Therefore, we make similar deliberations like those
used in Zernetsch et al. [19]. For each pair of observation ot
at timestep t and parameter combination p = [vend, ϕmax],
we run a simulation with eq. 5. After calculating the next
ψi+1, every other quantity can be calculated by evaluating the
equations given in [6]. For each simulation, a differentiable
velocity profile and roll angle profile is designed. Instead of
a roll angle profile, a controller could be implemented.

1) Velocity Profile: The current speed of the ST2W is
assumed to be given. It can be estimated for all tracked vehi-
cles. If our approach is used in a single-shot application, the
speed can be measured with two radars which are mounted
with a horizontal offset. The maximum absolute deceleration
is determined either with the stiction margin or by geometry,
therefore braking maneuvers in which the rear wheel (due
to uplifting) or the front wheel (due to violation of friction

condition) looses stiction are not considered. According to
a literature survey [28]3 the usual braking deceleration with
antilock braking system (ABS) at both wheels can be 0.642
- 0.842 g. Therefore, the maximum absolute deceleration is

|abrake|= min

(
g
l − b
h

, 0.7g

)
. (6)

with g being the gravitational acceleration. To simulate a
braking maneuver of the ST2W, we assume abrake until it
stops starting from the current speed v0

vdecel(t) = −abraket+ v0. (7)

For the acceleration, we assume convergence to an es-
timated end speed vend which could be the physical limit
of the ST2W, that is around 40 km/h in case of a bicycle,
25 km/h for a restricted motorized scooter, or the current
speed limit plus a safety margin of +20 % of the speed limit
for motorcycles. Furthermore, the maximum acceleration
amax is limited by the torque of the vehicle or the rider,
respectively. The resulting speed profile in case of maximum
acceleration is given as

vaccel(t) = vend · tanh

(
amax

vend
t− arctanh

( v0
vend

))
. (8)

Fig. 2: Schematic roll angle profile between ϕ0, ϕmax and
0o.

2) Roll Angle: The current roll angle ϕ0 is assumed to be
given. If the point cloud and the bounding box of a ST2W is
given, the points roughly form a plane, if the 2D bounding
box and the corresponding image is given, then the roll angle
could be derived from an optical axis of symmetry. However,
in this work we focus on the prediction concept only.

Assuming ϕ0 is given, we form a differentiable profile
which consists of shifted cosines and straight lines. It con-
nects the initial roll angle ϕ0 with the maximum roll angle
ϕmax. In order to increasing realism for simulations with a
fullstop, we introduced an end phase of ∆tend = 0.3s for
which the ST2W keeps a roll angle of 0o in case vend = 0
in.
|ϕmax| can be up to 45o for motorcycles. According to

our measurements, bicycles have a roll angle of up to 27o,
motorized scooters can reach up to 25o.

3This is a non-reviewed online secondary reference. For one of the
primary references, see e.g. Dunn et al.[29].



(a) Experiments with bicycle.

(b) Experiments with motorcycle.

(c) Experiments with electric scooter.

Fig. 3: Radial heatmap of recorded two-wheeler appearences in „extreme“ trajectory. Only combinations of the shown ticks
are simulated. Ocurrencies in grid cells are then linear interpolated. Prediction horizons from left to right: 0.5, 1.0 and 1.5
seconds.

IV. RESULTS AND EVALUATION

For evaluation, we recorded a bicycle, a motorbike and a
motorized scooter for 2-3 minutes on an empty, unstructured
square. The rider was instructed to perform „extreme“ driv-
ing maneuvers, especially tight curves with a large roll angle,
harsh brakes and accelerations both during straight rides
and curves. The rider is not a professional but experienced.
Therefore, we do not claim that he reached the physical limit
of the ride nor of the wheels. Still we are confident that we
obtained values which are considered extreme if performed
in normal traffic.

We recorded the sequences from a stationary platform with
a Velodyne HDL64S2. We labeled those three sequences with
our 3D label tool PointAtMe [30]. In contrast to an IMU

mounted to the ride, the annotator can label the actual roll
angle from contact point of rear wheel with ground to the
center of mass. For the bicycle and the motorized scooter an
IMU might yield to significant errors.

According to RSS, safety in a situation with an intelligent
vehicle and a single-track two-wheeler can be guaranteed, if
the automated vehicle can avoid entering the future trajecto-
ries of the other traffic participant with a velocity venter 6= 0.
In order to evaluate our approach we need to check if the
ST2W stays within the generated convex trajectory hull for
all timesteps. The hull can be generated for a specific time
step.

In Fig. 3 the results are visualized in circular histograms
for three different prediction horizons. In simulation, the



specified ticks on the axes of the histograms are used for
vend and ϕmax, respectively.

The result matches the expectations. The rear wheel of
the ride is within the region of the convex hull in nearly all
measurements. For h = 0.5s the convex hull is extremely
small, therefore there are a couple of outliers outside the
the convex hull. This might be due to the limitations of
the model regarding its assumptions about fixed center of
mass, neglected radius of the tyre (flat disc assumption),
neglected slip and due to uncertainties in the measurements
and labeling process. For a prediction horizon of h = 0.5s
the maximum is rather close to the boundaries, especially to
the roll angle boundaries. A specified parameterization for
each prediction horizon might yield to a more robust model.

Fig. 4: Trajectories of cyclist (red), motorcyclist (green) and
scooter (blue) on a square of size 60 m x 90 m.

A. Practical Application

In a real world application like an autonomous mobile
platform the simulations have to be conducted in real time.
We are confident this is possible with an efficient implemen-
tation, but it might consume a wrongful amount of computa-
tional resources, especially since more than one ST2W might
have to be predicted in crowded urban scenarios. Instead,
we propose to use a small amount of ST2W classes, e.g.
racing bike, city bike, freight bike, motorbike, scooter and
motorized scooter, and run the simulations with universal
parameter combinations - if such exist - in advance. In
the mobile platform, lookup tables can then be used for
direct access to the simulation results. Also, models could
be trained with an arbitrary amount of simulated data if
robustness of the model can be ensured.

For prediction horizons of more than 1.5 seconds, the
prediction approach might not be useful anymore because
the flexibility of a cyclist does not differ anymore from the
single-track model used for cars. Especially in the first few
moments our proposed model is superior to the single-track
model because it models the effect of countersteering.

In general, it is proposed to use the presented approach
as a delimiter of safety boundaries, e.g. for the output of a
trained model in order to make it robust against outliers.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a safety-guaranteeing prediction
method for single-track two-wheelers (ST2W). Due to their

movement-restricting kinematics, a reachable set can be gen-
erated by simulating the kinematic model of a parameterized
two-wheeler. Compared to the reachable set of the single-
track model, the generated region is significantly smaller.
This is the first work known to the authors which makes use
of the unique kinematics of a ST2W. According to real world
experiments, the model is able to predict the spatial outlines
of most recorded extreme maneuvers, but it should not be
used without a safety margin. We propose to make use of
the corresponding differential equation in order to generate
a prior which restricts the possible output of learned or
parameterized models. As a next step, a probabilistic model
specifically designed for the purpose of ST2W prediction
shall be developed and parameterized.
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