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Abstract—Present object detection methods working on 3D we first give an outline of relevant work, followed by the
range data are so far either optimized for unstructured offroad detailed description of our approach. In section IV we paevi

grvgrrﬁmegfieo{o f:jaetar:/?/ﬁrr: tfém;Onndrgﬁgtzm\évfmgrisfegé all_icfj?jt experimental results. Section V concludes this paper arebgi
9 an outlook for future research in this area.

measurements. It uses a graph-based approach to segmen
ground and objects from 3D lidar scans using a novel unified,
generic criterion based on local convexity measures. Expignents Il. PREVIOUS WORK

show good results in urban environments including smoothly  QObject detection algorithms are often classified into two
bended road surfaces. groups: Model-based and model-free. Model-based appesach
try to solve detection and classification simultaneously by
. INTRODUCTION fitting models to the data, as.g.[3], [4]. This, however, is
One of the key tasks intelligent vehicles have to perform igpmputationally demanding and hardly applicable in raakt
the reliable perception of their environment, namely thiede  The alternative and more flexible approach is to first sep-
tion of obstacles and free space. Especially for the lddeer arate obstacles from the ground using a generic model. To
scanners have proven efficient, as their resolution and deldreduce processing time, a dimensionality reduction is liysua
view exceeds radar and ultrasonic sensors and they provigplied. According to the type of projection, the approache
direct distance measurements. Most reported in literadtee can basically be divided into two subclasses: Projectioa to

sensors that conduct 2D scanning ([1], [2] and many otherglound plane and projection to a virtual image plane rasylti
i.e. scanning is performed along a plane within a limite¢h a so-calledrange image

viewing angle. Mounted parallel to the ground plane, each
scan acquires a 1D sequence of range and angle measurem8nt&round Plane based methods
This allows an easy detection of obstacles (and implicityef Most frequently, data is projected to an assumed or esti-
space) by applying 1D signal processing methods. Howevefated ground plane, often combined with an occupancy grid
objects above or below the scanning plane cannot be detectaep [5]. One of the advantages is that several sensors can
The limited number of measurements thereby complicates fused easily (even in probabilistic ways [6]), and that
classification and tracking of obstacles. Additionally,hily mapping is straight-forward. Many teams participatinglie t
environments the scanner might fail to detect obstacles DARPA Urban Challenge, including ours, successfully agupli
might recognize an ascending road as obstacle. this method (e.g. [7], [8], [9]). However, the difficulty of
Within the last few years, fully three-dimensional scasnetlistinguishing between obstacles and ground still remains
have been introduced. Rather than scanning in a plane, Sihple solution is to define the density of the points within
volumes are scanned resulting in a (potentially unorderesl)cell as occupancy value [9]. This easily marks all cells
cloud of 3D points. This allows detection of all kinds ofcontaining vertical structures as occupied. Object ektrac
obstacles and the explicit detection of free-space as thengr is then usually performed by clustering connected occupied
is also sampled. However, the vast amount of data posesta gugdls together, a®.g.in [10]. While these approaches work
challenge on the algorithms. Furthermore, the multidimegery well for environments with a level ground plane and
sional signal necessitates multidimensional signal [msiog vertical wall structures, they are not suitable for releabl
methods. detection of sloped objects like vegetation, hills, or cuds
We propose a method that is capable of handling thisey often appear in outdoor environments. Furthermore, a
data. The major contributions are: First, we introduce aehowubstantial portion of the information available is lostedu
criterion dubbedLocal Convexitythat uses local geometricto the projection. Therefore, these approaches are verly wel
features. It can be generically used to segment both grousulted to obstacle avoidance in flat areas, but give only very
and objects. Second, we present a segmentation algoritim doarse information on object geometry.
keeps the full 3D information delivered by the sensor unlike
many popular approaches. We show that the combinatifn Range Image based methods
works successfully even in non-flat urban environments. Alternatively, the 3D data can be projected onto a cylinder
This paper is organized as follows. In the next sectiomhose axis is the rotational axis of the scanner. This ptigjec
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Fig. 1. lllustration of our method, best viewed in color:g#eft) 3D point cloud, blueness decodes height above gtoSireet is in vertical direction with
parked cars and a wall on the right and tree trunks on the (teft-right) Neighborhood Graph. (bottom-left) Normal t@s, direction is indicated both by
color and a small line. (bottom-right) Segmentation result

yields a range image, where pixel values correspond to thaee easy to implement and fast. However, different choies o
distance measurements. Founding work has been carried seéd points usually result in different segments. Henogh su
by Hooveret al. [11], whose principal approach of local (pla-algorithms are not considered as robust. Graph cuts based
nar) surface fitting and clustering afterwards is still d@led algorithms play an important role, like the normalized cuts
today, as e.g. in [12]. However, range image based methadgorithm of [19], which minimize some cost function. One
are mostly used in controlled, artificial environments, lseit advantage is the guarantee to converge to the global minimum
use within intelligent vehicles is rare. A major drawback for automotive applications clearly isithe

More popular is the use of (2-dimensional) graphs, a natuf@mputational cost. Aguiaet al. [20] alternatively generate
generalization of images. Most popular segmentation nusthd® Minimum spanning tree and apply recursive cutting. This
working on graphs are not surprisingly adaptions of (initghs kgeps nearly linear costs while still finding a good local
image based methods. The first step is to build a weightggnimum.
graph, where the weights represent the similarity betwaen t Motivated by our experiences on the ground plane based
connected nodes. The graph is usually obtained directiy franethods from the DARPA Urban Challenge, we adapt in this
the scanning setup or by triangulation. Attributes usetliohe work the graph-based approach using the full 3D data. This
surface direction [13], curvature [14], [15], edges[1&]cdl way, all information included in the multidimensional nagu
smoothness constraints [17] and more. Region growing algaf-the signal is exploited. We show that this allows for a fast
rithms (e.g.in [13], [18]) can be used for segmentation, whiclalgorithm and good results even on bended road surfaces.
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I1l. PROPOSED METHOD displacement vectors between the left and lower, lower and

Our method is a scan-wise segmentation of the environmé&ight, right and upper and finally upper and left vectors @se
which is performed in several steps (see Fig. 1): scan acqti} links still exist in the graph). We geometrically avezage
sition, neighborhood graph construction, attribute dalion obtained vectors to obtain the estimated local surface abrm
and finally segmentation. We further introduce an additiont! Order to reduce noise, a moving average filter is applied
classification step to decide about a segment belongingt‘{’othe field of surface normals. Results are illustrated & th
ground or obstacle. These steps are detailed in the folpwif?Ottom-left picture of Fig. 1.

D. Segmentation

For scan acquisiton we use a Velodyne HDL-64 High Based upon the observation that many object parts have
Definition Lidar scanner which is mounted on top of ouf°nvexoutlines and that a vertical structure usually regmes
experimental vehicle. It consists of a column of 64 sing/@N€ Single object, we introduce a combined segmentation
lasers, covering a pitch range of approximately 26 degre&&terion in the following. Two pointsife. nodes) belong to
It rotates at a rate of0 Hz sweeping the complete horizontaf’€ Same object, if and only if there exists a path in the

ground plane and producint0000 points per turn. As the graph connnecting the two nodes, with every edge of that path

pitch angles of the lasers are fixed, each of the lower lasd/dfilling this criterion. _ _
The criterion is dependent on two neighboring surfages

produces a ring of point measurements on a horizontal plane. > _ . N )
The top-left of Fig. 1 depicts an example scan. ands;, characterized by their point locatiops, ;, respective

In general, our method is not restricted to one specific ty|5% an a_rbltrziry but foed coordinate system, and their nosmal
with ||7;|| = ||7,]| = 1. Normal vectors are assumed to

of sensor, however, the physical setup of the Velodyne HD@'/,J"
64 allows to directly obtain a neighborhood graph from a scaR€int outwards.

as explained next.

A. Scan Acquisition

B. Neighborhood Graph Construction

The goal of this step is to turn a scan into an undirected
graphG = {N, E}, with the nodesN = {(z,y,z);} being
the measured points in 3D, and the eddes= {(N,, N;)}
connecting the nodes. As connections we chose an image- ’
like 4-neighborhood, as this can be directly obtained from t
scanner. As the scanner turns counter-clockwise, a po@it's
neighbor corresponds to the next measurement obtainectby th
same laser, its right neighbor to the previous measurermbat.
upper and lower edges are assigned to the measurements of
the upper and lower laser diode with the most similar yaw
angle, respectively.

The graph is further postprocessed by deleting any edge that
exceeds a certain absolute distance threshold or that gxcee
a distance threshold relative to neighboring connectidhs.
top-right picture of Fig. 1 shows the calculated graph corre
sponding to the top-left picture.

In case scan acquisition merely delivers an unordered point
ClO_Ud' a graph could e.g. be Obtamed by trlangulatlon Oe'O.thFig. 2. Local convexity holds if the center point of a surfaseédelow the
neighborhood search methods. This, of course, will exeelssi other surface and vice versa.
increase processing time.

_ ) A core concept for object segmentation proposed in this

C. Attribute Calculation contribution is the following definition olLocal Convexity

For each of the nodes we calculate an attribute which is usgs illustrated in Fig. 2, two neighboring surfaces and s;
in the next step to segment the graph. The criterion predentge termedocally convexto each other, if the center poipt
in section 1lI-D is a criterion which is based on local sudaclies below the surface; and vice versa. In order to increase
geometry. As range sensors sample surfaces only pointwisgjustness, we also consider two surfageands; aslocally
the surface geometry has to be interpolated from the rangmnvex if their normal vectors approximately have the same
data. In this work, we approximate the local surface aroundd@&ection. So in contrast to the common convexity definition
point by a plane or rather its normal vector. A robust methab a curve property,ocal Convexityefers to docal, pairwise
would be to use several neighboring points and utilize leastation.
squares estimation, however, this is not applicable inties. This is a criterion that is very fast to evaluate by using the
Alternatively, as in [13], we calculate the cross producthef dot product. The following equation expresses whether two

217



Fig. 3. Segmentation results on non-flat areas, best viewedlor. (first row) Concave street in a tunnel. (second rowi@x gateway to an underground
garage. (left column) 3D point cloud. Blue decodes heiglivabground, red decodes depth below ground. (right colunegntents, displayed in different
colors.

surfacess; ands; arelocally convexto each other: 1) Select a seed node randomly
2) Grow the segment until no more nodes are added
z z 3) Delete the segment from the graph

A (7t - dji < ldjil] - cos(§5 — €1)))] Even though seed surfaces are selected randomly, the re-
V[ -7ty > 1 —||di)| - cos(§ —e)]  sult of the algorithm is deterministic. The growing criteri
will merge two connected nodes into the same segment no
matter from which direction the connection in the graph is
with d@ = (p; — p;) being the displacement vector frofa approached.
to 7; and hencel;; = —d;;. The parameter; can be chosen The segmentation result of our running example is shown
to set the level of concavity (zero = none) as it defines tig& the bottom-right of Fig. 1.
angle in WhICh the other point may_lle apo_ve _the surface plar]:e' Classification
€2 > 0 defines the distance-adaptive similarity angle and can
be chosen to account for noisy data, as mentioned above. For a first mapping application we further developed a

Finally, we combineLocal Convexitywith a vertical struc- Simple classifier to decide about a segment being ground or

true  [(7i; - dij < [|dis]| - cos(3 — 1))
|C<5i75j) =

false else

ture criterion to obtain the segmentation criterion obstacle. For each segment a histogram over all the normal
vector’s z value is generated and classified as ground if the
9row(ss, 5;) = Ic(si, 5;) V (|| < €s) A (23, | < €s)] topmost bin contains most votes.

Here,0 < ¢35 < 1 is a third constant that can be chosen to

connect two vertical surfaces. By setting it to 1 only onebglo IV. EXPERIMENTS

segment would be obtained, as the absolute value of a normalVe have evaluated the proposed algorithm for numerous

vector'sz coordinate is always smaller or equal to 1. scans acquired by the HDL-64 sensor mounted on a Volkswa-
Thus, two surfaces are combined into a segment, if they @yen Passat experimental vehicle in inner city traffic scenes

eitherlocally convexor both normal vectors are approximatelAs no ground truth information is available, a qualitative

vertical. One important property follows from this definiti  performance evaluation is conducted. The parameters were

If grow(s;, s;) holds, then grogs;, s;) holds as wellj.e.the fixed toe; = 0.1 = 6°, 2 = 0,03 ~ 2°/m, andez = 0.5

criterion is symmetric. This allows the segmentation to kiroughout all experiments.

efficiently solved by a region growing algorithm as follows: Two example results of the segmentation algorithm can be
Given the attributed graph, the following region growingeen in Fig. 3. Shown are two scenes including both uneven

algorithm is executed until no more surfaces are left: road surfaces (one slightly concave, the other convex). Our
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Fig. 4. Segmentation and classification results, best deiwecolor. (first row) Broad road with pedestrians, a motolisy, a truck, cars and tree trunks.
(second row) Another intersection with pedestrians and. d#nird row) Intersection with pedestrians, cyclistsd aars. (forth row) Entry to an underground
passage with motorcyclist. Cars parking and driving on ufpeel. (left column) Segments, displayed in differentagsl (right column) Classification results,

green indicating ground, red indicating obstacle.
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algorithm is able to successfully merge the road segmem. Tinobiles (SFB/Tr28) granted by Deutsche Forschungsgemein-
walls in the upper picture are split into two segments digehaft.
to shadows breaking the connectivity. In the lower picture
even the vegetation on the side of the horizontal street is

merged into one (yellow) segment. However, vegetation is ift] F. Nashashibi and A. Bargeton, “Laser-based vehiclegking and
| verv difficult to deal with. as range measuremergs ar classification using occlusion reasoning and confidencenaton,”
general very , 9 Intelligent Vehicles Symposium, 2008 IEE. 847-852, June 2008.

extremely noisy thereon. This can be seen on the right, whe[g G. Gate and F. Nashashibi, “Using targets appearanaapcove pedes-

many one-point-segments were formed. trian classification with a laser scanndntelligent Vehicles Symposium,

h . I 2008 IEEE pp. 571-576, June 2008.
Further results including the classification outcomes arg; T rapbani and F. van den Heuvel, “Efficient hough tramsfdfor

depicted in Fig. 4. As visible in the left column, usually all ~ automatic detection of cylinders in point clouds.”

traffic participants are clearly segmented from the groles [4] S.J. Ahn, I. Effenberger, S. Roth-Koch, and E. Westkam{izeometric
illustrated by the first three I’OWS) However. we sometimes segmentation and object recognition in unordered and ipéeta point
y : ! cloud,” in DAGM-Symposium2003, pp. 450-457.

encounter the typical problems that most segmentationalg@] S. Thrun, “Learning occupancy grid maps with forward senmodels,”
rithms have: both over- and undersegmentation can occtlr, wi__ Auton. Robotsvol. 15, no. 2, pp. 111-127, 2003.

- . 6] M. Tay, “An efficient formulation of the Bayesian occupmat filter
oversegmentation bemg the most common but also the Iegé for target tracking in dynamic environmentdyiternational Journal of

critical. Running on a sequence, however, merged segments Vehicle Autonomous Systemsl. 6, pp. 155-171(17), 31 December

are usually split in some frames, leaving it to a — so far_ 2007.
M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolg&: Et-

missing — tracking algorithm to merge segments b detectinb?]

- g ) g alg 9 9 y. tinger, D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke, D. dsion,
uniformly moving ones. The fourth row was again taken s.Kiumpp, D. Langer, A. Levandowski, J. Levinson, J. MarBil Oren-
from uneven terrain, with the green segment being a street stein. J. Paefgen, I. Penny, A. Petrovskaya, M. Pflueger, t@neg,

d di int t I th d t treet th D. Stavens, A. Vogt, and S. Thrun, “Junior: The Stanford yeritr
escending into a tunnel, the red segment a street on IN€ UPPe e yrpan Challenge,” inJournal of Field Roboticsser. 9, vol. 25,

ground. Nevertheless, the segmentation result is very .good September 2008, pp. 569 — 597.

The column on the right illustrates the classification ressul  [8] C. Urmsonet al, “Autonomous driving in urban environments: Boss
and the Urban Challenge,” idournal of Field Roboticsvol. 25, no. 8,
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