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Abstract—1In this paper, we present a new system setup
combining three catadioptric cameras. Our application is in
autonomous vehicles. This camera setup allows for panoramic
stereo vision of the environment and therefore proves to be
useful for ego motion estimation and localization by 3D feature
points all around the vehicle. The three catadioptric cameras are
arranged in a triangle on top of the vehicle and are horizontally
aligned. In the paper we discuss two methods for 3D scene point
reconstruction with the system. We perform experiments for the
3D reconstruction in a simulated environment and evaluate the
accuracy by means of a Monte-Carlo-Simulation. The proposed
system improves the mean accuracy of the 3D reconstruction
significantly compared to a system with two cameras.

I. INTRODUCTION

For intelligent robotic applications environment perception
and 3D scene reconstruction are current fields of research.
Especially for autonomous driving stereo vision and camera
based reconstruction of a large area of the environment are
very important tasks. Therefore it is desirable for camera
systems utilized for autonomous vehicles to have a large
monoscopic as well as stereoscopic field of view (FOV) of the
environment. However, cameras typically mounted on vehicles
have a limited FOV and are looking only in driving direction.
But for many autonomous vehicle applications like blind spot
detection or lane tracking it is necessary to perceive also
the areas beside and behind the vehicle. Moreover, landmark
detection on the sides of the vehicle could improve self-
localization.

One common way to enhance the FOV with only one
camera is using catadioptric camera systems. Catadioptric
cameras are a combination of a convex mirror above a lens
and provide a panoramic image of the environment at the
cost of image resolution. They have been extensively studied
in the past [1, 2] and are often used in indoor robotic
applications for navigation and surveillance tasks. There are
also some approaches using single catadioptric cameras for
driver assistance application like lane tracking [3], blind spot
detection [4] or ego motion estimation [5]. However, up to
now the potential of stereo vision with catadioptric cameras
for outdoor vehicles has not been explored in depth.

In recent years different types of omnidirectional stereo
camera systems combining catadioptric cameras have been
proposed. A large number of approaches uses stereo vision
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Fig. 1. Camera Setup with three catadioptric cameras. Si2, S13 and Sa3
show the 3D intersection points in each case by two cameras. S is the 3D
scene point calculated by all three cameras.

with a vertical camera baseline. This can be achieved by two
catadioptric cameras mounted on top of each other [6], by two
mirrors mounted on top of each other with only one lens [7]
or a special designed mirror with two slopes and only one
lens [8]. However, vertically aligned stereo camera systems
are not very useful for autonomous outdoor vehicles due to
the small baseline of the camera configuration and the height
of the setup. A large baseline can only be archived by a high
pole mounted on the roof of the vehicle which is not suitable.

Gandhi and Trivedi [9] present a catadioptric camera system
for visualizing and analyzing the nearby surrounding with
two horizontally aligned cameras mounted on the left and
the right side mirror of a vehicle. In [10] we discuss a
similar catadioptric stereo camera setup with two catadioptric
cameras mounted on the left and the right side on top of
the vehicle for 3D reconstruction. This camera configuration
allows for accurate stereo vision in the area in front and behind
the vehicle. A drawback of such a system with horizontally
aligned cameras is the dependency of the depth error from
the magnitude of the intersection angle between the two rays.
Thus, the advantage of a panoramic stereo view exists only in
front and behind the vehicle.



In this paper we propose a new panoramic camera setup
consisting of three planar aligned catadioptric cameras ar-
ranged in a triangle. With this configuration we increase the
monoscopic FOV of the nearby environment by the improved
position on the vehicle as well as the stereoscopic FOV. The
camera configuration allows for 3D reconstruction in the whole
environment around the vehicle and therefore improves many
stereo based downstream application for autonomous driving.
We show that three cameras overcome the problem of stereo
blind spots along the baseline connecting two cameras.

The paper is divided as follows. In Section II we present
the theoretical model of our catadioptric camera and the 3D
reconstruction. Section III describes our new camera setup and
the reconstruction with three cameras. In Section IV we show
results for enhancement of the 3D reconstruction with cameras
on simulated data. Finally, Section V concludes this paper and
shows future work.

II. CATADIOPTRIC SCENE RECONSTRUCTION
A. Catadioptric Camera Model

For our trifocal panoramic system we use catadioptric
cameras consisting of an hyperbolic mirror and a perspective
lens. These catadioptric cameras fulfill the single view point
condition [2]. Different projection models for single view point
catadioptric cameras exist to define the relationship between
a 3D world point S and a 2D point u on the catadioptric
image plane ([11, 12]). In our approach we use the projection
model presented by Scaramuzza [13] which takes into account
natural misalignments between the camera and the mirror. This
model describes the projection function as a polynomial. The
dependency between an image point u = [u,v]” and a vector
P, which presents a ray from the focal point of the mirror Fix
to the scene point S, is encoded by the function g.

p=g(u)=g(Au+t)=PS (1)

S € R* is expressed in homogeneous coordinates, P € R3*4
is the perspective projection matrix and A € R?*2 and ¢ €
R'*2 are affine transformation parameters for misalignment
errors and digitizing artefacts.

The function g has the following expression

g(u) = (u', 0/, f(u', )" 2)
and the polynomial f is defined as
f=ao+ar-p+ay-p’+as-p’+as-p* (3
with
p=u? 402, “
B. 3D Reconstruction

Out of two corresponding image points in a catadioptric
image pair the according 3D world points S can be recon-
structed by calculating the points on the mirror surfaces Xy,
corresponding to the image points u; for both catadioptric
cameras (¢ = 1,2). Afterwards, we construct the rays through
the focal point of the mirrors F, and the points on the mirror
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Fig. 2. Normalized mean Euclidean error g as a function of angle ¢ of

the 3D scene point (red) and the weight function cos?(y) (green).

surfaces X s,. The 3D scene point S is given as the midpoint
of the smallest distance [14] between the two rays.

In [10] we discuss the accuracy of the 3D reconstruction
with two horizontally aligned cameras i.e. Camera 1 and
2 in Fig. 1. We demonstrate that the accuracy depends on
the position of the scene point S(r,¢,0) given in polar
coordinates. The accuracy decreases from ¢ = 0° to ¢ = 90°
with 0° being behind the two cameras and 90° being on the
right side of the cameras as shown in Fig. 1. In Fig. 2 the
dependency of the 3D reconstruction from the angle ¢ and the
accuracy are displayed. The red function shows the normalized
mean Euclidean error p4 for the reconstruction of a circular
simulated point cloud. The points are located in a circle with
constant height around the two aligned catadioptric cameras
with a radius of 8 m. Consequently, the reconstruction error
is maximal at ¢ = 90° and ¢ = 270° which is along the
baseline of the camera combination.

ITII. TRIFOCAL VISION
A. Camera Setup

In our approach we use three catadioptric cameras arranged
in a plane parallel to the ground in a triangle as shown in
Fig. 1. The cameras are mounted on top of the vehicle, two
in the front on the left and right side and the third one
centered in the rear. With this camera configuration all points
around the vehicle are seen by at least two cameras. Moreover,
points which lie on the baseline from two cameras and can
not be reconstructed with the two cameras are visible by the
third camera, if not covered by another object. Thus, every
3D point around the vehicle can be calculated out of the
image points according to the best positioned cameras with
a sufficient accuracy. In addition this camera configuration
with the cameras mounted at the edges of the vehicle has
the advantage that also small objects next to the vehicle can
be seen with at least one camera.

B. 3D Reconstruction

First of all, for the 3D reconstruction out of three sin-
gle catadioptric cameras we calculate the corresponding 3D
intersection points S2, Sz and S3; out of two cameras
between all camera combinations as shown in Fig. 1. The
straight forward approach is to determine S = %Z S,, with
n € {12,13,23} =: N as the average of all three intersection
points. Obviously, this computation is not advantageous due
to the varying accuracy of the pairwise 3D reonstruction as
shown in Fig. 2.



To establish the best 3D point out of the intersection points
S, we evaluate two different methods. Our first method
calculates the best intersection point S by a sum over all
intersection points each multiplied by a window function
wy, () depending on the angle (.

S=> wa(p)-Sn ®)
nenN
with the following window functions w,(p) for all three
camera combinations.

1, for ¢ € [0°,30°] U [150°,210°] U [330°, 360°]
wi2(e) = 0, else

1, for ¢ € [90°,150°] U [270°, 330°]

else
1, for ¢ € [30°,90°] U [210°, 270°
W) = { v € [30°,90°] U )

0, else

This method uses only the best intersection points depending
on the angle of the 3D point.

To use all three intersection points our second method
calculates the 3D points with a weighted sum over all three
points.

S _ Z 9n * Sn (6)

> 9n
The weight functions g, depend on the angle ¢., between
the pairwise translation vector connecting the cameras c,, =
(€2, Cyn» C2, | and the angle ¢ of the 3D point, shown in Fig. 1.

c
_Yn (7)
V. e

For the weight function g¢,,(||¢n — ¢, ||) we use

Pe,, = arccos

) (®)

as depicted in green in Fig. 2. The weight function penalizes
intersection points with a small spatial angle to the baseline
between the cameras and rewards points perpendicular to the
baseline.

) = COSQ(H‘Pn — Pen

gn(”@n — Pe,

IV. RESULTS

In this section the results of our approach on a simulated
3D environment are presented. We created 3D scene points in
a circle (¢ = 0°,1°,...,360°) around the three cameras with
radius 8 m and a constant height. The cameras are located
at position [0 0 0], [0 1 0]7 and [1 0.5 0]T as shown in
Fig. 1. The accuracy of the 3D reconstruction is evaluated
by means of a Monte-Carlo-Simulation. For this purpose the
circular scene points are mapped onto the image planes of the
catadioptric cameras. For each of the 360 mapped image points
we created 100 samples and disturbed them with Gaussian
noise with a standard deviation of 1.5 pixels. Using these
disturbed image points we calculated the corresponding points
on the mirror surfaces and determined the 3D intersection
points by reprojection with the presented methods using Eq. 5
and Eq. 6.
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Fig. 3. Euclidean reprojection error and mean p of the three camera
combinations (S12 - green, S13 - magenta, S23 - blue). The fourth figure
depicts the error for the 3D reconstruction calculated with Eq. 5 (cyan) and
the last one the error for the 3D points calculated with Eq. 6 (red). The weight
functions are shown as colored lines.

The 3D reconstruction can be judged by the reprojection
error which is the Euclidean distance || X — S|| between the
reconstructed point S and the ground truth scene point X.
Fig. 3 shows the error for the reconstruction with two cameras
for Camera 1 and 2 (green), for Camera 1 and 3 (magenta) and
for Camera 2 and 3 (blue). The dependency on the angle ¢ can
clearly be seen. The same effect is visible in Fig. 4(a) which
shows the reconstructed 3D point cloud from each camera pair
in the same color. Obviously, the reconstructed points along
the baselines deviate from the true scene points.

The reconstruction error for the estimated 3D point by the
two computation methods are also depicted in Fig. 3. The
fourth figure shows the reprojection error for the reconstruction
method using Eq. 5 and the last figure displays the reprojection
error for the reconstruction using Eq. 6. The weight functions
w(¢y) and g(y) are also shown as colored lines in the figures.
It can be seen that the reprojection error with both methods is
smaller than for the 3D points calculated by only two cameras.
Most importantly, it is independent of the angle .

Fig. 4 shows the reconstructed point clouds with the black
circle as ground truth. In Fig. 4(b) the reprojected point cloud
by the straight forward mean combination is displayed. The
reconstructed point cloud by the combination of the three
cameras with the weight functions (Eq. 6) is illustrated in
Fig. 4(c). The reprojected point cloud with Eq. 5 looks similar
to this one. It became clear that the reconstructed scene
points with the weighted combinations (Eq. 5, 6) are closer
to the ground truth than the mean combination of the three
intersection points and are independent from the angle ¢.
Hence, points on all sides of the vehicle can be reconstructed
with these methods with similar accuracy.

For a quantitative result we analyze the mean pg and
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(a) Distribution for the 3D reconstruction of Cam-
era 1 & 2 (green), Camera 1 & 3 (magenta) and
Camera 2 & 3 (blue).

Fig. 4.

standard deviation oy of the error shown in Tab. I. The
mean and standard deviation for the proposed methods are
considerable smaller than for the intersection points calculated
with two cameras. The values for the reconstruction with Eq. 6
are slightly smaller. The reconstruction with Eq. 6 also copes
better with outliers because it always uses three cameras.

Setup Siz 33(Sn) TwnS, Hliata)

pa [m] 05785 04273 01792 0.1738

oq [m] 0.8951 0.4282 0.0282 0.0247
TABLE I

MEAN (g AND STANDARD DEVIATION 04 OF THE ERROR.

V. CONCLUSIONS AND FUTURE WORK

In this work, we have presented a new catadioptric camera
system for autonomous vehicles. The proposed setup consists
of three cameras aligned on a plane and arranged in a triangle
on top of a vehicle. We presented two methods for the 3D
reconstruction with three catadioptric cameras which achieved
good results. Both methods calculate the 3D point by a
weighted average, one with a window function and one with a
weight function based on the cosine. We have shown that the
accuracy of the 3D reconstruction with three cameras is by far
better as the reprojection with two cameras and independent
of the spatial angle of the expected 3D point.

Our next steps will include a validation of the 3D recon-
struction with the camera setup on our experimental vehicle
with real world data. Furthermore, we want to use the ac-
curate 3D points all around the vehicle to improve the ego
motion estimation and localization with catadioptric cameras.
Moreover, the extrinisic calibration between the cameras can
be enhanced with this 3D reconstruction.
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3D reconstruction for a simulated noisy circular point cloud with radius 8 m around the cameras and a constant height.
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